382 строки
9.5 KiB
C
382 строки
9.5 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/* XDP user-space ring structure
|
|
* Copyright(c) 2018 Intel Corporation.
|
|
*/
|
|
|
|
#ifndef _LINUX_XSK_QUEUE_H
|
|
#define _LINUX_XSK_QUEUE_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/if_xdp.h>
|
|
#include <net/xdp_sock.h>
|
|
|
|
#define RX_BATCH_SIZE 16
|
|
#define LAZY_UPDATE_THRESHOLD 128
|
|
|
|
struct xdp_ring {
|
|
u32 producer ____cacheline_aligned_in_smp;
|
|
u32 consumer ____cacheline_aligned_in_smp;
|
|
u32 flags;
|
|
};
|
|
|
|
/* Used for the RX and TX queues for packets */
|
|
struct xdp_rxtx_ring {
|
|
struct xdp_ring ptrs;
|
|
struct xdp_desc desc[0] ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
/* Used for the fill and completion queues for buffers */
|
|
struct xdp_umem_ring {
|
|
struct xdp_ring ptrs;
|
|
u64 desc[0] ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
struct xsk_queue {
|
|
u64 chunk_mask;
|
|
u64 size;
|
|
u32 ring_mask;
|
|
u32 nentries;
|
|
u32 prod_head;
|
|
u32 prod_tail;
|
|
u32 cons_head;
|
|
u32 cons_tail;
|
|
struct xdp_ring *ring;
|
|
u64 invalid_descs;
|
|
};
|
|
|
|
/* The structure of the shared state of the rings are the same as the
|
|
* ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
|
|
* ring, the kernel is the producer and user space is the consumer. For
|
|
* the Tx and fill rings, the kernel is the consumer and user space is
|
|
* the producer.
|
|
*
|
|
* producer consumer
|
|
*
|
|
* if (LOAD ->consumer) { LOAD ->producer
|
|
* (A) smp_rmb() (C)
|
|
* STORE $data LOAD $data
|
|
* smp_wmb() (B) smp_mb() (D)
|
|
* STORE ->producer STORE ->consumer
|
|
* }
|
|
*
|
|
* (A) pairs with (D), and (B) pairs with (C).
|
|
*
|
|
* Starting with (B), it protects the data from being written after
|
|
* the producer pointer. If this barrier was missing, the consumer
|
|
* could observe the producer pointer being set and thus load the data
|
|
* before the producer has written the new data. The consumer would in
|
|
* this case load the old data.
|
|
*
|
|
* (C) protects the consumer from speculatively loading the data before
|
|
* the producer pointer actually has been read. If we do not have this
|
|
* barrier, some architectures could load old data as speculative loads
|
|
* are not discarded as the CPU does not know there is a dependency
|
|
* between ->producer and data.
|
|
*
|
|
* (A) is a control dependency that separates the load of ->consumer
|
|
* from the stores of $data. In case ->consumer indicates there is no
|
|
* room in the buffer to store $data we do not. So no barrier is needed.
|
|
*
|
|
* (D) protects the load of the data to be observed to happen after the
|
|
* store of the consumer pointer. If we did not have this memory
|
|
* barrier, the producer could observe the consumer pointer being set
|
|
* and overwrite the data with a new value before the consumer got the
|
|
* chance to read the old value. The consumer would thus miss reading
|
|
* the old entry and very likely read the new entry twice, once right
|
|
* now and again after circling through the ring.
|
|
*/
|
|
|
|
/* Common functions operating for both RXTX and umem queues */
|
|
|
|
static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
|
|
{
|
|
return q ? q->invalid_descs : 0;
|
|
}
|
|
|
|
static inline u32 xskq_nb_avail(struct xsk_queue *q, u32 dcnt)
|
|
{
|
|
u32 entries = q->prod_tail - q->cons_tail;
|
|
|
|
if (entries == 0) {
|
|
/* Refresh the local pointer */
|
|
q->prod_tail = READ_ONCE(q->ring->producer);
|
|
entries = q->prod_tail - q->cons_tail;
|
|
}
|
|
|
|
return (entries > dcnt) ? dcnt : entries;
|
|
}
|
|
|
|
static inline u32 xskq_nb_free(struct xsk_queue *q, u32 producer, u32 dcnt)
|
|
{
|
|
u32 free_entries = q->nentries - (producer - q->cons_tail);
|
|
|
|
if (free_entries >= dcnt)
|
|
return free_entries;
|
|
|
|
/* Refresh the local tail pointer */
|
|
q->cons_tail = READ_ONCE(q->ring->consumer);
|
|
return q->nentries - (producer - q->cons_tail);
|
|
}
|
|
|
|
static inline bool xskq_has_addrs(struct xsk_queue *q, u32 cnt)
|
|
{
|
|
u32 entries = q->prod_tail - q->cons_tail;
|
|
|
|
if (entries >= cnt)
|
|
return true;
|
|
|
|
/* Refresh the local pointer. */
|
|
q->prod_tail = READ_ONCE(q->ring->producer);
|
|
entries = q->prod_tail - q->cons_tail;
|
|
|
|
return entries >= cnt;
|
|
}
|
|
|
|
/* UMEM queue */
|
|
|
|
static inline bool xskq_crosses_non_contig_pg(struct xdp_umem *umem, u64 addr,
|
|
u64 length)
|
|
{
|
|
bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
|
|
bool next_pg_contig =
|
|
(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
|
|
XSK_NEXT_PG_CONTIG_MASK;
|
|
|
|
return cross_pg && !next_pg_contig;
|
|
}
|
|
|
|
static inline bool xskq_is_valid_addr(struct xsk_queue *q, u64 addr)
|
|
{
|
|
if (addr >= q->size) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool xskq_is_valid_addr_unaligned(struct xsk_queue *q, u64 addr,
|
|
u64 length,
|
|
struct xdp_umem *umem)
|
|
{
|
|
u64 base_addr = xsk_umem_extract_addr(addr);
|
|
|
|
addr = xsk_umem_add_offset_to_addr(addr);
|
|
if (base_addr >= q->size || addr >= q->size ||
|
|
xskq_crosses_non_contig_pg(umem, addr, length)) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline u64 *xskq_validate_addr(struct xsk_queue *q, u64 *addr,
|
|
struct xdp_umem *umem)
|
|
{
|
|
while (q->cons_tail != q->cons_head) {
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
unsigned int idx = q->cons_tail & q->ring_mask;
|
|
|
|
*addr = READ_ONCE(ring->desc[idx]) & q->chunk_mask;
|
|
|
|
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
|
|
if (xskq_is_valid_addr_unaligned(q, *addr,
|
|
umem->chunk_size_nohr,
|
|
umem))
|
|
return addr;
|
|
goto out;
|
|
}
|
|
|
|
if (xskq_is_valid_addr(q, *addr))
|
|
return addr;
|
|
|
|
out:
|
|
q->cons_tail++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline u64 *xskq_peek_addr(struct xsk_queue *q, u64 *addr,
|
|
struct xdp_umem *umem)
|
|
{
|
|
if (q->cons_tail == q->cons_head) {
|
|
smp_mb(); /* D, matches A */
|
|
WRITE_ONCE(q->ring->consumer, q->cons_tail);
|
|
q->cons_head = q->cons_tail + xskq_nb_avail(q, RX_BATCH_SIZE);
|
|
|
|
/* Order consumer and data */
|
|
smp_rmb();
|
|
}
|
|
|
|
return xskq_validate_addr(q, addr, umem);
|
|
}
|
|
|
|
static inline void xskq_discard_addr(struct xsk_queue *q)
|
|
{
|
|
q->cons_tail++;
|
|
}
|
|
|
|
static inline int xskq_produce_addr(struct xsk_queue *q, u64 addr)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
|
|
if (xskq_nb_free(q, q->prod_tail, 1) == 0)
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
ring->desc[q->prod_tail++ & q->ring_mask] = addr;
|
|
|
|
/* Order producer and data */
|
|
smp_wmb(); /* B, matches C */
|
|
|
|
WRITE_ONCE(q->ring->producer, q->prod_tail);
|
|
return 0;
|
|
}
|
|
|
|
static inline int xskq_produce_addr_lazy(struct xsk_queue *q, u64 addr)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
|
|
if (xskq_nb_free(q, q->prod_head, LAZY_UPDATE_THRESHOLD) == 0)
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
ring->desc[q->prod_head++ & q->ring_mask] = addr;
|
|
return 0;
|
|
}
|
|
|
|
static inline void xskq_produce_flush_addr_n(struct xsk_queue *q,
|
|
u32 nb_entries)
|
|
{
|
|
/* Order producer and data */
|
|
smp_wmb(); /* B, matches C */
|
|
|
|
q->prod_tail += nb_entries;
|
|
WRITE_ONCE(q->ring->producer, q->prod_tail);
|
|
}
|
|
|
|
static inline int xskq_reserve_addr(struct xsk_queue *q)
|
|
{
|
|
if (xskq_nb_free(q, q->prod_head, 1) == 0)
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
q->prod_head++;
|
|
return 0;
|
|
}
|
|
|
|
/* Rx/Tx queue */
|
|
|
|
static inline bool xskq_is_valid_desc(struct xsk_queue *q, struct xdp_desc *d,
|
|
struct xdp_umem *umem)
|
|
{
|
|
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
|
|
if (!xskq_is_valid_addr_unaligned(q, d->addr, d->len, umem))
|
|
return false;
|
|
|
|
if (d->len > umem->chunk_size_nohr || d->options) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (!xskq_is_valid_addr(q, d->addr))
|
|
return false;
|
|
|
|
if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
|
|
d->options) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline struct xdp_desc *xskq_validate_desc(struct xsk_queue *q,
|
|
struct xdp_desc *desc,
|
|
struct xdp_umem *umem)
|
|
{
|
|
while (q->cons_tail != q->cons_head) {
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
unsigned int idx = q->cons_tail & q->ring_mask;
|
|
|
|
*desc = READ_ONCE(ring->desc[idx]);
|
|
if (xskq_is_valid_desc(q, desc, umem))
|
|
return desc;
|
|
|
|
q->cons_tail++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct xdp_desc *xskq_peek_desc(struct xsk_queue *q,
|
|
struct xdp_desc *desc,
|
|
struct xdp_umem *umem)
|
|
{
|
|
if (q->cons_tail == q->cons_head) {
|
|
smp_mb(); /* D, matches A */
|
|
WRITE_ONCE(q->ring->consumer, q->cons_tail);
|
|
q->cons_head = q->cons_tail + xskq_nb_avail(q, RX_BATCH_SIZE);
|
|
|
|
/* Order consumer and data */
|
|
smp_rmb(); /* C, matches B */
|
|
}
|
|
|
|
return xskq_validate_desc(q, desc, umem);
|
|
}
|
|
|
|
static inline void xskq_discard_desc(struct xsk_queue *q)
|
|
{
|
|
q->cons_tail++;
|
|
}
|
|
|
|
static inline int xskq_produce_batch_desc(struct xsk_queue *q,
|
|
u64 addr, u32 len)
|
|
{
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
unsigned int idx;
|
|
|
|
if (xskq_nb_free(q, q->prod_head, 1) == 0)
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
idx = (q->prod_head++) & q->ring_mask;
|
|
ring->desc[idx].addr = addr;
|
|
ring->desc[idx].len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void xskq_produce_flush_desc(struct xsk_queue *q)
|
|
{
|
|
/* Order producer and data */
|
|
smp_wmb(); /* B, matches C */
|
|
|
|
q->prod_tail = q->prod_head;
|
|
WRITE_ONCE(q->ring->producer, q->prod_tail);
|
|
}
|
|
|
|
static inline bool xskq_full_desc(struct xsk_queue *q)
|
|
{
|
|
return xskq_nb_avail(q, q->nentries) == q->nentries;
|
|
}
|
|
|
|
static inline bool xskq_empty_desc(struct xsk_queue *q)
|
|
{
|
|
return xskq_nb_free(q, q->prod_tail, q->nentries) == q->nentries;
|
|
}
|
|
|
|
void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
|
|
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
|
|
void xskq_destroy(struct xsk_queue *q_ops);
|
|
|
|
/* Executed by the core when the entire UMEM gets freed */
|
|
void xsk_reuseq_destroy(struct xdp_umem *umem);
|
|
|
|
#endif /* _LINUX_XSK_QUEUE_H */
|