1063 строки
26 KiB
C
1063 строки
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/kernel/traps.c
|
|
*
|
|
* Copyright (C) 1995-2009 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/kasan.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/patching.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/stack_pointer.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
static bool __kprobes __check_eq(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_Z_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_ne(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_Z_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_cs(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_C_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_cc(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_C_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_mi(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_N_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_pl(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_N_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_vs(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_V_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_vc(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_V_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_hi(unsigned long pstate)
|
|
{
|
|
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
|
|
return (pstate & PSR_C_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_ls(unsigned long pstate)
|
|
{
|
|
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
|
|
return (pstate & PSR_C_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_ge(unsigned long pstate)
|
|
{
|
|
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
return (pstate & PSR_N_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_lt(unsigned long pstate)
|
|
{
|
|
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
return (pstate & PSR_N_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_gt(unsigned long pstate)
|
|
{
|
|
/*PSR_N_BIT ^= PSR_V_BIT */
|
|
unsigned long temp = pstate ^ (pstate << 3);
|
|
|
|
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
|
|
return (temp & PSR_N_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_le(unsigned long pstate)
|
|
{
|
|
/*PSR_N_BIT ^= PSR_V_BIT */
|
|
unsigned long temp = pstate ^ (pstate << 3);
|
|
|
|
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
|
|
return (temp & PSR_N_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_al(unsigned long pstate)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
|
|
* it behaves identically to 0b1110 ("al").
|
|
*/
|
|
pstate_check_t * const aarch32_opcode_cond_checks[16] = {
|
|
__check_eq, __check_ne, __check_cs, __check_cc,
|
|
__check_mi, __check_pl, __check_vs, __check_vc,
|
|
__check_hi, __check_ls, __check_ge, __check_lt,
|
|
__check_gt, __check_le, __check_al, __check_al
|
|
};
|
|
|
|
int show_unhandled_signals = 0;
|
|
|
|
static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
|
|
{
|
|
unsigned long addr = instruction_pointer(regs);
|
|
char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
|
|
int i;
|
|
|
|
if (user_mode(regs))
|
|
return;
|
|
|
|
for (i = -4; i < 1; i++) {
|
|
unsigned int val, bad;
|
|
|
|
bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
|
|
|
|
if (!bad)
|
|
p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
|
|
else {
|
|
p += sprintf(p, "bad PC value");
|
|
break;
|
|
}
|
|
}
|
|
|
|
printk("%sCode: %s\n", lvl, str);
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
#define S_PREEMPT " PREEMPT"
|
|
#elif defined(CONFIG_PREEMPT_RT)
|
|
#define S_PREEMPT " PREEMPT_RT"
|
|
#else
|
|
#define S_PREEMPT ""
|
|
#endif
|
|
|
|
#define S_SMP " SMP"
|
|
|
|
static int __die(const char *str, long err, struct pt_regs *regs)
|
|
{
|
|
static int die_counter;
|
|
int ret;
|
|
|
|
pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n",
|
|
str, err, ++die_counter);
|
|
|
|
/* trap and error numbers are mostly meaningless on ARM */
|
|
ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
|
|
if (ret == NOTIFY_STOP)
|
|
return ret;
|
|
|
|
print_modules();
|
|
show_regs(regs);
|
|
|
|
dump_kernel_instr(KERN_EMERG, regs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DEFINE_RAW_SPINLOCK(die_lock);
|
|
|
|
/*
|
|
* This function is protected against re-entrancy.
|
|
*/
|
|
void die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&die_lock, flags);
|
|
|
|
oops_enter();
|
|
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
ret = __die(str, err, regs);
|
|
|
|
if (regs && kexec_should_crash(current))
|
|
crash_kexec(regs);
|
|
|
|
bust_spinlocks(0);
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
oops_exit();
|
|
|
|
if (in_interrupt())
|
|
panic("%s: Fatal exception in interrupt", str);
|
|
if (panic_on_oops)
|
|
panic("%s: Fatal exception", str);
|
|
|
|
raw_spin_unlock_irqrestore(&die_lock, flags);
|
|
|
|
if (ret != NOTIFY_STOP)
|
|
make_task_dead(SIGSEGV);
|
|
}
|
|
|
|
static void arm64_show_signal(int signo, const char *str)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
struct task_struct *tsk = current;
|
|
unsigned long esr = tsk->thread.fault_code;
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
|
|
/* Leave if the signal won't be shown */
|
|
if (!show_unhandled_signals ||
|
|
!unhandled_signal(tsk, signo) ||
|
|
!__ratelimit(&rs))
|
|
return;
|
|
|
|
pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
|
|
if (esr)
|
|
pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
|
|
|
|
pr_cont("%s", str);
|
|
print_vma_addr(KERN_CONT " in ", regs->pc);
|
|
pr_cont("\n");
|
|
__show_regs(regs);
|
|
}
|
|
|
|
void arm64_force_sig_fault(int signo, int code, unsigned long far,
|
|
const char *str)
|
|
{
|
|
arm64_show_signal(signo, str);
|
|
if (signo == SIGKILL)
|
|
force_sig(SIGKILL);
|
|
else
|
|
force_sig_fault(signo, code, (void __user *)far);
|
|
}
|
|
|
|
void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
|
|
const char *str)
|
|
{
|
|
arm64_show_signal(SIGBUS, str);
|
|
force_sig_mceerr(code, (void __user *)far, lsb);
|
|
}
|
|
|
|
void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
|
|
const char *str)
|
|
{
|
|
arm64_show_signal(SIGTRAP, str);
|
|
force_sig_ptrace_errno_trap(errno, (void __user *)far);
|
|
}
|
|
|
|
void arm64_notify_die(const char *str, struct pt_regs *regs,
|
|
int signo, int sicode, unsigned long far,
|
|
unsigned long err)
|
|
{
|
|
if (user_mode(regs)) {
|
|
WARN_ON(regs != current_pt_regs());
|
|
current->thread.fault_address = 0;
|
|
current->thread.fault_code = err;
|
|
|
|
arm64_force_sig_fault(signo, sicode, far, str);
|
|
} else {
|
|
die(str, regs, err);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define PSTATE_IT_1_0_SHIFT 25
|
|
#define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
|
|
#define PSTATE_IT_7_2_SHIFT 10
|
|
#define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
|
|
|
|
static u32 compat_get_it_state(struct pt_regs *regs)
|
|
{
|
|
u32 it, pstate = regs->pstate;
|
|
|
|
it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
|
|
it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
|
|
|
|
return it;
|
|
}
|
|
|
|
static void compat_set_it_state(struct pt_regs *regs, u32 it)
|
|
{
|
|
u32 pstate_it;
|
|
|
|
pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
|
|
pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
|
|
|
|
regs->pstate &= ~PSR_AA32_IT_MASK;
|
|
regs->pstate |= pstate_it;
|
|
}
|
|
|
|
static void advance_itstate(struct pt_regs *regs)
|
|
{
|
|
u32 it;
|
|
|
|
/* ARM mode */
|
|
if (!(regs->pstate & PSR_AA32_T_BIT) ||
|
|
!(regs->pstate & PSR_AA32_IT_MASK))
|
|
return;
|
|
|
|
it = compat_get_it_state(regs);
|
|
|
|
/*
|
|
* If this is the last instruction of the block, wipe the IT
|
|
* state. Otherwise advance it.
|
|
*/
|
|
if (!(it & 7))
|
|
it = 0;
|
|
else
|
|
it = (it & 0xe0) | ((it << 1) & 0x1f);
|
|
|
|
compat_set_it_state(regs, it);
|
|
}
|
|
#else
|
|
static void advance_itstate(struct pt_regs *regs)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
|
|
{
|
|
regs->pc += size;
|
|
|
|
/*
|
|
* If we were single stepping, we want to get the step exception after
|
|
* we return from the trap.
|
|
*/
|
|
if (user_mode(regs))
|
|
user_fastforward_single_step(current);
|
|
|
|
if (compat_user_mode(regs))
|
|
advance_itstate(regs);
|
|
else
|
|
regs->pstate &= ~PSR_BTYPE_MASK;
|
|
}
|
|
|
|
static int user_insn_read(struct pt_regs *regs, u32 *insnp)
|
|
{
|
|
u32 instr;
|
|
void __user *pc = (void __user *)instruction_pointer(regs);
|
|
|
|
if (compat_thumb_mode(regs)) {
|
|
/* 16-bit Thumb instruction */
|
|
__le16 instr_le;
|
|
if (get_user(instr_le, (__le16 __user *)pc))
|
|
return -EFAULT;
|
|
instr = le16_to_cpu(instr_le);
|
|
if (aarch32_insn_is_wide(instr)) {
|
|
u32 instr2;
|
|
|
|
if (get_user(instr_le, (__le16 __user *)(pc + 2)))
|
|
return -EFAULT;
|
|
instr2 = le16_to_cpu(instr_le);
|
|
instr = (instr << 16) | instr2;
|
|
}
|
|
} else {
|
|
/* 32-bit ARM instruction */
|
|
__le32 instr_le;
|
|
if (get_user(instr_le, (__le32 __user *)pc))
|
|
return -EFAULT;
|
|
instr = le32_to_cpu(instr_le);
|
|
}
|
|
|
|
*insnp = instr;
|
|
return 0;
|
|
}
|
|
|
|
void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
|
|
{
|
|
const char *desc;
|
|
struct pt_regs *regs = current_pt_regs();
|
|
|
|
if (WARN_ON(!user_mode(regs)))
|
|
return;
|
|
|
|
switch (signal) {
|
|
case SIGILL:
|
|
desc = "undefined instruction";
|
|
break;
|
|
case SIGSEGV:
|
|
desc = "illegal memory access";
|
|
break;
|
|
default:
|
|
desc = "unknown or unrecoverable error";
|
|
break;
|
|
}
|
|
|
|
/* Force signals we don't understand to SIGKILL */
|
|
if (WARN_ON(signal != SIGKILL &&
|
|
siginfo_layout(signal, code) != SIL_FAULT)) {
|
|
signal = SIGKILL;
|
|
}
|
|
|
|
arm64_notify_die(desc, regs, signal, code, address, err);
|
|
}
|
|
|
|
/*
|
|
* Set up process info to signal segmentation fault - called on access error.
|
|
*/
|
|
void arm64_notify_segfault(unsigned long addr)
|
|
{
|
|
int code;
|
|
|
|
mmap_read_lock(current->mm);
|
|
if (find_vma(current->mm, untagged_addr(addr)) == NULL)
|
|
code = SEGV_MAPERR;
|
|
else
|
|
code = SEGV_ACCERR;
|
|
mmap_read_unlock(current->mm);
|
|
|
|
force_signal_inject(SIGSEGV, code, addr, 0);
|
|
}
|
|
|
|
void do_el0_undef(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
u32 insn;
|
|
|
|
/* check for AArch32 breakpoint instructions */
|
|
if (!aarch32_break_handler(regs))
|
|
return;
|
|
|
|
if (user_insn_read(regs, &insn))
|
|
goto out_err;
|
|
|
|
if (try_emulate_mrs(regs, insn))
|
|
return;
|
|
|
|
if (try_emulate_armv8_deprecated(regs, insn))
|
|
return;
|
|
|
|
out_err:
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
}
|
|
|
|
void do_el1_undef(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
u32 insn;
|
|
|
|
if (aarch64_insn_read((void *)regs->pc, &insn))
|
|
goto out_err;
|
|
|
|
if (try_emulate_el1_ssbs(regs, insn))
|
|
return;
|
|
|
|
out_err:
|
|
die("Oops - Undefined instruction", regs, esr);
|
|
}
|
|
|
|
void do_el0_bti(struct pt_regs *regs)
|
|
{
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
}
|
|
|
|
void do_el1_bti(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
die("Oops - BTI", regs, esr);
|
|
}
|
|
|
|
void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
|
|
}
|
|
|
|
void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
/*
|
|
* Unexpected FPAC exception in the kernel: kill the task before it
|
|
* does any more harm.
|
|
*/
|
|
die("Oops - FPAC", regs, esr);
|
|
}
|
|
|
|
#define __user_cache_maint(insn, address, res) \
|
|
if (address >= user_addr_max()) { \
|
|
res = -EFAULT; \
|
|
} else { \
|
|
uaccess_ttbr0_enable(); \
|
|
asm volatile ( \
|
|
"1: " insn ", %1\n" \
|
|
" mov %w0, #0\n" \
|
|
"2:\n" \
|
|
" .pushsection .fixup,\"ax\"\n" \
|
|
" .align 2\n" \
|
|
"3: mov %w0, %w2\n" \
|
|
" b 2b\n" \
|
|
" .popsection\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: "=r" (res) \
|
|
: "r" (address), "i" (-EFAULT)); \
|
|
uaccess_ttbr0_disable(); \
|
|
}
|
|
|
|
static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
unsigned long tagged_address, address;
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
|
|
int ret = 0;
|
|
|
|
tagged_address = pt_regs_read_reg(regs, rt);
|
|
address = untagged_addr(tagged_address);
|
|
|
|
switch (crm) {
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
|
|
__user_cache_maint("sys 3, c7, c13, 1", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
|
|
__user_cache_maint("sys 3, c7, c12, 1", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
|
|
__user_cache_maint("ic ivau", address, ret);
|
|
break;
|
|
default:
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
return;
|
|
}
|
|
|
|
if (ret)
|
|
arm64_notify_segfault(tagged_address);
|
|
else
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
|
|
|
|
if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
|
|
/* Hide DIC so that we can trap the unnecessary maintenance...*/
|
|
val &= ~BIT(CTR_DIC_SHIFT);
|
|
|
|
/* ... and fake IminLine to reduce the number of traps. */
|
|
val &= ~CTR_IMINLINE_MASK;
|
|
val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
|
|
}
|
|
|
|
pt_regs_write_reg(regs, rt, val);
|
|
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
|
|
pt_regs_write_reg(regs, rt, arch_timer_read_counter());
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
|
|
pt_regs_write_reg(regs, rt, arch_timer_get_rate());
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void mrs_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
u32 sysreg, rt;
|
|
|
|
rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
sysreg = esr_sys64_to_sysreg(esr);
|
|
|
|
if (do_emulate_mrs(regs, sysreg, rt) != 0)
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
}
|
|
|
|
static void wfi_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
struct sys64_hook {
|
|
unsigned long esr_mask;
|
|
unsigned long esr_val;
|
|
void (*handler)(unsigned long esr, struct pt_regs *regs);
|
|
};
|
|
|
|
static const struct sys64_hook sys64_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
|
|
.handler = user_cache_maint_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CTR_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
|
|
.handler = ctr_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTVCT_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
|
|
.handler = cntvct_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTFRQ_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
|
|
.handler = cntfrq_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CPUID registers */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
|
|
.handler = mrs_handler,
|
|
},
|
|
{
|
|
/* Trap WFI instructions executed in userspace */
|
|
.esr_mask = ESR_ELx_WFx_MASK,
|
|
.esr_val = ESR_ELx_WFx_WFI_VAL,
|
|
.handler = wfi_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int cond;
|
|
|
|
/* Only a T32 instruction can trap without CV being set */
|
|
if (!(esr & ESR_ELx_CV)) {
|
|
u32 it;
|
|
|
|
it = compat_get_it_state(regs);
|
|
if (!it)
|
|
return true;
|
|
|
|
cond = it >> 4;
|
|
} else {
|
|
cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
|
|
}
|
|
|
|
return aarch32_opcode_cond_checks[cond](regs->pstate);
|
|
}
|
|
|
|
static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
|
|
|
|
pt_regs_write_reg(regs, reg, arch_timer_get_rate());
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
}
|
|
|
|
static const struct sys64_hook cp15_32_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
|
|
.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
|
|
.handler = compat_cntfrq_read_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
|
|
int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
|
|
u64 val = arch_timer_read_counter();
|
|
|
|
pt_regs_write_reg(regs, rt, lower_32_bits(val));
|
|
pt_regs_write_reg(regs, rt2, upper_32_bits(val));
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
}
|
|
|
|
static const struct sys64_hook cp15_64_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
|
|
.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
|
|
.handler = compat_cntvct_read_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
const struct sys64_hook *hook, *hook_base;
|
|
|
|
if (!cp15_cond_valid(esr, regs)) {
|
|
/*
|
|
* There is no T16 variant of a CP access, so we
|
|
* always advance PC by 4 bytes.
|
|
*/
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
return;
|
|
}
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_CP15_32:
|
|
hook_base = cp15_32_hooks;
|
|
break;
|
|
case ESR_ELx_EC_CP15_64:
|
|
hook_base = cp15_64_hooks;
|
|
break;
|
|
default:
|
|
do_el0_undef(regs, esr);
|
|
return;
|
|
}
|
|
|
|
for (hook = hook_base; hook->handler; hook++)
|
|
if ((hook->esr_mask & esr) == hook->esr_val) {
|
|
hook->handler(esr, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* New cp15 instructions may previously have been undefined at
|
|
* EL0. Fall back to our usual undefined instruction handler
|
|
* so that we handle these consistently.
|
|
*/
|
|
do_el0_undef(regs, esr);
|
|
}
|
|
#endif
|
|
|
|
void do_el0_sys(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
const struct sys64_hook *hook;
|
|
|
|
for (hook = sys64_hooks; hook->handler; hook++)
|
|
if ((hook->esr_mask & esr) == hook->esr_val) {
|
|
hook->handler(esr, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* New SYS instructions may previously have been undefined at EL0. Fall
|
|
* back to our usual undefined instruction handler so that we handle
|
|
* these consistently.
|
|
*/
|
|
do_el0_undef(regs, esr);
|
|
}
|
|
|
|
static const char *esr_class_str[] = {
|
|
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
|
|
[ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
|
|
[ESR_ELx_EC_WFx] = "WFI/WFE",
|
|
[ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
|
|
[ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
|
|
[ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
|
|
[ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
|
|
[ESR_ELx_EC_FP_ASIMD] = "ASIMD",
|
|
[ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
|
|
[ESR_ELx_EC_PAC] = "PAC",
|
|
[ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
|
|
[ESR_ELx_EC_BTI] = "BTI",
|
|
[ESR_ELx_EC_ILL] = "PSTATE.IL",
|
|
[ESR_ELx_EC_SVC32] = "SVC (AArch32)",
|
|
[ESR_ELx_EC_HVC32] = "HVC (AArch32)",
|
|
[ESR_ELx_EC_SMC32] = "SMC (AArch32)",
|
|
[ESR_ELx_EC_SVC64] = "SVC (AArch64)",
|
|
[ESR_ELx_EC_HVC64] = "HVC (AArch64)",
|
|
[ESR_ELx_EC_SMC64] = "SMC (AArch64)",
|
|
[ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
|
|
[ESR_ELx_EC_SVE] = "SVE",
|
|
[ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
|
|
[ESR_ELx_EC_FPAC] = "FPAC",
|
|
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
|
|
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
|
|
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
|
|
[ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
|
|
[ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
|
|
[ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
|
|
[ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
|
|
[ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
|
|
[ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
|
|
[ESR_ELx_EC_SERROR] = "SError",
|
|
[ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
|
|
[ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
|
|
[ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
|
|
[ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
|
|
[ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
|
|
[ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
|
|
[ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
|
|
[ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
|
|
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
|
|
};
|
|
|
|
const char *esr_get_class_string(unsigned long esr)
|
|
{
|
|
return esr_class_str[ESR_ELx_EC(esr)];
|
|
}
|
|
|
|
/*
|
|
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
|
|
* exceptions taken from EL0.
|
|
*/
|
|
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
current->thread.fault_address = 0;
|
|
current->thread.fault_code = esr;
|
|
|
|
arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
|
|
"Bad EL0 synchronous exception");
|
|
}
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
|
|
DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
|
|
__aligned(16);
|
|
|
|
void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
|
|
{
|
|
unsigned long tsk_stk = (unsigned long)current->stack;
|
|
unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
|
|
unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
|
|
|
|
console_verbose();
|
|
pr_emerg("Insufficient stack space to handle exception!");
|
|
|
|
pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
|
|
pr_emerg("FAR: 0x%016lx\n", far);
|
|
|
|
pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
|
|
tsk_stk, tsk_stk + THREAD_SIZE);
|
|
pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
|
|
irq_stk, irq_stk + IRQ_STACK_SIZE);
|
|
pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
|
|
ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
|
|
|
|
__show_regs(regs);
|
|
|
|
/*
|
|
* We use nmi_panic to limit the potential for recusive overflows, and
|
|
* to get a better stack trace.
|
|
*/
|
|
nmi_panic(NULL, "kernel stack overflow");
|
|
cpu_park_loop();
|
|
}
|
|
#endif
|
|
|
|
void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
console_verbose();
|
|
|
|
pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
|
|
smp_processor_id(), esr, esr_get_class_string(esr));
|
|
if (regs)
|
|
__show_regs(regs);
|
|
|
|
nmi_panic(regs, "Asynchronous SError Interrupt");
|
|
|
|
cpu_park_loop();
|
|
unreachable();
|
|
}
|
|
|
|
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long aet = arm64_ras_serror_get_severity(esr);
|
|
|
|
switch (aet) {
|
|
case ESR_ELx_AET_CE: /* corrected error */
|
|
case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
|
|
/*
|
|
* The CPU can make progress. We may take UEO again as
|
|
* a more severe error.
|
|
*/
|
|
return false;
|
|
|
|
case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
|
|
case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
|
|
/*
|
|
* The CPU can't make progress. The exception may have
|
|
* been imprecise.
|
|
*
|
|
* Neoverse-N1 #1349291 means a non-KVM SError reported as
|
|
* Unrecoverable should be treated as Uncontainable. We
|
|
* call arm64_serror_panic() in both cases.
|
|
*/
|
|
return true;
|
|
|
|
case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
|
|
default:
|
|
/* Error has been silently propagated */
|
|
arm64_serror_panic(regs, esr);
|
|
}
|
|
}
|
|
|
|
void do_serror(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
/* non-RAS errors are not containable */
|
|
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
|
|
arm64_serror_panic(regs, esr);
|
|
}
|
|
|
|
/* GENERIC_BUG traps */
|
|
|
|
int is_valid_bugaddr(unsigned long addr)
|
|
{
|
|
/*
|
|
* bug_handler() only called for BRK #BUG_BRK_IMM.
|
|
* So the answer is trivial -- any spurious instances with no
|
|
* bug table entry will be rejected by report_bug() and passed
|
|
* back to the debug-monitors code and handled as a fatal
|
|
* unexpected debug exception.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static int bug_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
switch (report_bug(regs->pc, regs)) {
|
|
case BUG_TRAP_TYPE_BUG:
|
|
die("Oops - BUG", regs, esr);
|
|
break;
|
|
|
|
case BUG_TRAP_TYPE_WARN:
|
|
break;
|
|
|
|
default:
|
|
/* unknown/unrecognised bug trap type */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
/* If thread survives, skip over the BUG instruction and continue: */
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook bug_break_hook = {
|
|
.fn = bug_handler,
|
|
.imm = BUG_BRK_IMM,
|
|
};
|
|
|
|
static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
pr_err("%s generated an invalid instruction at %pS!\n",
|
|
"Kernel text patching",
|
|
(void *)instruction_pointer(regs));
|
|
|
|
/* We cannot handle this */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
static struct break_hook fault_break_hook = {
|
|
.fn = reserved_fault_handler,
|
|
.imm = FAULT_BRK_IMM,
|
|
};
|
|
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
|
|
#define KASAN_ESR_RECOVER 0x20
|
|
#define KASAN_ESR_WRITE 0x10
|
|
#define KASAN_ESR_SIZE_MASK 0x0f
|
|
#define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
|
|
|
|
static int kasan_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
bool recover = esr & KASAN_ESR_RECOVER;
|
|
bool write = esr & KASAN_ESR_WRITE;
|
|
size_t size = KASAN_ESR_SIZE(esr);
|
|
u64 addr = regs->regs[0];
|
|
u64 pc = regs->pc;
|
|
|
|
kasan_report(addr, size, write, pc);
|
|
|
|
/*
|
|
* The instrumentation allows to control whether we can proceed after
|
|
* a crash was detected. This is done by passing the -recover flag to
|
|
* the compiler. Disabling recovery allows to generate more compact
|
|
* code.
|
|
*
|
|
* Unfortunately disabling recovery doesn't work for the kernel right
|
|
* now. KASAN reporting is disabled in some contexts (for example when
|
|
* the allocator accesses slab object metadata; this is controlled by
|
|
* current->kasan_depth). All these accesses are detected by the tool,
|
|
* even though the reports for them are not printed.
|
|
*
|
|
* This is something that might be fixed at some point in the future.
|
|
*/
|
|
if (!recover)
|
|
die("Oops - KASAN", regs, esr);
|
|
|
|
/* If thread survives, skip over the brk instruction and continue: */
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook kasan_break_hook = {
|
|
.fn = kasan_handler,
|
|
.imm = KASAN_BRK_IMM,
|
|
.mask = KASAN_BRK_MASK,
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Initial handler for AArch64 BRK exceptions
|
|
* This handler only used until debug_traps_init().
|
|
*/
|
|
int __init early_brk64(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
unsigned long comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
|
|
|
|
if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
|
|
return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
#endif
|
|
return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
void __init trap_init(void)
|
|
{
|
|
register_kernel_break_hook(&bug_break_hook);
|
|
register_kernel_break_hook(&fault_break_hook);
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
register_kernel_break_hook(&kasan_break_hook);
|
|
#endif
|
|
debug_traps_init();
|
|
}
|