Load-balancing improvements:
============================
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness metrics (PELT),
and remove the conservative threshold requiring 6% energy savings to
migrate a task. Doing this improves power efficiency for most workloads,
and also increases the reliability of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time searching
for an idle CPU on overloaded systems. There's reports of several
milliseconds spent there on large systems with large workloads ...
[ Since the search logic changed, there might be behavioral side effects. ]
- Improve NUMA imbalance behavior. On certain systems
with spare capacity, initial placement of tasks is non-deterministic,
and such an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which benefit
from the artificial locality of the placement bug(s). Mel Gorman's
conclusion, with which we concur, was that consistency is better than
random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think it's
better to be consistent and use similar logic at both fork time
and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in sched_core_update_cookie() that
caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly
woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup latencies.
ABI improvements/fixes:
=======================
- Do not check capabilities and do not issue capability check denial messages
when a scheduler syscall doesn't require privileges. (Such as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
==============
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
======================
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not being
re-enabled when the last SCHED_RT task is gone from a runqueue but there's
still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn2ywRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iNfxAAhPJMwM4tYCpIM6PhmxKiHl6kkiT2tt42
HhEmiJVLjczLybWaWwmGA2dSFkv1f4+hG7nqdZTm9QYn0Pqat2UTSRcwoKQc+gpB
x85Hwt2IUmnUman52fRl5r1miH9LTdCI6agWaFLQae5ds1XmOugFo52t2ahax+Gn
dB8LxS2fa/GrKj229EhkJSPWAK4Y94asoTProwpKLuKEeXhDkqUNrOWbKhz+wEnA
pVZySpA9uEOdNLVSr1s0VB6mZoh5/z6yQefj5YSNntsG71XWo9jxKCIm5buVdk2U
wjdn6UzoTThOy/5Ygm64eYRexMHG71UamF1JYUdmvDeUJZ5fhG6RD0FECUQNVcJB
Msu2fce6u1AV0giZGYtiooLGSawB/+e6MoDkjTl8guFHi/peve9CezKX1ZgDWPfE
eGn+EbYkUS9RMafXCKuEUBAC1UUqAavGN9sGGN1ufyR4za6ogZplOqAFKtTRTGnT
/Ne3fHTtvv73DLGW9ohO5vSS2Rp7zhAhB6FunhibhxCWlt7W6hA4Ze2vU9hf78Yn
SJDLAJjOEilLaKUkRG/d9uM3FjKJM1tqxuT76+sUbM0MNxdyiKcviQlP1b8oq5Um
xE1KNZUevnr/WXqOTGDKHH/HNPFgwxbwavMiP7dNFn8h/hEk4t9dkf5siDmVHtn4
nzDVOob1LgE=
=xr2b
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Load-balancing improvements:
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness
metrics (PELT), and remove the conservative threshold requiring 6%
energy savings to migrate a task. Doing this improves power
efficiency for most workloads, and also increases the reliability
of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time
searching for an idle CPU on overloaded systems. There's reports of
several milliseconds spent there on large systems with large
workloads ...
[ Since the search logic changed, there might be behavioral side
effects. ]
- Improve NUMA imbalance behavior. On certain systems with spare
capacity, initial placement of tasks is non-deterministic, and such
an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which
benefit from the artificial locality of the placement bug(s). Mel
Gorman's conclusion, with which we concur, was that consistency is
better than random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think
it's better to be consistent and use similar logic at both fork
time and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in
sched_core_update_cookie() that caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs
for newly woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup
latencies.
ABI improvements/fixes:
- Do not check capabilities and do not issue capability check denial
messages when a scheduler syscall doesn't require privileges. (Such
as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the
previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not
being re-enabled when the last SCHED_RT task is gone from a
runqueue but there's still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes"
* tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
rseq: Kill process when unknown flags are encountered in ABI structures
rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags
sched/core: Fix the bug that task won't enqueue into core tree when update cookie
nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt()
sched/core: Always flush pending blk_plug
sched/fair: fix case with reduced capacity CPU
sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling
sched/core: add forced idle accounting for cgroups
sched/fair: Remove the energy margin in feec()
sched/fair: Remove task_util from effective utilization in feec()
sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu()
sched/fair: Rename select_idle_mask to select_rq_mask
sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()
sched/fair: Decay task PELT values during wakeup migration
sched/fair: Provide u64 read for 32-bits arch helper
sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
sched: only perform capability check on privileged operation
sched: Remove unused function group_first_cpu()
sched/fair: Remove redundant word " *"
selftests/rseq: check if libc rseq support is registered
...