WSL2-Linux-Kernel/drivers/i2c/busses/i2c-bcm-iproc.c

1134 строки
31 KiB
C

/*
* Copyright (C) 2014 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#define IDM_CTRL_DIRECT_OFFSET 0x00
#define CFG_OFFSET 0x00
#define CFG_RESET_SHIFT 31
#define CFG_EN_SHIFT 30
#define CFG_SLAVE_ADDR_0_SHIFT 28
#define CFG_M_RETRY_CNT_SHIFT 16
#define CFG_M_RETRY_CNT_MASK 0x0f
#define TIM_CFG_OFFSET 0x04
#define TIM_CFG_MODE_400_SHIFT 31
#define TIM_RAND_SLAVE_STRETCH_SHIFT 24
#define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
#define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
#define S_CFG_SMBUS_ADDR_OFFSET 0x08
#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
#define S_CFG_NIC_SMB_ADDR3_SHIFT 24
#define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
#define S_CFG_NIC_SMB_ADDR2_SHIFT 16
#define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
#define S_CFG_NIC_SMB_ADDR1_SHIFT 8
#define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
#define S_CFG_NIC_SMB_ADDR0_SHIFT 0
#define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
#define M_FIFO_CTRL_OFFSET 0x0c
#define M_FIFO_RX_FLUSH_SHIFT 31
#define M_FIFO_TX_FLUSH_SHIFT 30
#define M_FIFO_RX_CNT_SHIFT 16
#define M_FIFO_RX_CNT_MASK 0x7f
#define M_FIFO_RX_THLD_SHIFT 8
#define M_FIFO_RX_THLD_MASK 0x3f
#define S_FIFO_CTRL_OFFSET 0x10
#define S_FIFO_RX_FLUSH_SHIFT 31
#define S_FIFO_TX_FLUSH_SHIFT 30
#define S_FIFO_RX_CNT_SHIFT 16
#define S_FIFO_RX_CNT_MASK 0x7f
#define S_FIFO_RX_THLD_SHIFT 8
#define S_FIFO_RX_THLD_MASK 0x3f
#define M_CMD_OFFSET 0x30
#define M_CMD_START_BUSY_SHIFT 31
#define M_CMD_STATUS_SHIFT 25
#define M_CMD_STATUS_MASK 0x07
#define M_CMD_STATUS_SUCCESS 0x0
#define M_CMD_STATUS_LOST_ARB 0x1
#define M_CMD_STATUS_NACK_ADDR 0x2
#define M_CMD_STATUS_NACK_DATA 0x3
#define M_CMD_STATUS_TIMEOUT 0x4
#define M_CMD_STATUS_FIFO_UNDERRUN 0x5
#define M_CMD_STATUS_RX_FIFO_FULL 0x6
#define M_CMD_PROTOCOL_SHIFT 9
#define M_CMD_PROTOCOL_MASK 0xf
#define M_CMD_PROTOCOL_QUICK 0x0
#define M_CMD_PROTOCOL_BLK_WR 0x7
#define M_CMD_PROTOCOL_BLK_RD 0x8
#define M_CMD_PROTOCOL_PROCESS 0xa
#define M_CMD_PEC_SHIFT 8
#define M_CMD_RD_CNT_SHIFT 0
#define M_CMD_RD_CNT_MASK 0xff
#define S_CMD_OFFSET 0x34
#define S_CMD_START_BUSY_SHIFT 31
#define S_CMD_STATUS_SHIFT 23
#define S_CMD_STATUS_MASK 0x07
#define S_CMD_STATUS_SUCCESS 0x0
#define S_CMD_STATUS_TIMEOUT 0x5
#define IE_OFFSET 0x38
#define IE_M_RX_FIFO_FULL_SHIFT 31
#define IE_M_RX_THLD_SHIFT 30
#define IE_M_START_BUSY_SHIFT 28
#define IE_M_TX_UNDERRUN_SHIFT 27
#define IE_S_RX_FIFO_FULL_SHIFT 26
#define IE_S_RX_THLD_SHIFT 25
#define IE_S_RX_EVENT_SHIFT 24
#define IE_S_START_BUSY_SHIFT 23
#define IE_S_TX_UNDERRUN_SHIFT 22
#define IE_S_RD_EVENT_SHIFT 21
#define IS_OFFSET 0x3c
#define IS_M_RX_FIFO_FULL_SHIFT 31
#define IS_M_RX_THLD_SHIFT 30
#define IS_M_START_BUSY_SHIFT 28
#define IS_M_TX_UNDERRUN_SHIFT 27
#define IS_S_RX_FIFO_FULL_SHIFT 26
#define IS_S_RX_THLD_SHIFT 25
#define IS_S_RX_EVENT_SHIFT 24
#define IS_S_START_BUSY_SHIFT 23
#define IS_S_TX_UNDERRUN_SHIFT 22
#define IS_S_RD_EVENT_SHIFT 21
#define M_TX_OFFSET 0x40
#define M_TX_WR_STATUS_SHIFT 31
#define M_TX_DATA_SHIFT 0
#define M_TX_DATA_MASK 0xff
#define M_RX_OFFSET 0x44
#define M_RX_STATUS_SHIFT 30
#define M_RX_STATUS_MASK 0x03
#define M_RX_PEC_ERR_SHIFT 29
#define M_RX_DATA_SHIFT 0
#define M_RX_DATA_MASK 0xff
#define S_TX_OFFSET 0x48
#define S_TX_WR_STATUS_SHIFT 31
#define S_TX_DATA_SHIFT 0
#define S_TX_DATA_MASK 0xff
#define S_RX_OFFSET 0x4c
#define S_RX_STATUS_SHIFT 30
#define S_RX_STATUS_MASK 0x03
#define S_RX_PEC_ERR_SHIFT 29
#define S_RX_DATA_SHIFT 0
#define S_RX_DATA_MASK 0xff
#define I2C_TIMEOUT_MSEC 50000
#define M_TX_RX_FIFO_SIZE 64
#define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
#define M_RX_MAX_READ_LEN 255
#define M_RX_FIFO_THLD_VALUE 50
#define IE_M_ALL_INTERRUPT_SHIFT 27
#define IE_M_ALL_INTERRUPT_MASK 0x1e
#define SLAVE_READ_WRITE_BIT_MASK 0x1
#define SLAVE_READ_WRITE_BIT_SHIFT 0x1
#define SLAVE_MAX_SIZE_TRANSACTION 64
#define SLAVE_CLOCK_STRETCH_TIME 25
#define IE_S_ALL_INTERRUPT_SHIFT 21
#define IE_S_ALL_INTERRUPT_MASK 0x3f
enum i2c_slave_read_status {
I2C_SLAVE_RX_FIFO_EMPTY = 0,
I2C_SLAVE_RX_START,
I2C_SLAVE_RX_DATA,
I2C_SLAVE_RX_END,
};
enum bus_speed_index {
I2C_SPD_100K = 0,
I2C_SPD_400K,
};
enum bcm_iproc_i2c_type {
IPROC_I2C,
IPROC_I2C_NIC
};
struct bcm_iproc_i2c_dev {
struct device *device;
enum bcm_iproc_i2c_type type;
int irq;
void __iomem *base;
void __iomem *idm_base;
u32 ape_addr_mask;
/* lock for indirect access through IDM */
spinlock_t idm_lock;
struct i2c_adapter adapter;
unsigned int bus_speed;
struct completion done;
int xfer_is_done;
struct i2c_msg *msg;
struct i2c_client *slave;
/* bytes that have been transferred */
unsigned int tx_bytes;
/* bytes that have been read */
unsigned int rx_bytes;
unsigned int thld_bytes;
};
/*
* Can be expanded in the future if more interrupt status bits are utilized
*/
#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
| BIT(IS_M_RX_THLD_SHIFT))
#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
| BIT(IS_S_TX_UNDERRUN_SHIFT))
static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
bool enable);
static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
u32 offset)
{
u32 val;
if (iproc_i2c->idm_base) {
spin_lock(&iproc_i2c->idm_lock);
writel(iproc_i2c->ape_addr_mask,
iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
val = readl(iproc_i2c->base + offset);
spin_unlock(&iproc_i2c->idm_lock);
} else {
val = readl(iproc_i2c->base + offset);
}
return val;
}
static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
u32 offset, u32 val)
{
if (iproc_i2c->idm_base) {
spin_lock(&iproc_i2c->idm_lock);
writel(iproc_i2c->ape_addr_mask,
iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
writel(val, iproc_i2c->base + offset);
spin_unlock(&iproc_i2c->idm_lock);
} else {
writel(val, iproc_i2c->base + offset);
}
}
static void bcm_iproc_i2c_slave_init(
struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
{
u32 val;
if (need_reset) {
/* put controller in reset */
val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
val |= BIT(CFG_RESET_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
/* wait 100 usec per spec */
udelay(100);
/* bring controller out of reset */
val &= ~(BIT(CFG_RESET_SHIFT));
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
}
/* flush TX/RX FIFOs */
val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
/* Maximum slave stretch time */
val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
/* Configure the slave address */
val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
/* clear all pending slave interrupts */
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
/* Enable interrupt register to indicate a valid byte in receive fifo */
val = BIT(IE_S_RX_EVENT_SHIFT);
/* Enable interrupt register for the Slave BUSY command */
val |= BIT(IE_S_START_BUSY_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
}
static void bcm_iproc_i2c_check_slave_status(
struct bcm_iproc_i2c_dev *iproc_i2c)
{
u32 val;
val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
/* status is valid only when START_BUSY is cleared after it was set */
if (val & BIT(S_CMD_START_BUSY_SHIFT))
return;
val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
if (val == S_CMD_STATUS_TIMEOUT) {
dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
/* re-initialize i2c for recovery */
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
bcm_iproc_i2c_slave_init(iproc_i2c, true);
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
}
}
static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
u32 status)
{
u32 val;
u8 value, rx_status;
/* Slave RX byte receive */
if (status & BIT(IS_S_RX_EVENT_SHIFT)) {
val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
if (rx_status == I2C_SLAVE_RX_START) {
/* Start of SMBUS for Master write */
i2c_slave_event(iproc_i2c->slave,
I2C_SLAVE_WRITE_REQUESTED, &value);
val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
i2c_slave_event(iproc_i2c->slave,
I2C_SLAVE_WRITE_RECEIVED, &value);
} else if (status & BIT(IS_S_RD_EVENT_SHIFT)) {
/* Start of SMBUS for Master Read */
i2c_slave_event(iproc_i2c->slave,
I2C_SLAVE_READ_REQUESTED, &value);
iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
val = BIT(S_CMD_START_BUSY_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
/*
* Enable interrupt for TX FIFO becomes empty and
* less than PKT_LENGTH bytes were output on the SMBUS
*/
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
val |= BIT(IE_S_TX_UNDERRUN_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
} else {
/* Master write other than start */
value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
i2c_slave_event(iproc_i2c->slave,
I2C_SLAVE_WRITE_RECEIVED, &value);
if (rx_status == I2C_SLAVE_RX_END)
i2c_slave_event(iproc_i2c->slave,
I2C_SLAVE_STOP, &value);
}
} else if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
/* Master read other than start */
i2c_slave_event(iproc_i2c->slave,
I2C_SLAVE_READ_PROCESSED, &value);
iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
val = BIT(S_CMD_START_BUSY_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
}
/* Stop */
if (status & BIT(IS_S_START_BUSY_SHIFT)) {
i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
/*
* Enable interrupt for TX FIFO becomes empty and
* less than PKT_LENGTH bytes were output on the SMBUS
*/
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
}
/* clear interrupt status */
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
bcm_iproc_i2c_check_slave_status(iproc_i2c);
return true;
}
static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
{
struct i2c_msg *msg = iproc_i2c->msg;
uint32_t val;
/* Read valid data from RX FIFO */
while (iproc_i2c->rx_bytes < msg->len) {
val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
/* rx fifo empty */
if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
break;
msg->buf[iproc_i2c->rx_bytes] =
(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
iproc_i2c->rx_bytes++;
}
}
static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
{
struct i2c_msg *msg = iproc_i2c->msg;
unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
unsigned int i;
u32 val;
/* can only fill up to the FIFO size */
tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
for (i = 0; i < tx_bytes; i++) {
/* start from where we left over */
unsigned int idx = iproc_i2c->tx_bytes + i;
val = msg->buf[idx];
/* mark the last byte */
if (idx == msg->len - 1) {
val |= BIT(M_TX_WR_STATUS_SHIFT);
if (iproc_i2c->irq) {
u32 tmp;
/*
* Since this is the last byte, we should now
* disable TX FIFO underrun interrupt
*/
tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
tmp);
}
}
/* load data into TX FIFO */
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
}
/* update number of transferred bytes */
iproc_i2c->tx_bytes += tx_bytes;
}
static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
{
struct i2c_msg *msg = iproc_i2c->msg;
u32 bytes_left, val;
bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
bytes_left = msg->len - iproc_i2c->rx_bytes;
if (bytes_left == 0) {
if (iproc_i2c->irq) {
/* finished reading all data, disable rx thld event */
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
val &= ~BIT(IS_M_RX_THLD_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
}
} else if (bytes_left < iproc_i2c->thld_bytes) {
/* set bytes left as threshold */
val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
iproc_i2c->thld_bytes = bytes_left;
}
/*
* bytes_left >= iproc_i2c->thld_bytes,
* hence no need to change the THRESHOLD SET.
* It will remain as iproc_i2c->thld_bytes itself
*/
}
static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
u32 status)
{
/* TX FIFO is empty and we have more data to send */
if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
bcm_iproc_i2c_send(iproc_i2c);
/* RX FIFO threshold is reached and data needs to be read out */
if (status & BIT(IS_M_RX_THLD_SHIFT))
bcm_iproc_i2c_read(iproc_i2c);
/* transfer is done */
if (status & BIT(IS_M_START_BUSY_SHIFT)) {
iproc_i2c->xfer_is_done = 1;
if (iproc_i2c->irq)
complete(&iproc_i2c->done);
}
}
static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
{
struct bcm_iproc_i2c_dev *iproc_i2c = data;
u32 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
bool ret;
u32 sl_status = status & ISR_MASK_SLAVE;
if (sl_status) {
ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
if (ret)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
status &= ISR_MASK;
if (!status)
return IRQ_NONE;
/* process all master based events */
bcm_iproc_i2c_process_m_event(iproc_i2c, status);
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
return IRQ_HANDLED;
}
static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
{
u32 val;
/* put controller in reset */
val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
val |= BIT(CFG_RESET_SHIFT);
val &= ~(BIT(CFG_EN_SHIFT));
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
/* wait 100 usec per spec */
udelay(100);
/* bring controller out of reset */
val &= ~(BIT(CFG_RESET_SHIFT));
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
/* disable all interrupts */
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
val &= ~(IE_M_ALL_INTERRUPT_MASK <<
IE_M_ALL_INTERRUPT_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
/* clear all pending interrupts */
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
return 0;
}
static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
bool enable)
{
u32 val;
val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
if (enable)
val |= BIT(CFG_EN_SHIFT);
else
val &= ~BIT(CFG_EN_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
}
static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
struct i2c_msg *msg)
{
u32 val;
val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
switch (val) {
case M_CMD_STATUS_SUCCESS:
return 0;
case M_CMD_STATUS_LOST_ARB:
dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
return -EAGAIN;
case M_CMD_STATUS_NACK_ADDR:
dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
return -ENXIO;
case M_CMD_STATUS_NACK_DATA:
dev_dbg(iproc_i2c->device, "NAK data\n");
return -ENXIO;
case M_CMD_STATUS_TIMEOUT:
dev_dbg(iproc_i2c->device, "bus timeout\n");
return -ETIMEDOUT;
case M_CMD_STATUS_FIFO_UNDERRUN:
dev_dbg(iproc_i2c->device, "FIFO under-run\n");
return -ENXIO;
case M_CMD_STATUS_RX_FIFO_FULL:
dev_dbg(iproc_i2c->device, "RX FIFO full\n");
return -ETIMEDOUT;
default:
dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
/* re-initialize i2c for recovery */
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
bcm_iproc_i2c_init(iproc_i2c);
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
return -EIO;
}
}
static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
struct i2c_msg *msg,
u32 cmd)
{
unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
u32 val, status;
int ret;
iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
if (iproc_i2c->irq) {
time_left = wait_for_completion_timeout(&iproc_i2c->done,
time_left);
/* disable all interrupts */
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
/* read it back to flush the write */
iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
/* make sure the interrupt handler isn't running */
synchronize_irq(iproc_i2c->irq);
} else { /* polling mode */
unsigned long timeout = jiffies + time_left;
do {
status = iproc_i2c_rd_reg(iproc_i2c,
IS_OFFSET) & ISR_MASK;
bcm_iproc_i2c_process_m_event(iproc_i2c, status);
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
if (time_after(jiffies, timeout)) {
time_left = 0;
break;
}
cpu_relax();
cond_resched();
} while (!iproc_i2c->xfer_is_done);
}
if (!time_left && !iproc_i2c->xfer_is_done) {
dev_err(iproc_i2c->device, "transaction timed out\n");
/* flush both TX/RX FIFOs */
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
return -ETIMEDOUT;
}
ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
if (ret) {
/* flush both TX/RX FIFOs */
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
return ret;
}
return 0;
}
/*
* If 'process_call' is true, then this is a multi-msg transfer that requires
* a repeated start between the messages.
* More specifically, it must be a write (reg) followed by a read (data).
* The i2c quirks are set to enforce this rule.
*/
static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
struct i2c_msg *msgs, bool process_call)
{
int i;
u8 addr;
u32 val, tmp, val_intr_en;
unsigned int tx_bytes;
struct i2c_msg *msg = &msgs[0];
/* check if bus is busy */
if (!!(iproc_i2c_rd_reg(iproc_i2c,
M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
dev_warn(iproc_i2c->device, "bus is busy\n");
return -EBUSY;
}
iproc_i2c->msg = msg;
/* format and load slave address into the TX FIFO */
addr = i2c_8bit_addr_from_msg(msg);
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
/*
* For a write transaction, load data into the TX FIFO. Only allow
* loading up to TX FIFO size - 1 bytes of data since the first byte
* has been used up by the slave address
*/
tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
if (!(msg->flags & I2C_M_RD)) {
for (i = 0; i < tx_bytes; i++) {
val = msg->buf[i];
/* mark the last byte */
if (!process_call && (i == msg->len - 1))
val |= BIT(M_TX_WR_STATUS_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
}
iproc_i2c->tx_bytes = tx_bytes;
}
/* Process the read message if this is process call */
if (process_call) {
msg++;
iproc_i2c->msg = msg; /* point to second msg */
/*
* The last byte to be sent out should be a slave
* address with read operation
*/
addr = i2c_8bit_addr_from_msg(msg);
/* mark it the last byte out */
val = addr | BIT(M_TX_WR_STATUS_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
}
/* mark as incomplete before starting the transaction */
if (iproc_i2c->irq)
reinit_completion(&iproc_i2c->done);
iproc_i2c->xfer_is_done = 0;
/*
* Enable the "start busy" interrupt, which will be triggered after the
* transaction is done, i.e., the internal start_busy bit, transitions
* from 1 to 0.
*/
val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
/*
* If TX data size is larger than the TX FIFO, need to enable TX
* underrun interrupt, which will be triggerred when the TX FIFO is
* empty. When that happens we can then pump more data into the FIFO
*/
if (!process_call && !(msg->flags & I2C_M_RD) &&
msg->len > iproc_i2c->tx_bytes)
val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
/*
* Now we can activate the transfer. For a read operation, specify the
* number of bytes to read
*/
val = BIT(M_CMD_START_BUSY_SHIFT);
if (msg->len == 0) {
/* SMBUS QUICK Command (Read/Write) */
val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
} else if (msg->flags & I2C_M_RD) {
u32 protocol;
iproc_i2c->rx_bytes = 0;
if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
else
iproc_i2c->thld_bytes = msg->len;
/* set threshold value */
tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
/* enable the RX threshold interrupt */
val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
protocol = process_call ?
M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
(msg->len << M_CMD_RD_CNT_SHIFT);
} else {
val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
}
if (iproc_i2c->irq)
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
}
static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
struct i2c_msg msgs[], int num)
{
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
bool process_call = false;
int ret;
if (num == 2) {
/* Repeated start, use process call */
process_call = true;
if (msgs[1].flags & I2C_M_NOSTART) {
dev_err(iproc_i2c->device, "Invalid repeated start\n");
return -EOPNOTSUPP;
}
}
ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
if (ret) {
dev_dbg(iproc_i2c->device, "xfer failed\n");
return ret;
}
return num;
}
static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
{
u32 val;
val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
if (adap->algo->reg_slave)
val |= I2C_FUNC_SLAVE;
return val;
}
static struct i2c_algorithm bcm_iproc_algo = {
.master_xfer = bcm_iproc_i2c_xfer,
.functionality = bcm_iproc_i2c_functionality,
.reg_slave = bcm_iproc_i2c_reg_slave,
.unreg_slave = bcm_iproc_i2c_unreg_slave,
};
static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
.flags = I2C_AQ_COMB_WRITE_THEN_READ,
.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
.max_read_len = M_RX_MAX_READ_LEN,
};
static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
{
unsigned int bus_speed;
u32 val;
int ret = of_property_read_u32(iproc_i2c->device->of_node,
"clock-frequency", &bus_speed);
if (ret < 0) {
dev_info(iproc_i2c->device,
"unable to interpret clock-frequency DT property\n");
bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
}
if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
bus_speed);
dev_err(iproc_i2c->device,
"valid speeds are 100khz and 400khz\n");
return -EINVAL;
} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
} else {
bus_speed = I2C_MAX_FAST_MODE_FREQ;
}
iproc_i2c->bus_speed = bus_speed;
val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
return 0;
}
static int bcm_iproc_i2c_probe(struct platform_device *pdev)
{
int irq, ret = 0;
struct bcm_iproc_i2c_dev *iproc_i2c;
struct i2c_adapter *adap;
struct resource *res;
iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
GFP_KERNEL);
if (!iproc_i2c)
return -ENOMEM;
platform_set_drvdata(pdev, iproc_i2c);
iproc_i2c->device = &pdev->dev;
iproc_i2c->type =
(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
init_completion(&iproc_i2c->done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
if (IS_ERR(iproc_i2c->base))
return PTR_ERR(iproc_i2c->base);
if (iproc_i2c->type == IPROC_I2C_NIC) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
res);
if (IS_ERR(iproc_i2c->idm_base))
return PTR_ERR(iproc_i2c->idm_base);
ret = of_property_read_u32(iproc_i2c->device->of_node,
"brcm,ape-hsls-addr-mask",
&iproc_i2c->ape_addr_mask);
if (ret < 0) {
dev_err(iproc_i2c->device,
"'brcm,ape-hsls-addr-mask' missing\n");
return -EINVAL;
}
spin_lock_init(&iproc_i2c->idm_lock);
/* no slave support */
bcm_iproc_algo.reg_slave = NULL;
bcm_iproc_algo.unreg_slave = NULL;
}
ret = bcm_iproc_i2c_init(iproc_i2c);
if (ret)
return ret;
ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq > 0) {
ret = devm_request_irq(iproc_i2c->device, irq,
bcm_iproc_i2c_isr, 0, pdev->name,
iproc_i2c);
if (ret < 0) {
dev_err(iproc_i2c->device,
"unable to request irq %i\n", irq);
return ret;
}
iproc_i2c->irq = irq;
} else {
dev_warn(iproc_i2c->device,
"no irq resource, falling back to poll mode\n");
}
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
adap = &iproc_i2c->adapter;
i2c_set_adapdata(adap, iproc_i2c);
snprintf(adap->name, sizeof(adap->name),
"Broadcom iProc (%s)",
of_node_full_name(iproc_i2c->device->of_node));
adap->algo = &bcm_iproc_algo;
adap->quirks = &bcm_iproc_i2c_quirks;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
return i2c_add_adapter(adap);
}
static int bcm_iproc_i2c_remove(struct platform_device *pdev)
{
struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
if (iproc_i2c->irq) {
/*
* Make sure there's no pending interrupt when we remove the
* adapter
*/
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
synchronize_irq(iproc_i2c->irq);
}
i2c_del_adapter(&iproc_i2c->adapter);
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int bcm_iproc_i2c_suspend(struct device *dev)
{
struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
if (iproc_i2c->irq) {
/*
* Make sure there's no pending interrupt when we go into
* suspend
*/
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
synchronize_irq(iproc_i2c->irq);
}
/* now disable the controller */
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
return 0;
}
static int bcm_iproc_i2c_resume(struct device *dev)
{
struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
int ret;
u32 val;
/*
* Power domain could have been shut off completely in system deep
* sleep, so re-initialize the block here
*/
ret = bcm_iproc_i2c_init(iproc_i2c);
if (ret)
return ret;
/* configure to the desired bus speed */
val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
return 0;
}
static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
.suspend_late = &bcm_iproc_i2c_suspend,
.resume_early = &bcm_iproc_i2c_resume
};
#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
#else
#define BCM_IPROC_I2C_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
{
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
if (iproc_i2c->slave)
return -EBUSY;
if (slave->flags & I2C_CLIENT_TEN)
return -EAFNOSUPPORT;
iproc_i2c->slave = slave;
bcm_iproc_i2c_slave_init(iproc_i2c, false);
return 0;
}
static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
{
u32 tmp;
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
if (!iproc_i2c->slave)
return -EINVAL;
disable_irq(iproc_i2c->irq);
/* disable all slave interrupts */
tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
IE_S_ALL_INTERRUPT_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
/* Erase the slave address programmed */
tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
/* flush TX/RX FIFOs */
tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
/* clear all pending slave interrupts */
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
iproc_i2c->slave = NULL;
enable_irq(iproc_i2c->irq);
return 0;
}
static const struct of_device_id bcm_iproc_i2c_of_match[] = {
{
.compatible = "brcm,iproc-i2c",
.data = (int *)IPROC_I2C,
}, {
.compatible = "brcm,iproc-nic-i2c",
.data = (int *)IPROC_I2C_NIC,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
static struct platform_driver bcm_iproc_i2c_driver = {
.driver = {
.name = "bcm-iproc-i2c",
.of_match_table = bcm_iproc_i2c_of_match,
.pm = BCM_IPROC_I2C_PM_OPS,
},
.probe = bcm_iproc_i2c_probe,
.remove = bcm_iproc_i2c_remove,
};
module_platform_driver(bcm_iproc_i2c_driver);
MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
MODULE_LICENSE("GPL v2");