WSL2-Linux-Kernel/sound/soc/codecs/tlv320aic3x.c

1591 строка
51 KiB
C

/*
* ALSA SoC TLV320AIC3X codec driver
*
* Author: Vladimir Barinov, <vbarinov@embeddedalley.com>
* Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com>
*
* Based on sound/soc/codecs/wm8753.c by Liam Girdwood
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Notes:
* The AIC3X is a driver for a low power stereo audio
* codecs aic31, aic32, aic33, aic3007.
*
* It supports full aic33 codec functionality.
* The compatibility with aic32, aic31 and aic3007 is as follows:
* aic32/aic3007 | aic31
* ---------------------------------------
* MONO_LOUT -> N/A | MONO_LOUT -> N/A
* | IN1L -> LINE1L
* | IN1R -> LINE1R
* | IN2L -> LINE2L
* | IN2R -> LINE2R
* | MIC3L/R -> N/A
* truncated internal functionality in
* accordance with documentation
* ---------------------------------------
*
* Hence the machine layer should disable unsupported inputs/outputs by
* snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/tlv320aic3x.h>
#include "tlv320aic3x.h"
#define AIC3X_NUM_SUPPLIES 4
static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
"IOVDD", /* I/O Voltage */
"DVDD", /* Digital Core Voltage */
"AVDD", /* Analog DAC Voltage */
"DRVDD", /* ADC Analog and Output Driver Voltage */
};
static LIST_HEAD(reset_list);
struct aic3x_priv;
struct aic3x_disable_nb {
struct notifier_block nb;
struct aic3x_priv *aic3x;
};
/* codec private data */
struct aic3x_priv {
struct snd_soc_codec *codec;
struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
enum snd_soc_control_type control_type;
struct aic3x_setup_data *setup;
unsigned int sysclk;
struct list_head list;
int master;
int gpio_reset;
int power;
#define AIC3X_MODEL_3X 0
#define AIC3X_MODEL_33 1
#define AIC3X_MODEL_3007 2
u16 model;
};
/*
* AIC3X register cache
* We can't read the AIC3X register space when we are
* using 2 wire for device control, so we cache them instead.
* There is no point in caching the reset register
*/
static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
0x00, 0x00, 0x00, 0x10, /* 0 */
0x04, 0x00, 0x00, 0x00, /* 4 */
0x00, 0x00, 0x00, 0x01, /* 8 */
0x00, 0x00, 0x00, 0x80, /* 12 */
0x80, 0xff, 0xff, 0x78, /* 16 */
0x78, 0x78, 0x78, 0x78, /* 20 */
0x78, 0x00, 0x00, 0xfe, /* 24 */
0x00, 0x00, 0xfe, 0x00, /* 28 */
0x18, 0x18, 0x00, 0x00, /* 32 */
0x00, 0x00, 0x00, 0x00, /* 36 */
0x00, 0x00, 0x00, 0x80, /* 40 */
0x80, 0x00, 0x00, 0x00, /* 44 */
0x00, 0x00, 0x00, 0x04, /* 48 */
0x00, 0x00, 0x00, 0x00, /* 52 */
0x00, 0x00, 0x04, 0x00, /* 56 */
0x00, 0x00, 0x00, 0x00, /* 60 */
0x00, 0x04, 0x00, 0x00, /* 64 */
0x00, 0x00, 0x00, 0x00, /* 68 */
0x04, 0x00, 0x00, 0x00, /* 72 */
0x00, 0x00, 0x00, 0x00, /* 76 */
0x00, 0x00, 0x00, 0x00, /* 80 */
0x00, 0x00, 0x00, 0x00, /* 84 */
0x00, 0x00, 0x00, 0x00, /* 88 */
0x00, 0x00, 0x00, 0x00, /* 92 */
0x00, 0x00, 0x00, 0x00, /* 96 */
0x00, 0x00, 0x02, /* 100 */
};
/*
* read from the aic3x register space. Only use for this function is if
* wanting to read volatile bits from those registers that has both read-only
* and read/write bits. All other cases should use snd_soc_read.
*/
static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
u8 *value)
{
u8 *cache = codec->reg_cache;
if (codec->cache_only)
return -EINVAL;
if (reg >= AIC3X_CACHEREGNUM)
return -1;
codec->cache_bypass = 1;
*value = snd_soc_read(codec, reg);
codec->cache_bypass = 0;
cache[reg] = *value;
return 0;
}
#define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_volsw, \
.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
.private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) }
/*
* All input lines are connected when !0xf and disconnected with 0xf bit field,
* so we have to use specific dapm_put call for input mixer
*/
static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *widget = wlist->widgets[0];
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int shift = mc->shift;
int max = mc->max;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
unsigned short val, val_mask;
int ret;
struct snd_soc_dapm_path *path;
int found = 0;
val = (ucontrol->value.integer.value[0] & mask);
mask = 0xf;
if (val)
val = mask;
if (invert)
val = mask - val;
val_mask = mask << shift;
val = val << shift;
mutex_lock(&widget->codec->mutex);
if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
/* find dapm widget path assoc with kcontrol */
list_for_each_entry(path, &widget->dapm->card->paths, list) {
if (path->kcontrol != kcontrol)
continue;
/* found, now check type */
found = 1;
if (val)
/* new connection */
path->connect = invert ? 0 : 1;
else
/* old connection must be powered down */
path->connect = invert ? 1 : 0;
dapm_mark_dirty(path->source, "tlv320aic3x source");
dapm_mark_dirty(path->sink, "tlv320aic3x sink");
break;
}
if (found)
snd_soc_dapm_sync(widget->dapm);
}
ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
mutex_unlock(&widget->codec->mutex);
return ret;
}
static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
static const char *aic3x_left_hpcom_mux[] =
{ "differential of HPLOUT", "constant VCM", "single-ended" };
static const char *aic3x_right_hpcom_mux[] =
{ "differential of HPROUT", "constant VCM", "single-ended",
"differential of HPLCOM", "external feedback" };
static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
static const char *aic3x_adc_hpf[] =
{ "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
#define LDAC_ENUM 0
#define RDAC_ENUM 1
#define LHPCOM_ENUM 2
#define RHPCOM_ENUM 3
#define LINE1L_2_L_ENUM 4
#define LINE1L_2_R_ENUM 5
#define LINE1R_2_L_ENUM 6
#define LINE1R_2_R_ENUM 7
#define LINE2L_ENUM 8
#define LINE2R_ENUM 9
#define ADC_HPF_ENUM 10
static const struct soc_enum aic3x_enum[] = {
SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
};
/*
* DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
*/
static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
/* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
/*
* Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
* Step size is approximately 0.5 dB over most of the scale but increasing
* near the very low levels.
* Define dB scale so that it is mostly correct for range about -55 to 0 dB
* but having increasing dB difference below that (and where it doesn't count
* so much). This setting shows -50 dB (actual is -50.3 dB) for register
* value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
*/
static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
static const struct snd_kcontrol_new aic3x_snd_controls[] = {
/* Output */
SOC_DOUBLE_R_TLV("PCM Playback Volume",
LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
/*
* Output controls that map to output mixer switches. Note these are
* only for swapped L-to-R and R-to-L routes. See below stereo controls
* for direct L-to-L and R-to-R routes.
*/
SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
/* Stereo output controls for direct L-to-L and R-to-R routes */
SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
0, 118, 1, output_stage_tlv),
SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
0, 118, 1, output_stage_tlv),
/* Output pin mute controls */
SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
0x01, 0),
SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
0x01, 0),
SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
0x01, 0),
/*
* Note: enable Automatic input Gain Controller with care. It can
* adjust PGA to max value when ADC is on and will never go back.
*/
SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
/* Input */
SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
0, 119, 0, adc_tlv),
SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
};
/*
* Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
*/
static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
/* Left DAC Mux */
static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
/* Right DAC Mux */
static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
/* Left HPCOM Mux */
static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
/* Right HPCOM Mux */
static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
/* Left Line Mixer */
static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
};
/* Right Line Mixer */
static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
};
/* Mono Mixer */
static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
};
/* Left HP Mixer */
static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
};
/* Right HP Mixer */
static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
};
/* Left HPCOM Mixer */
static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
};
/* Right HPCOM Mixer */
static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
};
/* Left PGA Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
};
/* Right PGA Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
};
/* Left Line1 Mux */
static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
/* Right Line1 Mux */
static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
/* Left Line2 Mux */
static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
/* Right Line2 Mux */
static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
/* Left DAC to Left Outputs */
SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_dac_mux_controls),
SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_hpcom_mux_controls),
SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
/* Right DAC to Right Outputs */
SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_dac_mux_controls),
SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_hpcom_mux_controls),
SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
/* Mono Output */
SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
/* Inputs to Left ADC */
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_pga_mixer_controls[0],
ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_line1l_mux_controls),
SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_line1r_mux_controls),
SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_line2_mux_controls),
/* Inputs to Right ADC */
SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
LINE1R_2_RADC_CTRL, 2, 0),
SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_pga_mixer_controls[0],
ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_line1l_mux_controls),
SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_line1r_mux_controls),
SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_line2_mux_controls),
/*
* Not a real mic bias widget but similar function. This is for dynamic
* control of GPIO1 digital mic modulator clock output function when
* using digital mic.
*/
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
AIC3X_GPIO1_REG, 4, 0xf,
AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
AIC3X_GPIO1_FUNC_DISABLED),
/*
* Also similar function like mic bias. Selects digital mic with
* configurable oversampling rate instead of ADC converter.
*/
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
/* Mic Bias */
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
MICBIAS_CTRL, 6, 3, 1, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
MICBIAS_CTRL, 6, 3, 2, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
MICBIAS_CTRL, 6, 3, 3, 0),
/* Output mixers */
SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_line_mixer_controls[0],
ARRAY_SIZE(aic3x_left_line_mixer_controls)),
SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_line_mixer_controls[0],
ARRAY_SIZE(aic3x_right_line_mixer_controls)),
SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_mono_mixer_controls[0],
ARRAY_SIZE(aic3x_mono_mixer_controls)),
SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_hp_mixer_controls[0],
ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_hp_mixer_controls[0],
ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_hpcom_mixer_controls[0],
ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_hpcom_mixer_controls[0],
ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
SND_SOC_DAPM_OUTPUT("LLOUT"),
SND_SOC_DAPM_OUTPUT("RLOUT"),
SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
SND_SOC_DAPM_OUTPUT("HPLOUT"),
SND_SOC_DAPM_OUTPUT("HPROUT"),
SND_SOC_DAPM_OUTPUT("HPLCOM"),
SND_SOC_DAPM_OUTPUT("HPRCOM"),
SND_SOC_DAPM_INPUT("MIC3L"),
SND_SOC_DAPM_INPUT("MIC3R"),
SND_SOC_DAPM_INPUT("LINE1L"),
SND_SOC_DAPM_INPUT("LINE1R"),
SND_SOC_DAPM_INPUT("LINE2L"),
SND_SOC_DAPM_INPUT("LINE2R"),
/*
* Virtual output pin to detection block inside codec. This can be
* used to keep codec bias on if gpio or detection features are needed.
* Force pin on or construct a path with an input jack and mic bias
* widgets.
*/
SND_SOC_DAPM_OUTPUT("Detection"),
};
static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
/* Class-D outputs */
SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("SPOP"),
SND_SOC_DAPM_OUTPUT("SPOM"),
};
static const struct snd_soc_dapm_route intercon[] = {
/* Left Input */
{"Left Line1L Mux", "single-ended", "LINE1L"},
{"Left Line1L Mux", "differential", "LINE1L"},
{"Left Line2L Mux", "single-ended", "LINE2L"},
{"Left Line2L Mux", "differential", "LINE2L"},
{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
{"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
{"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
{"Left ADC", NULL, "Left PGA Mixer"},
{"Left ADC", NULL, "GPIO1 dmic modclk"},
/* Right Input */
{"Right Line1R Mux", "single-ended", "LINE1R"},
{"Right Line1R Mux", "differential", "LINE1R"},
{"Right Line2R Mux", "single-ended", "LINE2R"},
{"Right Line2R Mux", "differential", "LINE2R"},
{"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
{"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
{"Right ADC", NULL, "Right PGA Mixer"},
{"Right ADC", NULL, "GPIO1 dmic modclk"},
/*
* Logical path between digital mic enable and GPIO1 modulator clock
* output function
*/
{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
/* Left DAC Output */
{"Left DAC Mux", "DAC_L1", "Left DAC"},
{"Left DAC Mux", "DAC_L2", "Left DAC"},
{"Left DAC Mux", "DAC_L3", "Left DAC"},
/* Right DAC Output */
{"Right DAC Mux", "DAC_R1", "Right DAC"},
{"Right DAC Mux", "DAC_R2", "Right DAC"},
{"Right DAC Mux", "DAC_R3", "Right DAC"},
/* Left Line Output */
{"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Left Line Out", NULL, "Left Line Mixer"},
{"Left Line Out", NULL, "Left DAC Mux"},
{"LLOUT", NULL, "Left Line Out"},
/* Right Line Output */
{"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Right Line Out", NULL, "Right Line Mixer"},
{"Right Line Out", NULL, "Right DAC Mux"},
{"RLOUT", NULL, "Right Line Out"},
/* Mono Output */
{"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Mono Out", NULL, "Mono Mixer"},
{"MONO_LOUT", NULL, "Mono Out"},
/* Left HP Output */
{"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Left HP Out", NULL, "Left HP Mixer"},
{"Left HP Out", NULL, "Left DAC Mux"},
{"HPLOUT", NULL, "Left HP Out"},
/* Right HP Output */
{"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Right HP Out", NULL, "Right HP Mixer"},
{"Right HP Out", NULL, "Right DAC Mux"},
{"HPROUT", NULL, "Right HP Out"},
/* Left HPCOM Output */
{"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
{"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
{"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
{"Left HP Com", NULL, "Left HPCOM Mux"},
{"HPLCOM", NULL, "Left HP Com"},
/* Right HPCOM Output */
{"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
{"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
{"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
{"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
{"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
{"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
{"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
{"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
{"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
{"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
{"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
{"Right HP Com", NULL, "Right HPCOM Mux"},
{"HPRCOM", NULL, "Right HP Com"},
};
static const struct snd_soc_dapm_route intercon_3007[] = {
/* Class-D outputs */
{"Left Class-D Out", NULL, "Left Line Out"},
{"Right Class-D Out", NULL, "Left Line Out"},
{"SPOP", NULL, "Left Class-D Out"},
{"SPOM", NULL, "Right Class-D Out"},
};
static int aic3x_add_widgets(struct snd_soc_codec *codec)
{
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
struct snd_soc_dapm_context *dapm = &codec->dapm;
snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
ARRAY_SIZE(aic3x_dapm_widgets));
/* set up audio path interconnects */
snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
if (aic3x->model == AIC3X_MODEL_3007) {
snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
ARRAY_SIZE(aic3007_dapm_widgets));
snd_soc_dapm_add_routes(dapm, intercon_3007,
ARRAY_SIZE(intercon_3007));
}
return 0;
}
static int aic3x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec =rtd->codec;
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
u16 d, pll_d = 1;
u8 reg;
int clk;
/* select data word length */
data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
break;
case SNDRV_PCM_FORMAT_S20_3LE:
data |= (0x01 << 4);
break;
case SNDRV_PCM_FORMAT_S24_LE:
data |= (0x02 << 4);
break;
case SNDRV_PCM_FORMAT_S32_LE:
data |= (0x03 << 4);
break;
}
snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
/* Fsref can be 44100 or 48000 */
fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
/* Try to find a value for Q which allows us to bypass the PLL and
* generate CODEC_CLK directly. */
for (pll_q = 2; pll_q < 18; pll_q++)
if (aic3x->sysclk / (128 * pll_q) == fsref) {
bypass_pll = 1;
break;
}
if (bypass_pll) {
pll_q &= 0xf;
snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
/* disable PLL if it is bypassed */
reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE);
} else {
snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
/* enable PLL when it is used */
reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE);
}
/* Route Left DAC to left channel input and
* right DAC to right channel input */
data = (LDAC2LCH | RDAC2RCH);
data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
if (params_rate(params) >= 64000)
data |= DUAL_RATE_MODE;
snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
/* codec sample rate select */
data = (fsref * 20) / params_rate(params);
if (params_rate(params) < 64000)
data /= 2;
data /= 5;
data -= 2;
data |= (data << 4);
snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
if (bypass_pll)
return 0;
/* Use PLL, compute appropriate setup for j, d, r and p, the closest
* one wins the game. Try with d==0 first, next with d!=0.
* Constraints for j are according to the datasheet.
* The sysclk is divided by 1000 to prevent integer overflows.
*/
codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
for (r = 1; r <= 16; r++)
for (p = 1; p <= 8; p++) {
for (j = 4; j <= 55; j++) {
/* This is actually 1000*((j+(d/10000))*r)/p
* The term had to be converted to get
* rid of the division by 10000; d = 0 here
*/
int tmp_clk = (1000 * j * r) / p;
/* Check whether this values get closer than
* the best ones we had before
*/
if (abs(codec_clk - tmp_clk) <
abs(codec_clk - last_clk)) {
pll_j = j; pll_d = 0;
pll_r = r; pll_p = p;
last_clk = tmp_clk;
}
/* Early exit for exact matches */
if (tmp_clk == codec_clk)
goto found;
}
}
/* try with d != 0 */
for (p = 1; p <= 8; p++) {
j = codec_clk * p / 1000;
if (j < 4 || j > 11)
continue;
/* do not use codec_clk here since we'd loose precision */
d = ((2048 * p * fsref) - j * aic3x->sysclk)
* 100 / (aic3x->sysclk/100);
clk = (10000 * j + d) / (10 * p);
/* check whether this values get closer than the best
* ones we had before */
if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
last_clk = clk;
}
/* Early exit for exact matches */
if (clk == codec_clk)
goto found;
}
if (last_clk == 0) {
printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
return -EINVAL;
}
found:
data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
data | (pll_p << PLLP_SHIFT));
snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
pll_r << PLLR_SHIFT);
snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
(pll_d >> 6) << PLLD_MSB_SHIFT);
snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
(pll_d & 0x3F) << PLLD_LSB_SHIFT);
return 0;
}
static int aic3x_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_codec *codec = dai->codec;
u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
if (mute) {
snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
} else {
snd_soc_write(codec, LDAC_VOL, ldac_reg);
snd_soc_write(codec, RDAC_VOL, rdac_reg);
}
return 0;
}
static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
aic3x->sysclk = freq;
return 0;
}
static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
u8 iface_areg, iface_breg;
int delay = 0;
iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
/* set master/slave audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
aic3x->master = 1;
iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
aic3x->master = 0;
iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER);
break;
default:
return -EINVAL;
}
/*
* match both interface format and signal polarities since they
* are fixed
*/
switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
SND_SOC_DAIFMT_INV_MASK)) {
case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
break;
case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
delay = 1;
case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
iface_breg |= (0x01 << 6);
break;
case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
iface_breg |= (0x02 << 6);
break;
case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
iface_breg |= (0x03 << 6);
break;
default:
return -EINVAL;
}
/* set iface */
snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
return 0;
}
static int aic3x_init_3007(struct snd_soc_codec *codec)
{
u8 tmp1, tmp2, *cache = codec->reg_cache;
/*
* There is no need to cache writes to undocumented page 0xD but
* respective page 0 register cache entries must be preserved
*/
tmp1 = cache[0xD];
tmp2 = cache[0x8];
/* Class-D speaker driver init; datasheet p. 46 */
snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
snd_soc_write(codec, 0xD, 0x0D);
snd_soc_write(codec, 0x8, 0x5C);
snd_soc_write(codec, 0x8, 0x5D);
snd_soc_write(codec, 0x8, 0x5C);
snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
cache[0xD] = tmp1;
cache[0x8] = tmp2;
return 0;
}
static int aic3x_regulator_event(struct notifier_block *nb,
unsigned long event, void *data)
{
struct aic3x_disable_nb *disable_nb =
container_of(nb, struct aic3x_disable_nb, nb);
struct aic3x_priv *aic3x = disable_nb->aic3x;
if (event & REGULATOR_EVENT_DISABLE) {
/*
* Put codec to reset and require cache sync as at least one
* of the supplies was disabled
*/
if (gpio_is_valid(aic3x->gpio_reset))
gpio_set_value(aic3x->gpio_reset, 0);
aic3x->codec->cache_sync = 1;
}
return 0;
}
static int aic3x_set_power(struct snd_soc_codec *codec, int power)
{
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
int i, ret;
u8 *cache = codec->reg_cache;
if (power) {
ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
aic3x->supplies);
if (ret)
goto out;
aic3x->power = 1;
/*
* Reset release and cache sync is necessary only if some
* supply was off or if there were cached writes
*/
if (!codec->cache_sync)
goto out;
if (gpio_is_valid(aic3x->gpio_reset)) {
udelay(1);
gpio_set_value(aic3x->gpio_reset, 1);
}
/* Sync reg_cache with the hardware */
codec->cache_only = 0;
for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
snd_soc_write(codec, i, cache[i]);
if (aic3x->model == AIC3X_MODEL_3007)
aic3x_init_3007(codec);
codec->cache_sync = 0;
} else {
/*
* Do soft reset to this codec instance in order to clear
* possible VDD leakage currents in case the supply regulators
* remain on
*/
snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
codec->cache_sync = 1;
aic3x->power = 0;
/* HW writes are needless when bias is off */
codec->cache_only = 1;
ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
aic3x->supplies);
}
out:
return ret;
}
static int aic3x_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
u8 reg;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
aic3x->master) {
/* enable pll */
reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
reg | PLL_ENABLE);
}
break;
case SND_SOC_BIAS_STANDBY:
if (!aic3x->power)
aic3x_set_power(codec, 1);
if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
aic3x->master) {
/* disable pll */
reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
reg & ~PLL_ENABLE);
}
break;
case SND_SOC_BIAS_OFF:
if (aic3x->power)
aic3x_set_power(codec, 0);
break;
}
codec->dapm.bias_level = level;
return 0;
}
void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
{
u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
u8 bit = gpio ? 3: 0;
u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
snd_soc_write(codec, reg, val | (!!state << bit));
}
EXPORT_SYMBOL_GPL(aic3x_set_gpio);
int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
{
u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
u8 val = 0, bit = gpio ? 2 : 1;
aic3x_read(codec, reg, &val);
return (val >> bit) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_get_gpio);
void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
int headset_debounce, int button_debounce)
{
u8 val;
val = ((detect & AIC3X_HEADSET_DETECT_MASK)
<< AIC3X_HEADSET_DETECT_SHIFT) |
((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
<< AIC3X_HEADSET_DEBOUNCE_SHIFT) |
((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
<< AIC3X_BUTTON_DEBOUNCE_SHIFT);
if (detect & AIC3X_HEADSET_DETECT_MASK)
val |= AIC3X_HEADSET_DETECT_ENABLED;
snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
}
EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);
int aic3x_headset_detected(struct snd_soc_codec *codec)
{
u8 val = 0;
aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
return (val >> 4) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_headset_detected);
int aic3x_button_pressed(struct snd_soc_codec *codec)
{
u8 val = 0;
aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
return (val >> 5) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_button_pressed);
#define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
#define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_ops aic3x_dai_ops = {
.hw_params = aic3x_hw_params,
.digital_mute = aic3x_mute,
.set_sysclk = aic3x_set_dai_sysclk,
.set_fmt = aic3x_set_dai_fmt,
};
static struct snd_soc_dai_driver aic3x_dai = {
.name = "tlv320aic3x-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = AIC3X_RATES,
.formats = AIC3X_FORMATS,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = AIC3X_RATES,
.formats = AIC3X_FORMATS,},
.ops = &aic3x_dai_ops,
.symmetric_rates = 1,
};
static int aic3x_suspend(struct snd_soc_codec *codec, pm_message_t state)
{
aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int aic3x_resume(struct snd_soc_codec *codec)
{
aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
return 0;
}
/*
* initialise the AIC3X driver
* register the mixer and dsp interfaces with the kernel
*/
static int aic3x_init(struct snd_soc_codec *codec)
{
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
int reg;
snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
/* DAC default volume and mute */
snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
/* DAC to HP default volume and route to Output mixer */
snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
/* DAC to Line Out default volume and route to Output mixer */
snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
/* DAC to Mono Line Out default volume and route to Output mixer */
snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
/* unmute all outputs */
reg = snd_soc_read(codec, LLOPM_CTRL);
snd_soc_write(codec, LLOPM_CTRL, reg | UNMUTE);
reg = snd_soc_read(codec, RLOPM_CTRL);
snd_soc_write(codec, RLOPM_CTRL, reg | UNMUTE);
reg = snd_soc_read(codec, MONOLOPM_CTRL);
snd_soc_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
reg = snd_soc_read(codec, HPLOUT_CTRL);
snd_soc_write(codec, HPLOUT_CTRL, reg | UNMUTE);
reg = snd_soc_read(codec, HPROUT_CTRL);
snd_soc_write(codec, HPROUT_CTRL, reg | UNMUTE);
reg = snd_soc_read(codec, HPLCOM_CTRL);
snd_soc_write(codec, HPLCOM_CTRL, reg | UNMUTE);
reg = snd_soc_read(codec, HPRCOM_CTRL);
snd_soc_write(codec, HPRCOM_CTRL, reg | UNMUTE);
/* ADC default volume and unmute */
snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
/* By default route Line1 to ADC PGA mixer */
snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
/* PGA to HP Bypass default volume, disconnect from Output Mixer */
snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
/* PGA to Line Out default volume, disconnect from Output Mixer */
snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
/* Line2 Line Out default volume, disconnect from Output Mixer */
snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
/* Line2 to Mono Out default volume, disconnect from Output Mixer */
snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
if (aic3x->model == AIC3X_MODEL_3007) {
aic3x_init_3007(codec);
snd_soc_write(codec, CLASSD_CTRL, 0);
}
return 0;
}
static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
{
struct aic3x_priv *a;
list_for_each_entry(a, &reset_list, list) {
if (gpio_is_valid(aic3x->gpio_reset) &&
aic3x->gpio_reset == a->gpio_reset)
return true;
}
return false;
}
static int aic3x_probe(struct snd_soc_codec *codec)
{
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
int ret, i;
INIT_LIST_HEAD(&aic3x->list);
aic3x->codec = codec;
codec->dapm.idle_bias_off = 1;
ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
if (ret != 0) {
dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
return ret;
}
if (gpio_is_valid(aic3x->gpio_reset) &&
!aic3x_is_shared_reset(aic3x)) {
ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
if (ret != 0)
goto err_gpio;
gpio_direction_output(aic3x->gpio_reset, 0);
}
for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
aic3x->supplies[i].supply = aic3x_supply_names[i];
ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
aic3x->supplies);
if (ret != 0) {
dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
goto err_get;
}
for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
aic3x->disable_nb[i].aic3x = aic3x;
ret = regulator_register_notifier(aic3x->supplies[i].consumer,
&aic3x->disable_nb[i].nb);
if (ret) {
dev_err(codec->dev,
"Failed to request regulator notifier: %d\n",
ret);
goto err_notif;
}
}
codec->cache_only = 1;
aic3x_init(codec);
if (aic3x->setup) {
/* setup GPIO functions */
snd_soc_write(codec, AIC3X_GPIO1_REG,
(aic3x->setup->gpio_func[0] & 0xf) << 4);
snd_soc_write(codec, AIC3X_GPIO2_REG,
(aic3x->setup->gpio_func[1] & 0xf) << 4);
}
snd_soc_add_controls(codec, aic3x_snd_controls,
ARRAY_SIZE(aic3x_snd_controls));
if (aic3x->model == AIC3X_MODEL_3007)
snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
aic3x_add_widgets(codec);
list_add(&aic3x->list, &reset_list);
return 0;
err_notif:
while (i--)
regulator_unregister_notifier(aic3x->supplies[i].consumer,
&aic3x->disable_nb[i].nb);
regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
err_get:
if (gpio_is_valid(aic3x->gpio_reset) &&
!aic3x_is_shared_reset(aic3x))
gpio_free(aic3x->gpio_reset);
err_gpio:
return ret;
}
static int aic3x_remove(struct snd_soc_codec *codec)
{
struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
int i;
aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
list_del(&aic3x->list);
if (gpio_is_valid(aic3x->gpio_reset) &&
!aic3x_is_shared_reset(aic3x)) {
gpio_set_value(aic3x->gpio_reset, 0);
gpio_free(aic3x->gpio_reset);
}
for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
regulator_unregister_notifier(aic3x->supplies[i].consumer,
&aic3x->disable_nb[i].nb);
regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
.set_bias_level = aic3x_set_bias_level,
.reg_cache_size = ARRAY_SIZE(aic3x_reg),
.reg_word_size = sizeof(u8),
.reg_cache_default = aic3x_reg,
.probe = aic3x_probe,
.remove = aic3x_remove,
.suspend = aic3x_suspend,
.resume = aic3x_resume,
};
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
/*
* AIC3X 2 wire address can be up to 4 devices with device addresses
* 0x18, 0x19, 0x1A, 0x1B
*/
static const struct i2c_device_id aic3x_i2c_id[] = {
{ "tlv320aic3x", AIC3X_MODEL_3X },
{ "tlv320aic33", AIC3X_MODEL_33 },
{ "tlv320aic3007", AIC3X_MODEL_3007 },
{ }
};
MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
/*
* If the i2c layer weren't so broken, we could pass this kind of data
* around
*/
static int aic3x_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct aic3x_pdata *pdata = i2c->dev.platform_data;
struct aic3x_priv *aic3x;
int ret;
aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
if (aic3x == NULL) {
dev_err(&i2c->dev, "failed to create private data\n");
return -ENOMEM;
}
aic3x->control_type = SND_SOC_I2C;
i2c_set_clientdata(i2c, aic3x);
if (pdata) {
aic3x->gpio_reset = pdata->gpio_reset;
aic3x->setup = pdata->setup;
} else {
aic3x->gpio_reset = -1;
}
aic3x->model = id->driver_data;
ret = snd_soc_register_codec(&i2c->dev,
&soc_codec_dev_aic3x, &aic3x_dai, 1);
if (ret < 0)
kfree(aic3x);
return ret;
}
static int aic3x_i2c_remove(struct i2c_client *client)
{
snd_soc_unregister_codec(&client->dev);
kfree(i2c_get_clientdata(client));
return 0;
}
/* machine i2c codec control layer */
static struct i2c_driver aic3x_i2c_driver = {
.driver = {
.name = "tlv320aic3x-codec",
.owner = THIS_MODULE,
},
.probe = aic3x_i2c_probe,
.remove = aic3x_i2c_remove,
.id_table = aic3x_i2c_id,
};
#endif
static int __init aic3x_modinit(void)
{
int ret = 0;
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
ret = i2c_add_driver(&aic3x_i2c_driver);
if (ret != 0) {
printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
ret);
}
#endif
return ret;
}
module_init(aic3x_modinit);
static void __exit aic3x_exit(void)
{
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
i2c_del_driver(&aic3x_i2c_driver);
#endif
}
module_exit(aic3x_exit);
MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_LICENSE("GPL");