WSL2-Linux-Kernel/arch/cris/arch-v32/kernel/irq.c

502 строки
12 KiB
C

/*
* Copyright (C) 2003, Axis Communications AB.
*/
#include <asm/irq.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <hwregs/reg_map.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/intr_vect.h>
#include <hwregs/intr_vect_defs.h>
#define CPU_FIXED -1
/* IRQ masks (refer to comment for crisv32_do_multiple) */
#if TIMER0_INTR_VECT - FIRST_IRQ < 32
#define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
#undef TIMER_VECT1
#else
#define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
#define TIMER_VECT1
#endif
#ifdef CONFIG_ETRAX_KGDB
#if defined(CONFIG_ETRAX_KGDB_PORT0)
#define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
#elif defined(CONFIG_ETRAX_KGDB_PORT1)
#define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
#elif defined(CONFIG_ETRAX_KGB_PORT2)
#define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
#elif defined(CONFIG_ETRAX_KGDB_PORT3)
#define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
#endif
#endif
DEFINE_SPINLOCK(irq_lock);
struct cris_irq_allocation
{
int cpu; /* The CPU to which the IRQ is currently allocated. */
cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */
};
struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] =
{ [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} };
static unsigned long irq_regs[NR_CPUS] =
{
regi_irq,
#ifdef CONFIG_SMP
regi_irq2,
#endif
};
#if NR_REAL_IRQS > 32
#define NBR_REGS 2
#else
#define NBR_REGS 1
#endif
unsigned long cpu_irq_counters[NR_CPUS];
unsigned long irq_counters[NR_REAL_IRQS];
/* From irq.c. */
extern void weird_irq(void);
/* From entry.S. */
extern void system_call(void);
extern void nmi_interrupt(void);
extern void multiple_interrupt(void);
extern void gdb_handle_exception(void);
extern void i_mmu_refill(void);
extern void i_mmu_invalid(void);
extern void i_mmu_access(void);
extern void i_mmu_execute(void);
extern void d_mmu_refill(void);
extern void d_mmu_invalid(void);
extern void d_mmu_access(void);
extern void d_mmu_write(void);
/* From kgdb.c. */
extern void kgdb_init(void);
extern void breakpoint(void);
/* From traps.c. */
extern void breakh_BUG(void);
/*
* Build the IRQ handler stubs using macros from irq.h.
*/
#ifdef CONFIG_CRIS_MACH_ARTPEC3
BUILD_TIMER_IRQ(0x31, 0)
#else
BUILD_IRQ(0x31)
#endif
BUILD_IRQ(0x32)
BUILD_IRQ(0x33)
BUILD_IRQ(0x34)
BUILD_IRQ(0x35)
BUILD_IRQ(0x36)
BUILD_IRQ(0x37)
BUILD_IRQ(0x38)
BUILD_IRQ(0x39)
BUILD_IRQ(0x3a)
BUILD_IRQ(0x3b)
BUILD_IRQ(0x3c)
BUILD_IRQ(0x3d)
BUILD_IRQ(0x3e)
BUILD_IRQ(0x3f)
BUILD_IRQ(0x40)
BUILD_IRQ(0x41)
BUILD_IRQ(0x42)
BUILD_IRQ(0x43)
BUILD_IRQ(0x44)
BUILD_IRQ(0x45)
BUILD_IRQ(0x46)
BUILD_IRQ(0x47)
BUILD_IRQ(0x48)
BUILD_IRQ(0x49)
BUILD_IRQ(0x4a)
#ifdef CONFIG_ETRAXFS
BUILD_TIMER_IRQ(0x4b, 0)
#else
BUILD_IRQ(0x4b)
#endif
BUILD_IRQ(0x4c)
BUILD_IRQ(0x4d)
BUILD_IRQ(0x4e)
BUILD_IRQ(0x4f)
BUILD_IRQ(0x50)
#if MACH_IRQS > 32
BUILD_IRQ(0x51)
BUILD_IRQ(0x52)
BUILD_IRQ(0x53)
BUILD_IRQ(0x54)
BUILD_IRQ(0x55)
BUILD_IRQ(0x56)
BUILD_IRQ(0x57)
BUILD_IRQ(0x58)
BUILD_IRQ(0x59)
BUILD_IRQ(0x5a)
BUILD_IRQ(0x5b)
BUILD_IRQ(0x5c)
BUILD_IRQ(0x5d)
BUILD_IRQ(0x5e)
BUILD_IRQ(0x5f)
BUILD_IRQ(0x60)
BUILD_IRQ(0x61)
BUILD_IRQ(0x62)
BUILD_IRQ(0x63)
BUILD_IRQ(0x64)
BUILD_IRQ(0x65)
BUILD_IRQ(0x66)
BUILD_IRQ(0x67)
BUILD_IRQ(0x68)
BUILD_IRQ(0x69)
BUILD_IRQ(0x6a)
BUILD_IRQ(0x6b)
BUILD_IRQ(0x6c)
BUILD_IRQ(0x6d)
BUILD_IRQ(0x6e)
BUILD_IRQ(0x6f)
BUILD_IRQ(0x70)
#endif
/* Pointers to the low-level handlers. */
static void (*interrupt[MACH_IRQS])(void) = {
IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt,
IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt,
IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt,
IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt,
IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt,
IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt,
IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt,
IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt,
IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt,
IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt,
IRQ0x4f_interrupt, IRQ0x50_interrupt,
#if MACH_IRQS > 32
IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt,
IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt,
IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt,
IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt,
IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt,
IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt,
IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt,
IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt,
IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt,
IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt,
IRQ0x6f_interrupt, IRQ0x70_interrupt,
#endif
};
void
block_irq(int irq, int cpu)
{
int intr_mask;
unsigned long flags;
spin_lock_irqsave(&irq_lock, flags);
/* Remember, 1 let thru, 0 block. */
if (irq - FIRST_IRQ < 32) {
intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
rw_mask, 0);
intr_mask &= ~(1 << (irq - FIRST_IRQ));
REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
0, intr_mask);
} else {
intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
rw_mask, 1);
intr_mask &= ~(1 << (irq - FIRST_IRQ - 32));
REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
1, intr_mask);
}
spin_unlock_irqrestore(&irq_lock, flags);
}
void
unblock_irq(int irq, int cpu)
{
int intr_mask;
unsigned long flags;
spin_lock_irqsave(&irq_lock, flags);
/* Remember, 1 let thru, 0 block. */
if (irq - FIRST_IRQ < 32) {
intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
rw_mask, 0);
intr_mask |= (1 << (irq - FIRST_IRQ));
REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
0, intr_mask);
} else {
intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
rw_mask, 1);
intr_mask |= (1 << (irq - FIRST_IRQ - 32));
REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
1, intr_mask);
}
spin_unlock_irqrestore(&irq_lock, flags);
}
/* Find out which CPU the irq should be allocated to. */
static int irq_cpu(int irq)
{
int cpu;
unsigned long flags;
spin_lock_irqsave(&irq_lock, flags);
cpu = irq_allocations[irq - FIRST_IRQ].cpu;
/* Fixed interrupts stay on the local CPU. */
if (cpu == CPU_FIXED)
{
spin_unlock_irqrestore(&irq_lock, flags);
return smp_processor_id();
}
/* Let the interrupt stay if possible */
if (cpu_isset(cpu, irq_allocations[irq - FIRST_IRQ].mask))
goto out;
/* IRQ must be moved to another CPU. */
cpu = first_cpu(irq_allocations[irq - FIRST_IRQ].mask);
irq_allocations[irq - FIRST_IRQ].cpu = cpu;
out:
spin_unlock_irqrestore(&irq_lock, flags);
return cpu;
}
void crisv32_mask_irq(int irq)
{
int cpu;
for (cpu = 0; cpu < NR_CPUS; cpu++)
block_irq(irq, cpu);
}
void crisv32_unmask_irq(int irq)
{
unblock_irq(irq, irq_cpu(irq));
}
static void enable_crisv32_irq(struct irq_data *data)
{
crisv32_unmask_irq(data->irq);
}
static void disable_crisv32_irq(struct irq_data *data)
{
crisv32_mask_irq(data->irq);
}
static int set_affinity_crisv32_irq(struct irq_data *data,
const struct cpumask *dest, bool force)
{
unsigned long flags;
spin_lock_irqsave(&irq_lock, flags);
irq_allocations[data->irq - FIRST_IRQ].mask = *dest;
spin_unlock_irqrestore(&irq_lock, flags);
return 0;
}
static struct irq_chip crisv32_irq_type = {
.name = "CRISv32",
.irq_shutdown = disable_crisv32_irq,
.irq_enable = enable_crisv32_irq,
.irq_disable = disable_crisv32_irq,
.irq_set_affinity = set_affinity_crisv32_irq,
};
void
set_exception_vector(int n, irqvectptr addr)
{
etrax_irv->v[n] = (irqvectptr) addr;
}
extern void do_IRQ(int irq, struct pt_regs * regs);
void
crisv32_do_IRQ(int irq, int block, struct pt_regs* regs)
{
/* Interrupts that may not be moved to another CPU and
* are IRQF_DISABLED may skip blocking. This is currently
* only valid for the timer IRQ and the IPI and is used
* for the timer interrupt to avoid watchdog starvation.
*/
if (!block) {
do_IRQ(irq, regs);
return;
}
block_irq(irq, smp_processor_id());
do_IRQ(irq, regs);
unblock_irq(irq, irq_cpu(irq));
}
/* If multiple interrupts occur simultaneously we get a multiple
* interrupt from the CPU and software has to sort out which
* interrupts that happened. There are two special cases here:
*
* 1. Timer interrupts may never be blocked because of the
* watchdog (refer to comment in include/asr/arch/irq.h)
* 2. GDB serial port IRQs are unhandled here and will be handled
* as a single IRQ when it strikes again because the GDB
* stubb wants to save the registers in its own fashion.
*/
void
crisv32_do_multiple(struct pt_regs* regs)
{
int cpu;
int mask;
int masked[NBR_REGS];
int bit;
int i;
cpu = smp_processor_id();
/* An extra irq_enter here to prevent softIRQs to run after
* each do_IRQ. This will decrease the interrupt latency.
*/
irq_enter();
for (i = 0; i < NBR_REGS; i++) {
/* Get which IRQs that happened. */
masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
r_masked_vect, i);
/* Calculate new IRQ mask with these IRQs disabled. */
mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
mask &= ~masked[i];
/* Timer IRQ is never masked */
#ifdef TIMER_VECT1
if ((i == 1) && (masked[0] & TIMER_MASK))
mask |= TIMER_MASK;
#else
if ((i == 0) && (masked[0] & TIMER_MASK))
mask |= TIMER_MASK;
#endif
/* Block all the IRQs */
REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
/* Check for timer IRQ and handle it special. */
#ifdef TIMER_VECT1
if ((i == 1) && (masked[i] & TIMER_MASK)) {
masked[i] &= ~TIMER_MASK;
do_IRQ(TIMER0_INTR_VECT, regs);
}
#else
if ((i == 0) && (masked[i] & TIMER_MASK)) {
masked[i] &= ~TIMER_MASK;
do_IRQ(TIMER0_INTR_VECT, regs);
}
#endif
}
#ifdef IGNORE_MASK
/* Remove IRQs that can't be handled as multiple. */
masked[0] &= ~IGNORE_MASK;
#endif
/* Handle the rest of the IRQs. */
for (i = 0; i < NBR_REGS; i++) {
for (bit = 0; bit < 32; bit++) {
if (masked[i] & (1 << bit))
do_IRQ(bit + FIRST_IRQ + i*32, regs);
}
}
/* Unblock all the IRQs. */
for (i = 0; i < NBR_REGS; i++) {
mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
mask |= masked[i];
REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
}
/* This irq_exit() will trigger the soft IRQs. */
irq_exit();
}
/*
* This is called by start_kernel. It fixes the IRQ masks and setup the
* interrupt vector table to point to bad_interrupt pointers.
*/
void __init
init_IRQ(void)
{
int i;
int j;
reg_intr_vect_rw_mask vect_mask = {0};
/* Clear all interrupts masks. */
for (i = 0; i < NBR_REGS; i++)
REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask);
for (i = 0; i < 256; i++)
etrax_irv->v[i] = weird_irq;
/* Point all IRQ's to bad handlers. */
for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) {
irq_set_chip_and_handler(j, &crisv32_irq_type,
handle_simple_irq);
set_exception_vector(i, interrupt[j]);
}
/* Mark Timer and IPI IRQs as CPU local */
irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU);
irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU);
set_exception_vector(0x00, nmi_interrupt);
set_exception_vector(0x30, multiple_interrupt);
/* Set up handler for various MMU bus faults. */
set_exception_vector(0x04, i_mmu_refill);
set_exception_vector(0x05, i_mmu_invalid);
set_exception_vector(0x06, i_mmu_access);
set_exception_vector(0x07, i_mmu_execute);
set_exception_vector(0x08, d_mmu_refill);
set_exception_vector(0x09, d_mmu_invalid);
set_exception_vector(0x0a, d_mmu_access);
set_exception_vector(0x0b, d_mmu_write);
#ifdef CONFIG_BUG
/* Break 14 handler, used to implement cheap BUG(). */
set_exception_vector(0x1e, breakh_BUG);
#endif
/* The system-call trap is reached by "break 13". */
set_exception_vector(0x1d, system_call);
/* Exception handlers for debugging, both user-mode and kernel-mode. */
/* Break 8. */
set_exception_vector(0x18, gdb_handle_exception);
/* Hardware single step. */
set_exception_vector(0x3, gdb_handle_exception);
/* Hardware breakpoint. */
set_exception_vector(0xc, gdb_handle_exception);
#ifdef CONFIG_ETRAX_KGDB
kgdb_init();
/* Everything is set up; now trap the kernel. */
breakpoint();
#endif
}