2137 строки
52 KiB
C
2137 строки
52 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/file.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/synch.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/pte-walk.h>
|
|
|
|
#include "book3s.h"
|
|
#include "trace_hv.h"
|
|
|
|
//#define DEBUG_RESIZE_HPT 1
|
|
|
|
#ifdef DEBUG_RESIZE_HPT
|
|
#define resize_hpt_debug(resize, ...) \
|
|
do { \
|
|
printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
|
|
printk(__VA_ARGS__); \
|
|
} while (0)
|
|
#else
|
|
#define resize_hpt_debug(resize, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
|
|
long pte_index, unsigned long pteh,
|
|
unsigned long ptel, unsigned long *pte_idx_ret);
|
|
|
|
struct kvm_resize_hpt {
|
|
/* These fields read-only after init */
|
|
struct kvm *kvm;
|
|
struct work_struct work;
|
|
u32 order;
|
|
|
|
/* These fields protected by kvm->arch.mmu_setup_lock */
|
|
|
|
/* Possible values and their usage:
|
|
* <0 an error occurred during allocation,
|
|
* -EBUSY allocation is in the progress,
|
|
* 0 allocation made successfully.
|
|
*/
|
|
int error;
|
|
|
|
/* Private to the work thread, until error != -EBUSY,
|
|
* then protected by kvm->arch.mmu_setup_lock.
|
|
*/
|
|
struct kvm_hpt_info hpt;
|
|
};
|
|
|
|
int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
|
|
{
|
|
unsigned long hpt = 0;
|
|
int cma = 0;
|
|
struct page *page = NULL;
|
|
struct revmap_entry *rev;
|
|
unsigned long npte;
|
|
|
|
if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
|
|
return -EINVAL;
|
|
|
|
page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
|
|
if (page) {
|
|
hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
|
|
memset((void *)hpt, 0, (1ul << order));
|
|
cma = 1;
|
|
}
|
|
|
|
if (!hpt)
|
|
hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
|
|
|__GFP_NOWARN, order - PAGE_SHIFT);
|
|
|
|
if (!hpt)
|
|
return -ENOMEM;
|
|
|
|
/* HPTEs are 2**4 bytes long */
|
|
npte = 1ul << (order - 4);
|
|
|
|
/* Allocate reverse map array */
|
|
rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
|
|
if (!rev) {
|
|
if (cma)
|
|
kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
|
|
else
|
|
free_pages(hpt, order - PAGE_SHIFT);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
info->order = order;
|
|
info->virt = hpt;
|
|
info->cma = cma;
|
|
info->rev = rev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
|
|
{
|
|
atomic64_set(&kvm->arch.mmio_update, 0);
|
|
kvm->arch.hpt = *info;
|
|
kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
|
|
|
|
pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
|
|
info->virt, (long)info->order, kvm->arch.lpid);
|
|
}
|
|
|
|
long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
|
|
{
|
|
long err = -EBUSY;
|
|
struct kvm_hpt_info info;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
if (kvm->arch.mmu_ready) {
|
|
kvm->arch.mmu_ready = 0;
|
|
/* order mmu_ready vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.mmu_ready = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
if (kvm_is_radix(kvm)) {
|
|
err = kvmppc_switch_mmu_to_hpt(kvm);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (kvm->arch.hpt.order == order) {
|
|
/* We already have a suitable HPT */
|
|
|
|
/* Set the entire HPT to 0, i.e. invalid HPTEs */
|
|
memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
|
|
/*
|
|
* Reset all the reverse-mapping chains for all memslots
|
|
*/
|
|
kvmppc_rmap_reset(kvm);
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (kvm->arch.hpt.virt) {
|
|
kvmppc_free_hpt(&kvm->arch.hpt);
|
|
kvmppc_rmap_reset(kvm);
|
|
}
|
|
|
|
err = kvmppc_allocate_hpt(&info, order);
|
|
if (err < 0)
|
|
goto out;
|
|
kvmppc_set_hpt(kvm, &info);
|
|
|
|
out:
|
|
if (err == 0)
|
|
/* Ensure that each vcpu will flush its TLB on next entry. */
|
|
cpumask_setall(&kvm->arch.need_tlb_flush);
|
|
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return err;
|
|
}
|
|
|
|
void kvmppc_free_hpt(struct kvm_hpt_info *info)
|
|
{
|
|
vfree(info->rev);
|
|
info->rev = NULL;
|
|
if (info->cma)
|
|
kvm_free_hpt_cma(virt_to_page(info->virt),
|
|
1 << (info->order - PAGE_SHIFT));
|
|
else if (info->virt)
|
|
free_pages(info->virt, info->order - PAGE_SHIFT);
|
|
info->virt = 0;
|
|
info->order = 0;
|
|
}
|
|
|
|
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
|
|
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
|
|
{
|
|
return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
|
|
}
|
|
|
|
/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
|
|
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
|
|
{
|
|
return (pgsize == 0x10000) ? 0x1000 : 0;
|
|
}
|
|
|
|
void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
|
|
unsigned long porder)
|
|
{
|
|
unsigned long i;
|
|
unsigned long npages;
|
|
unsigned long hp_v, hp_r;
|
|
unsigned long addr, hash;
|
|
unsigned long psize;
|
|
unsigned long hp0, hp1;
|
|
unsigned long idx_ret;
|
|
long ret;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
psize = 1ul << porder;
|
|
npages = memslot->npages >> (porder - PAGE_SHIFT);
|
|
|
|
/* VRMA can't be > 1TB */
|
|
if (npages > 1ul << (40 - porder))
|
|
npages = 1ul << (40 - porder);
|
|
/* Can't use more than 1 HPTE per HPTEG */
|
|
if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
|
|
npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
|
|
|
|
hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
|
|
HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
|
|
hp1 = hpte1_pgsize_encoding(psize) |
|
|
HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
addr = i << porder;
|
|
/* can't use hpt_hash since va > 64 bits */
|
|
hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
|
|
& kvmppc_hpt_mask(&kvm->arch.hpt);
|
|
/*
|
|
* We assume that the hash table is empty and no
|
|
* vcpus are using it at this stage. Since we create
|
|
* at most one HPTE per HPTEG, we just assume entry 7
|
|
* is available and use it.
|
|
*/
|
|
hash = (hash << 3) + 7;
|
|
hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
|
|
hp_r = hp1 | addr;
|
|
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
|
|
&idx_ret);
|
|
if (ret != H_SUCCESS) {
|
|
pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
|
|
addr, ret);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvmppc_mmu_hv_init(void)
|
|
{
|
|
unsigned long nr_lpids;
|
|
|
|
if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
|
|
return -EINVAL;
|
|
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
if (WARN_ON(mfspr(SPRN_LPID) != 0))
|
|
return -EINVAL;
|
|
nr_lpids = 1UL << mmu_lpid_bits;
|
|
} else {
|
|
nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
|
|
}
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
WARN_ON(nr_lpids != 1UL << 12);
|
|
else
|
|
WARN_ON(nr_lpids != 1UL << 10);
|
|
|
|
/*
|
|
* Reserve the last implemented LPID use in partition
|
|
* switching for POWER7 and POWER8.
|
|
*/
|
|
nr_lpids -= 1;
|
|
}
|
|
|
|
kvmppc_init_lpid(nr_lpids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
|
|
long pte_index, unsigned long pteh,
|
|
unsigned long ptel, unsigned long *pte_idx_ret)
|
|
{
|
|
long ret;
|
|
|
|
preempt_disable();
|
|
ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
|
|
kvm->mm->pgd, false, pte_idx_ret);
|
|
preempt_enable();
|
|
if (ret == H_TOO_HARD) {
|
|
/* this can't happen */
|
|
pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
|
|
ret = H_RESOURCE; /* or something */
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
|
|
gva_t eaddr)
|
|
{
|
|
u64 mask;
|
|
int i;
|
|
|
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
|
if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
|
|
continue;
|
|
|
|
if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
|
|
mask = ESID_MASK_1T;
|
|
else
|
|
mask = ESID_MASK;
|
|
|
|
if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
|
|
return &vcpu->arch.slb[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
|
|
unsigned long ea)
|
|
{
|
|
unsigned long ra_mask;
|
|
|
|
ra_mask = kvmppc_actual_pgsz(v, r) - 1;
|
|
return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
|
|
}
|
|
|
|
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, bool data, bool iswrite)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_slb *slbe;
|
|
unsigned long slb_v;
|
|
unsigned long pp, key;
|
|
unsigned long v, orig_v, gr;
|
|
__be64 *hptep;
|
|
long int index;
|
|
int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
|
|
|
|
if (kvm_is_radix(vcpu->kvm))
|
|
return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
|
|
|
|
/* Get SLB entry */
|
|
if (virtmode) {
|
|
slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
|
|
if (!slbe)
|
|
return -EINVAL;
|
|
slb_v = slbe->origv;
|
|
} else {
|
|
/* real mode access */
|
|
slb_v = vcpu->kvm->arch.vrma_slb_v;
|
|
}
|
|
|
|
preempt_disable();
|
|
/* Find the HPTE in the hash table */
|
|
index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
|
|
HPTE_V_VALID | HPTE_V_ABSENT);
|
|
if (index < 0) {
|
|
preempt_enable();
|
|
return -ENOENT;
|
|
}
|
|
hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
|
|
v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
|
|
gr = kvm->arch.hpt.rev[index].guest_rpte;
|
|
|
|
unlock_hpte(hptep, orig_v);
|
|
preempt_enable();
|
|
|
|
gpte->eaddr = eaddr;
|
|
gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
|
|
|
|
/* Get PP bits and key for permission check */
|
|
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
|
|
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
|
|
key &= slb_v;
|
|
|
|
/* Calculate permissions */
|
|
gpte->may_read = hpte_read_permission(pp, key);
|
|
gpte->may_write = hpte_write_permission(pp, key);
|
|
gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
|
|
|
|
/* Storage key permission check for POWER7 */
|
|
if (data && virtmode) {
|
|
int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
|
|
if (amrfield & 1)
|
|
gpte->may_read = 0;
|
|
if (amrfield & 2)
|
|
gpte->may_write = 0;
|
|
}
|
|
|
|
/* Get the guest physical address */
|
|
gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Quick test for whether an instruction is a load or a store.
|
|
* If the instruction is a load or a store, then this will indicate
|
|
* which it is, at least on server processors. (Embedded processors
|
|
* have some external PID instructions that don't follow the rule
|
|
* embodied here.) If the instruction isn't a load or store, then
|
|
* this doesn't return anything useful.
|
|
*/
|
|
static int instruction_is_store(unsigned int instr)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = 0x10000000;
|
|
if ((instr & 0xfc000000) == 0x7c000000)
|
|
mask = 0x100; /* major opcode 31 */
|
|
return (instr & mask) != 0;
|
|
}
|
|
|
|
int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
|
|
unsigned long gpa, gva_t ea, int is_store)
|
|
{
|
|
u32 last_inst;
|
|
|
|
/*
|
|
* Fast path - check if the guest physical address corresponds to a
|
|
* device on the FAST_MMIO_BUS, if so we can avoid loading the
|
|
* instruction all together, then we can just handle it and return.
|
|
*/
|
|
if (is_store) {
|
|
int idx, ret;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
|
|
NULL);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
if (!ret) {
|
|
kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
|
|
return RESUME_GUEST;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we fail, we just return to the guest and try executing it again.
|
|
*/
|
|
if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
|
|
EMULATE_DONE)
|
|
return RESUME_GUEST;
|
|
|
|
/*
|
|
* WARNING: We do not know for sure whether the instruction we just
|
|
* read from memory is the same that caused the fault in the first
|
|
* place. If the instruction we read is neither an load or a store,
|
|
* then it can't access memory, so we don't need to worry about
|
|
* enforcing access permissions. So, assuming it is a load or
|
|
* store, we just check that its direction (load or store) is
|
|
* consistent with the original fault, since that's what we
|
|
* checked the access permissions against. If there is a mismatch
|
|
* we just return and retry the instruction.
|
|
*/
|
|
|
|
if (instruction_is_store(last_inst) != !!is_store)
|
|
return RESUME_GUEST;
|
|
|
|
/*
|
|
* Emulated accesses are emulated by looking at the hash for
|
|
* translation once, then performing the access later. The
|
|
* translation could be invalidated in the meantime in which
|
|
* point performing the subsequent memory access on the old
|
|
* physical address could possibly be a security hole for the
|
|
* guest (but not the host).
|
|
*
|
|
* This is less of an issue for MMIO stores since they aren't
|
|
* globally visible. It could be an issue for MMIO loads to
|
|
* a certain extent but we'll ignore it for now.
|
|
*/
|
|
|
|
vcpu->arch.paddr_accessed = gpa;
|
|
vcpu->arch.vaddr_accessed = ea;
|
|
return kvmppc_emulate_mmio(vcpu);
|
|
}
|
|
|
|
int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
|
|
unsigned long ea, unsigned long dsisr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long hpte[3], r;
|
|
unsigned long hnow_v, hnow_r;
|
|
__be64 *hptep;
|
|
unsigned long mmu_seq, psize, pte_size;
|
|
unsigned long gpa_base, gfn_base;
|
|
unsigned long gpa, gfn, hva, pfn, hpa;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long *rmap;
|
|
struct revmap_entry *rev;
|
|
struct page *page;
|
|
long index, ret;
|
|
bool is_ci;
|
|
bool writing, write_ok;
|
|
unsigned int shift;
|
|
unsigned long rcbits;
|
|
long mmio_update;
|
|
pte_t pte, *ptep;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
|
|
|
|
/*
|
|
* Real-mode code has already searched the HPT and found the
|
|
* entry we're interested in. Lock the entry and check that
|
|
* it hasn't changed. If it has, just return and re-execute the
|
|
* instruction.
|
|
*/
|
|
if (ea != vcpu->arch.pgfault_addr)
|
|
return RESUME_GUEST;
|
|
|
|
if (vcpu->arch.pgfault_cache) {
|
|
mmio_update = atomic64_read(&kvm->arch.mmio_update);
|
|
if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
|
|
r = vcpu->arch.pgfault_cache->rpte;
|
|
psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
|
|
r);
|
|
gpa_base = r & HPTE_R_RPN & ~(psize - 1);
|
|
gfn_base = gpa_base >> PAGE_SHIFT;
|
|
gpa = gpa_base | (ea & (psize - 1));
|
|
return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
|
|
dsisr & DSISR_ISSTORE);
|
|
}
|
|
}
|
|
index = vcpu->arch.pgfault_index;
|
|
hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
|
|
rev = &kvm->arch.hpt.rev[index];
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
|
|
hpte[1] = be64_to_cpu(hptep[1]);
|
|
hpte[2] = r = rev->guest_rpte;
|
|
unlock_hpte(hptep, hpte[0]);
|
|
preempt_enable();
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
|
|
hpte[1] = hpte_new_to_old_r(hpte[1]);
|
|
}
|
|
if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
|
|
hpte[1] != vcpu->arch.pgfault_hpte[1])
|
|
return RESUME_GUEST;
|
|
|
|
/* Translate the logical address and get the page */
|
|
psize = kvmppc_actual_pgsz(hpte[0], r);
|
|
gpa_base = r & HPTE_R_RPN & ~(psize - 1);
|
|
gfn_base = gpa_base >> PAGE_SHIFT;
|
|
gpa = gpa_base | (ea & (psize - 1));
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
|
|
|
|
/* No memslot means it's an emulated MMIO region */
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
|
|
dsisr & DSISR_ISSTORE);
|
|
|
|
/*
|
|
* This should never happen, because of the slot_is_aligned()
|
|
* check in kvmppc_do_h_enter().
|
|
*/
|
|
if (gfn_base < memslot->base_gfn)
|
|
return -EFAULT;
|
|
|
|
/* used to check for invalidations in progress */
|
|
mmu_seq = kvm->mmu_invalidate_seq;
|
|
smp_rmb();
|
|
|
|
ret = -EFAULT;
|
|
page = NULL;
|
|
writing = (dsisr & DSISR_ISSTORE) != 0;
|
|
/* If writing != 0, then the HPTE must allow writing, if we get here */
|
|
write_ok = writing;
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
|
|
/*
|
|
* Do a fast check first, since __gfn_to_pfn_memslot doesn't
|
|
* do it with !atomic && !async, which is how we call it.
|
|
* We always ask for write permission since the common case
|
|
* is that the page is writable.
|
|
*/
|
|
if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
|
|
write_ok = true;
|
|
} else {
|
|
/* Call KVM generic code to do the slow-path check */
|
|
pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
|
|
writing, &write_ok, NULL);
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
page = NULL;
|
|
if (pfn_valid(pfn)) {
|
|
page = pfn_to_page(pfn);
|
|
if (PageReserved(page))
|
|
page = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the PTE from the process' radix tree and use that
|
|
* so we get the shift and attribute bits.
|
|
*/
|
|
spin_lock(&kvm->mmu_lock);
|
|
ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
|
|
pte = __pte(0);
|
|
if (ptep)
|
|
pte = READ_ONCE(*ptep);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
/*
|
|
* If the PTE disappeared temporarily due to a THP
|
|
* collapse, just return and let the guest try again.
|
|
*/
|
|
if (!pte_present(pte)) {
|
|
if (page)
|
|
put_page(page);
|
|
return RESUME_GUEST;
|
|
}
|
|
hpa = pte_pfn(pte) << PAGE_SHIFT;
|
|
pte_size = PAGE_SIZE;
|
|
if (shift)
|
|
pte_size = 1ul << shift;
|
|
is_ci = pte_ci(pte);
|
|
|
|
if (psize > pte_size)
|
|
goto out_put;
|
|
if (pte_size > psize)
|
|
hpa |= hva & (pte_size - psize);
|
|
|
|
/* Check WIMG vs. the actual page we're accessing */
|
|
if (!hpte_cache_flags_ok(r, is_ci)) {
|
|
if (is_ci)
|
|
goto out_put;
|
|
/*
|
|
* Allow guest to map emulated device memory as
|
|
* uncacheable, but actually make it cacheable.
|
|
*/
|
|
r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
|
|
}
|
|
|
|
/*
|
|
* Set the HPTE to point to hpa.
|
|
* Since the hpa is at PAGE_SIZE granularity, make sure we
|
|
* don't mask out lower-order bits if psize < PAGE_SIZE.
|
|
*/
|
|
if (psize < PAGE_SIZE)
|
|
psize = PAGE_SIZE;
|
|
r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
|
|
if (hpte_is_writable(r) && !write_ok)
|
|
r = hpte_make_readonly(r);
|
|
ret = RESUME_GUEST;
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
hnow_v = be64_to_cpu(hptep[0]);
|
|
hnow_r = be64_to_cpu(hptep[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
|
|
hnow_r = hpte_new_to_old_r(hnow_r);
|
|
}
|
|
|
|
/*
|
|
* If the HPT is being resized, don't update the HPTE,
|
|
* instead let the guest retry after the resize operation is complete.
|
|
* The synchronization for mmu_ready test vs. set is provided
|
|
* by the HPTE lock.
|
|
*/
|
|
if (!kvm->arch.mmu_ready)
|
|
goto out_unlock;
|
|
|
|
if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
|
|
rev->guest_rpte != hpte[2])
|
|
/* HPTE has been changed under us; let the guest retry */
|
|
goto out_unlock;
|
|
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
|
|
|
|
/* Always put the HPTE in the rmap chain for the page base address */
|
|
rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
|
|
lock_rmap(rmap);
|
|
|
|
/* Check if we might have been invalidated; let the guest retry if so */
|
|
ret = RESUME_GUEST;
|
|
if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
|
|
unlock_rmap(rmap);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
|
|
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
|
|
r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
|
|
|
|
if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
|
|
/* HPTE was previously valid, so we need to invalidate it */
|
|
unlock_rmap(rmap);
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hptep, index);
|
|
/* don't lose previous R and C bits */
|
|
r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
|
|
} else {
|
|
kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
r = hpte_old_to_new_r(hpte[0], r);
|
|
hpte[0] = hpte_old_to_new_v(hpte[0]);
|
|
}
|
|
hptep[1] = cpu_to_be64(r);
|
|
eieio();
|
|
__unlock_hpte(hptep, hpte[0]);
|
|
asm volatile("ptesync" : : : "memory");
|
|
preempt_enable();
|
|
if (page && hpte_is_writable(r))
|
|
set_page_dirty_lock(page);
|
|
|
|
out_put:
|
|
trace_kvm_page_fault_exit(vcpu, hpte, ret);
|
|
|
|
if (page)
|
|
put_page(page);
|
|
return ret;
|
|
|
|
out_unlock:
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
preempt_enable();
|
|
goto out_put;
|
|
}
|
|
|
|
void kvmppc_rmap_reset(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int srcu_idx, bkt;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, bkt, slots) {
|
|
/* Mutual exclusion with kvm_unmap_hva_range etc. */
|
|
spin_lock(&kvm->mmu_lock);
|
|
/*
|
|
* This assumes it is acceptable to lose reference and
|
|
* change bits across a reset.
|
|
*/
|
|
memset(memslot->arch.rmap, 0,
|
|
memslot->npages * sizeof(*memslot->arch.rmap));
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
}
|
|
|
|
/* Must be called with both HPTE and rmap locked */
|
|
static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
|
|
struct kvm_memory_slot *memslot,
|
|
unsigned long *rmapp, unsigned long gfn)
|
|
{
|
|
__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
|
unsigned long j, h;
|
|
unsigned long ptel, psize, rcbits;
|
|
|
|
j = rev[i].forw;
|
|
if (j == i) {
|
|
/* chain is now empty */
|
|
*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
|
|
} else {
|
|
/* remove i from chain */
|
|
h = rev[i].back;
|
|
rev[h].forw = j;
|
|
rev[j].back = h;
|
|
rev[i].forw = rev[i].back = i;
|
|
*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
ptel = rev[i].guest_rpte;
|
|
psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
|
|
if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
|
|
hpte_rpn(ptel, psize) == gfn) {
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
|
|
/* Harvest R and C */
|
|
rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
|
|
*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
|
|
if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
|
|
kvmppc_update_dirty_map(memslot, gfn, psize);
|
|
if (rcbits & ~rev[i].guest_rpte) {
|
|
rev[i].guest_rpte = ptel | rcbits;
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
unsigned long i;
|
|
__be64 *hptep;
|
|
unsigned long *rmapp;
|
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
for (;;) {
|
|
lock_rmap(rmapp);
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* To avoid an ABBA deadlock with the HPTE lock bit,
|
|
* we can't spin on the HPTE lock while holding the
|
|
* rmap chain lock.
|
|
*/
|
|
i = *rmapp & KVMPPC_RMAP_INDEX;
|
|
hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
|
|
kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
|
|
unlock_rmap(rmapp);
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
}
|
|
}
|
|
|
|
bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
gfn_t gfn;
|
|
|
|
if (kvm_is_radix(kvm)) {
|
|
for (gfn = range->start; gfn < range->end; gfn++)
|
|
kvm_unmap_radix(kvm, range->slot, gfn);
|
|
} else {
|
|
for (gfn = range->start; gfn < range->end; gfn++)
|
|
kvm_unmap_rmapp(kvm, range->slot, gfn);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long gfn;
|
|
unsigned long n;
|
|
unsigned long *rmapp;
|
|
|
|
gfn = memslot->base_gfn;
|
|
rmapp = memslot->arch.rmap;
|
|
if (kvm_is_radix(kvm)) {
|
|
kvmppc_radix_flush_memslot(kvm, memslot);
|
|
return;
|
|
}
|
|
|
|
for (n = memslot->npages; n; --n, ++gfn) {
|
|
/*
|
|
* Testing the present bit without locking is OK because
|
|
* the memslot has been marked invalid already, and hence
|
|
* no new HPTEs referencing this page can be created,
|
|
* thus the present bit can't go from 0 to 1.
|
|
*/
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT)
|
|
kvm_unmap_rmapp(kvm, memslot, gfn);
|
|
++rmapp;
|
|
}
|
|
}
|
|
|
|
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
|
unsigned long head, i, j;
|
|
__be64 *hptep;
|
|
bool ret = false;
|
|
unsigned long *rmapp;
|
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
retry:
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED) {
|
|
*rmapp &= ~KVMPPC_RMAP_REFERENCED;
|
|
ret = true;
|
|
}
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
|
j = rev[i].forw;
|
|
|
|
/* If this HPTE isn't referenced, ignore it */
|
|
if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
|
|
continue;
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
|
|
(be64_to_cpu(hptep[1]) & HPTE_R_R)) {
|
|
kvmppc_clear_ref_hpte(kvm, hptep, i);
|
|
if (!(rev[i].guest_rpte & HPTE_R_R)) {
|
|
rev[i].guest_rpte |= HPTE_R_R;
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
}
|
|
ret = true;
|
|
}
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
} while ((i = j) != head);
|
|
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
gfn_t gfn;
|
|
bool ret = false;
|
|
|
|
if (kvm_is_radix(kvm)) {
|
|
for (gfn = range->start; gfn < range->end; gfn++)
|
|
ret |= kvm_age_radix(kvm, range->slot, gfn);
|
|
} else {
|
|
for (gfn = range->start; gfn < range->end; gfn++)
|
|
ret |= kvm_age_rmapp(kvm, range->slot, gfn);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
|
unsigned long head, i, j;
|
|
unsigned long *hp;
|
|
bool ret = true;
|
|
unsigned long *rmapp;
|
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
return true;
|
|
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
goto out;
|
|
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT) {
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
|
|
j = rev[i].forw;
|
|
if (be64_to_cpu(hp[1]) & HPTE_R_R)
|
|
goto out;
|
|
} while ((i = j) != head);
|
|
}
|
|
ret = false;
|
|
|
|
out:
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
WARN_ON(range->start + 1 != range->end);
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return kvm_test_age_radix(kvm, range->slot, range->start);
|
|
else
|
|
return kvm_test_age_rmapp(kvm, range->slot, range->start);
|
|
}
|
|
|
|
bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
WARN_ON(range->start + 1 != range->end);
|
|
|
|
if (kvm_is_radix(kvm))
|
|
kvm_unmap_radix(kvm, range->slot, range->start);
|
|
else
|
|
kvm_unmap_rmapp(kvm, range->slot, range->start);
|
|
|
|
return false;
|
|
}
|
|
|
|
static int vcpus_running(struct kvm *kvm)
|
|
{
|
|
return atomic_read(&kvm->arch.vcpus_running) != 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of system pages that are dirty.
|
|
* This can be more than 1 if we find a huge-page HPTE.
|
|
*/
|
|
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
|
unsigned long head, i, j;
|
|
unsigned long n;
|
|
unsigned long v, r;
|
|
__be64 *hptep;
|
|
int npages_dirty = 0;
|
|
|
|
retry:
|
|
lock_rmap(rmapp);
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
return npages_dirty;
|
|
}
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
unsigned long hptep1;
|
|
hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
|
j = rev[i].forw;
|
|
|
|
/*
|
|
* Checking the C (changed) bit here is racy since there
|
|
* is no guarantee about when the hardware writes it back.
|
|
* If the HPTE is not writable then it is stable since the
|
|
* page can't be written to, and we would have done a tlbie
|
|
* (which forces the hardware to complete any writeback)
|
|
* when making the HPTE read-only.
|
|
* If vcpus are running then this call is racy anyway
|
|
* since the page could get dirtied subsequently, so we
|
|
* expect there to be a further call which would pick up
|
|
* any delayed C bit writeback.
|
|
* Otherwise we need to do the tlbie even if C==0 in
|
|
* order to pick up any delayed writeback of C.
|
|
*/
|
|
hptep1 = be64_to_cpu(hptep[1]);
|
|
if (!(hptep1 & HPTE_R_C) &&
|
|
(!hpte_is_writable(hptep1) || vcpus_running(kvm)))
|
|
continue;
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
continue;
|
|
}
|
|
|
|
/* need to make it temporarily absent so C is stable */
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
v = be64_to_cpu(hptep[0]);
|
|
r = be64_to_cpu(hptep[1]);
|
|
if (r & HPTE_R_C) {
|
|
hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
|
|
if (!(rev[i].guest_rpte & HPTE_R_C)) {
|
|
rev[i].guest_rpte |= HPTE_R_C;
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
}
|
|
n = kvmppc_actual_pgsz(v, r);
|
|
n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (n > npages_dirty)
|
|
npages_dirty = n;
|
|
eieio();
|
|
}
|
|
v &= ~HPTE_V_ABSENT;
|
|
v |= HPTE_V_VALID;
|
|
__unlock_hpte(hptep, v);
|
|
} while ((i = j) != head);
|
|
|
|
unlock_rmap(rmapp);
|
|
return npages_dirty;
|
|
}
|
|
|
|
void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
|
|
struct kvm_memory_slot *memslot,
|
|
unsigned long *map)
|
|
{
|
|
unsigned long gfn;
|
|
|
|
if (!vpa->dirty || !vpa->pinned_addr)
|
|
return;
|
|
gfn = vpa->gpa >> PAGE_SHIFT;
|
|
if (gfn < memslot->base_gfn ||
|
|
gfn >= memslot->base_gfn + memslot->npages)
|
|
return;
|
|
|
|
vpa->dirty = false;
|
|
if (map)
|
|
__set_bit_le(gfn - memslot->base_gfn, map);
|
|
}
|
|
|
|
long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, unsigned long *map)
|
|
{
|
|
unsigned long i;
|
|
unsigned long *rmapp;
|
|
|
|
preempt_disable();
|
|
rmapp = memslot->arch.rmap;
|
|
for (i = 0; i < memslot->npages; ++i) {
|
|
int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
|
|
/*
|
|
* Note that if npages > 0 then i must be a multiple of npages,
|
|
* since we always put huge-page HPTEs in the rmap chain
|
|
* corresponding to their page base address.
|
|
*/
|
|
if (npages)
|
|
set_dirty_bits(map, i, npages);
|
|
++rmapp;
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long *nb_ret)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn = gpa >> PAGE_SHIFT;
|
|
struct page *page, *pages[1];
|
|
int npages;
|
|
unsigned long hva, offset;
|
|
int srcu_idx;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
goto err;
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
|
|
if (npages < 1)
|
|
goto err;
|
|
page = pages[0];
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
offset = gpa & (PAGE_SIZE - 1);
|
|
if (nb_ret)
|
|
*nb_ret = PAGE_SIZE - offset;
|
|
return page_address(page) + offset;
|
|
|
|
err:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return NULL;
|
|
}
|
|
|
|
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
|
|
bool dirty)
|
|
{
|
|
struct page *page = virt_to_page(va);
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn;
|
|
int srcu_idx;
|
|
|
|
put_page(page);
|
|
|
|
if (!dirty)
|
|
return;
|
|
|
|
/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (memslot && memslot->dirty_bitmap)
|
|
set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
}
|
|
|
|
/*
|
|
* HPT resizing
|
|
*/
|
|
static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
|
|
{
|
|
int rc;
|
|
|
|
rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
|
|
resize->hpt.virt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
|
|
unsigned long idx)
|
|
{
|
|
struct kvm *kvm = resize->kvm;
|
|
struct kvm_hpt_info *old = &kvm->arch.hpt;
|
|
struct kvm_hpt_info *new = &resize->hpt;
|
|
unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
|
|
unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
|
|
__be64 *hptep, *new_hptep;
|
|
unsigned long vpte, rpte, guest_rpte;
|
|
int ret;
|
|
struct revmap_entry *rev;
|
|
unsigned long apsize, avpn, pteg, hash;
|
|
unsigned long new_idx, new_pteg, replace_vpte;
|
|
int pshift;
|
|
|
|
hptep = (__be64 *)(old->virt + (idx << 4));
|
|
|
|
/* Guest is stopped, so new HPTEs can't be added or faulted
|
|
* in, only unmapped or altered by host actions. So, it's
|
|
* safe to check this before we take the HPTE lock */
|
|
vpte = be64_to_cpu(hptep[0]);
|
|
if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
|
|
return 0; /* nothing to do */
|
|
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
|
|
vpte = be64_to_cpu(hptep[0]);
|
|
|
|
ret = 0;
|
|
if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
|
|
/* Nothing to do */
|
|
goto out;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
rpte = be64_to_cpu(hptep[1]);
|
|
vpte = hpte_new_to_old_v(vpte, rpte);
|
|
}
|
|
|
|
/* Unmap */
|
|
rev = &old->rev[idx];
|
|
guest_rpte = rev->guest_rpte;
|
|
|
|
ret = -EIO;
|
|
apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
|
|
if (!apsize)
|
|
goto out;
|
|
|
|
if (vpte & HPTE_V_VALID) {
|
|
unsigned long gfn = hpte_rpn(guest_rpte, apsize);
|
|
int srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
struct kvm_memory_slot *memslot =
|
|
__gfn_to_memslot(kvm_memslots(kvm), gfn);
|
|
|
|
if (memslot) {
|
|
unsigned long *rmapp;
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
|
|
lock_rmap(rmapp);
|
|
kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
|
|
unlock_rmap(rmapp);
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
}
|
|
|
|
/* Reload PTE after unmap */
|
|
vpte = be64_to_cpu(hptep[0]);
|
|
BUG_ON(vpte & HPTE_V_VALID);
|
|
BUG_ON(!(vpte & HPTE_V_ABSENT));
|
|
|
|
ret = 0;
|
|
if (!(vpte & HPTE_V_BOLTED))
|
|
goto out;
|
|
|
|
rpte = be64_to_cpu(hptep[1]);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
vpte = hpte_new_to_old_v(vpte, rpte);
|
|
rpte = hpte_new_to_old_r(rpte);
|
|
}
|
|
|
|
pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
|
|
avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
|
|
pteg = idx / HPTES_PER_GROUP;
|
|
if (vpte & HPTE_V_SECONDARY)
|
|
pteg = ~pteg;
|
|
|
|
if (!(vpte & HPTE_V_1TB_SEG)) {
|
|
unsigned long offset, vsid;
|
|
|
|
/* We only have 28 - 23 bits of offset in avpn */
|
|
offset = (avpn & 0x1f) << 23;
|
|
vsid = avpn >> 5;
|
|
/* We can find more bits from the pteg value */
|
|
if (pshift < 23)
|
|
offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
|
|
|
|
hash = vsid ^ (offset >> pshift);
|
|
} else {
|
|
unsigned long offset, vsid;
|
|
|
|
/* We only have 40 - 23 bits of seg_off in avpn */
|
|
offset = (avpn & 0x1ffff) << 23;
|
|
vsid = avpn >> 17;
|
|
if (pshift < 23)
|
|
offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
|
|
|
|
hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
|
|
}
|
|
|
|
new_pteg = hash & new_hash_mask;
|
|
if (vpte & HPTE_V_SECONDARY)
|
|
new_pteg = ~hash & new_hash_mask;
|
|
|
|
new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
|
|
new_hptep = (__be64 *)(new->virt + (new_idx << 4));
|
|
|
|
replace_vpte = be64_to_cpu(new_hptep[0]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
|
|
replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
|
|
}
|
|
|
|
if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
|
|
BUG_ON(new->order >= old->order);
|
|
|
|
if (replace_vpte & HPTE_V_BOLTED) {
|
|
if (vpte & HPTE_V_BOLTED)
|
|
/* Bolted collision, nothing we can do */
|
|
ret = -ENOSPC;
|
|
/* Discard the new HPTE */
|
|
goto out;
|
|
}
|
|
|
|
/* Discard the previous HPTE */
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
rpte = hpte_old_to_new_r(vpte, rpte);
|
|
vpte = hpte_old_to_new_v(vpte);
|
|
}
|
|
|
|
new_hptep[1] = cpu_to_be64(rpte);
|
|
new->rev[new_idx].guest_rpte = guest_rpte;
|
|
/* No need for a barrier, since new HPT isn't active */
|
|
new_hptep[0] = cpu_to_be64(vpte);
|
|
unlock_hpte(new_hptep, vpte);
|
|
|
|
out:
|
|
unlock_hpte(hptep, vpte);
|
|
return ret;
|
|
}
|
|
|
|
static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
|
|
{
|
|
struct kvm *kvm = resize->kvm;
|
|
unsigned long i;
|
|
int rc;
|
|
|
|
for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
|
|
rc = resize_hpt_rehash_hpte(resize, i);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
|
|
{
|
|
struct kvm *kvm = resize->kvm;
|
|
struct kvm_hpt_info hpt_tmp;
|
|
|
|
/* Exchange the pending tables in the resize structure with
|
|
* the active tables */
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_pivot()\n");
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
asm volatile("ptesync" : : : "memory");
|
|
|
|
hpt_tmp = kvm->arch.hpt;
|
|
kvmppc_set_hpt(kvm, &resize->hpt);
|
|
resize->hpt = hpt_tmp;
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvmppc_setup_partition_table(kvm);
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
|
|
}
|
|
|
|
static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
|
|
{
|
|
if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
|
|
return;
|
|
|
|
if (!resize)
|
|
return;
|
|
|
|
if (resize->error != -EBUSY) {
|
|
if (resize->hpt.virt)
|
|
kvmppc_free_hpt(&resize->hpt);
|
|
kfree(resize);
|
|
}
|
|
|
|
if (kvm->arch.resize_hpt == resize)
|
|
kvm->arch.resize_hpt = NULL;
|
|
}
|
|
|
|
static void resize_hpt_prepare_work(struct work_struct *work)
|
|
{
|
|
struct kvm_resize_hpt *resize = container_of(work,
|
|
struct kvm_resize_hpt,
|
|
work);
|
|
struct kvm *kvm = resize->kvm;
|
|
int err = 0;
|
|
|
|
if (WARN_ON(resize->error != -EBUSY))
|
|
return;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
|
|
/* Request is still current? */
|
|
if (kvm->arch.resize_hpt == resize) {
|
|
/* We may request large allocations here:
|
|
* do not sleep with kvm->arch.mmu_setup_lock held for a while.
|
|
*/
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
|
|
resize->order);
|
|
|
|
err = resize_hpt_allocate(resize);
|
|
|
|
/* We have strict assumption about -EBUSY
|
|
* when preparing for HPT resize.
|
|
*/
|
|
if (WARN_ON(err == -EBUSY))
|
|
err = -EINPROGRESS;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
/* It is possible that kvm->arch.resize_hpt != resize
|
|
* after we grab kvm->arch.mmu_setup_lock again.
|
|
*/
|
|
}
|
|
|
|
resize->error = err;
|
|
|
|
if (kvm->arch.resize_hpt != resize)
|
|
resize_hpt_release(kvm, resize);
|
|
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
}
|
|
|
|
long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
|
|
struct kvm_ppc_resize_hpt *rhpt)
|
|
{
|
|
unsigned long flags = rhpt->flags;
|
|
unsigned long shift = rhpt->shift;
|
|
struct kvm_resize_hpt *resize;
|
|
int ret;
|
|
|
|
if (flags != 0 || kvm_is_radix(kvm))
|
|
return -EINVAL;
|
|
|
|
if (shift && ((shift < 18) || (shift > 46)))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
|
|
resize = kvm->arch.resize_hpt;
|
|
|
|
if (resize) {
|
|
if (resize->order == shift) {
|
|
/* Suitable resize in progress? */
|
|
ret = resize->error;
|
|
if (ret == -EBUSY)
|
|
ret = 100; /* estimated time in ms */
|
|
else if (ret)
|
|
resize_hpt_release(kvm, resize);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* not suitable, cancel it */
|
|
resize_hpt_release(kvm, resize);
|
|
}
|
|
|
|
ret = 0;
|
|
if (!shift)
|
|
goto out; /* nothing to do */
|
|
|
|
/* start new resize */
|
|
|
|
resize = kzalloc(sizeof(*resize), GFP_KERNEL);
|
|
if (!resize) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
resize->error = -EBUSY;
|
|
resize->order = shift;
|
|
resize->kvm = kvm;
|
|
INIT_WORK(&resize->work, resize_hpt_prepare_work);
|
|
kvm->arch.resize_hpt = resize;
|
|
|
|
schedule_work(&resize->work);
|
|
|
|
ret = 100; /* estimated time in ms */
|
|
|
|
out:
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void resize_hpt_boot_vcpu(void *opaque)
|
|
{
|
|
/* Nothing to do, just force a KVM exit */
|
|
}
|
|
|
|
long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
|
|
struct kvm_ppc_resize_hpt *rhpt)
|
|
{
|
|
unsigned long flags = rhpt->flags;
|
|
unsigned long shift = rhpt->shift;
|
|
struct kvm_resize_hpt *resize;
|
|
long ret;
|
|
|
|
if (flags != 0 || kvm_is_radix(kvm))
|
|
return -EINVAL;
|
|
|
|
if (shift && ((shift < 18) || (shift > 46)))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
|
|
resize = kvm->arch.resize_hpt;
|
|
|
|
/* This shouldn't be possible */
|
|
ret = -EIO;
|
|
if (WARN_ON(!kvm->arch.mmu_ready))
|
|
goto out_no_hpt;
|
|
|
|
/* Stop VCPUs from running while we mess with the HPT */
|
|
kvm->arch.mmu_ready = 0;
|
|
smp_mb();
|
|
|
|
/* Boot all CPUs out of the guest so they re-read
|
|
* mmu_ready */
|
|
on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
|
|
|
|
ret = -ENXIO;
|
|
if (!resize || (resize->order != shift))
|
|
goto out;
|
|
|
|
ret = resize->error;
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = resize_hpt_rehash(resize);
|
|
if (ret)
|
|
goto out;
|
|
|
|
resize_hpt_pivot(resize);
|
|
|
|
out:
|
|
/* Let VCPUs run again */
|
|
kvm->arch.mmu_ready = 1;
|
|
smp_mb();
|
|
out_no_hpt:
|
|
resize_hpt_release(kvm, resize);
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Functions for reading and writing the hash table via reads and
|
|
* writes on a file descriptor.
|
|
*
|
|
* Reads return the guest view of the hash table, which has to be
|
|
* pieced together from the real hash table and the guest_rpte
|
|
* values in the revmap array.
|
|
*
|
|
* On writes, each HPTE written is considered in turn, and if it
|
|
* is valid, it is written to the HPT as if an H_ENTER with the
|
|
* exact flag set was done. When the invalid count is non-zero
|
|
* in the header written to the stream, the kernel will make
|
|
* sure that that many HPTEs are invalid, and invalidate them
|
|
* if not.
|
|
*/
|
|
|
|
struct kvm_htab_ctx {
|
|
unsigned long index;
|
|
unsigned long flags;
|
|
struct kvm *kvm;
|
|
int first_pass;
|
|
};
|
|
|
|
#define HPTE_SIZE (2 * sizeof(unsigned long))
|
|
|
|
/*
|
|
* Returns 1 if this HPT entry has been modified or has pending
|
|
* R/C bit changes.
|
|
*/
|
|
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
|
|
{
|
|
unsigned long rcbits_unset;
|
|
|
|
if (revp->guest_rpte & HPTE_GR_MODIFIED)
|
|
return 1;
|
|
|
|
/* Also need to consider changes in reference and changed bits */
|
|
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
|
|
if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
|
|
(be64_to_cpu(hptp[1]) & rcbits_unset))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long record_hpte(unsigned long flags, __be64 *hptp,
|
|
unsigned long *hpte, struct revmap_entry *revp,
|
|
int want_valid, int first_pass)
|
|
{
|
|
unsigned long v, r, hr;
|
|
unsigned long rcbits_unset;
|
|
int ok = 1;
|
|
int valid, dirty;
|
|
|
|
/* Unmodified entries are uninteresting except on the first pass */
|
|
dirty = hpte_dirty(revp, hptp);
|
|
if (!first_pass && !dirty)
|
|
return 0;
|
|
|
|
valid = 0;
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
|
|
valid = 1;
|
|
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
|
|
!(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
|
|
valid = 0;
|
|
}
|
|
if (valid != want_valid)
|
|
return 0;
|
|
|
|
v = r = 0;
|
|
if (valid || dirty) {
|
|
/* lock the HPTE so it's stable and read it */
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = be64_to_cpu(hptp[0]);
|
|
hr = be64_to_cpu(hptp[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
v = hpte_new_to_old_v(v, hr);
|
|
hr = hpte_new_to_old_r(hr);
|
|
}
|
|
|
|
/* re-evaluate valid and dirty from synchronized HPTE value */
|
|
valid = !!(v & HPTE_V_VALID);
|
|
dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
|
|
|
|
/* Harvest R and C into guest view if necessary */
|
|
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
|
|
if (valid && (rcbits_unset & hr)) {
|
|
revp->guest_rpte |= (hr &
|
|
(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
|
|
dirty = 1;
|
|
}
|
|
|
|
if (v & HPTE_V_ABSENT) {
|
|
v &= ~HPTE_V_ABSENT;
|
|
v |= HPTE_V_VALID;
|
|
valid = 1;
|
|
}
|
|
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
|
|
valid = 0;
|
|
|
|
r = revp->guest_rpte;
|
|
/* only clear modified if this is the right sort of entry */
|
|
if (valid == want_valid && dirty) {
|
|
r &= ~HPTE_GR_MODIFIED;
|
|
revp->guest_rpte = r;
|
|
}
|
|
unlock_hpte(hptp, be64_to_cpu(hptp[0]));
|
|
preempt_enable();
|
|
if (!(valid == want_valid && (first_pass || dirty)))
|
|
ok = 0;
|
|
}
|
|
hpte[0] = cpu_to_be64(v);
|
|
hpte[1] = cpu_to_be64(r);
|
|
return ok;
|
|
}
|
|
|
|
static ssize_t kvm_htab_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct kvm_htab_ctx *ctx = file->private_data;
|
|
struct kvm *kvm = ctx->kvm;
|
|
struct kvm_get_htab_header hdr;
|
|
__be64 *hptp;
|
|
struct revmap_entry *revp;
|
|
unsigned long i, nb, nw;
|
|
unsigned long __user *lbuf;
|
|
struct kvm_get_htab_header __user *hptr;
|
|
unsigned long flags;
|
|
int first_pass;
|
|
unsigned long hpte[2];
|
|
|
|
if (!access_ok(buf, count))
|
|
return -EFAULT;
|
|
if (kvm_is_radix(kvm))
|
|
return 0;
|
|
|
|
first_pass = ctx->first_pass;
|
|
flags = ctx->flags;
|
|
|
|
i = ctx->index;
|
|
hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
|
|
revp = kvm->arch.hpt.rev + i;
|
|
lbuf = (unsigned long __user *)buf;
|
|
|
|
nb = 0;
|
|
while (nb + sizeof(hdr) + HPTE_SIZE < count) {
|
|
/* Initialize header */
|
|
hptr = (struct kvm_get_htab_header __user *)buf;
|
|
hdr.n_valid = 0;
|
|
hdr.n_invalid = 0;
|
|
nw = nb;
|
|
nb += sizeof(hdr);
|
|
lbuf = (unsigned long __user *)(buf + sizeof(hdr));
|
|
|
|
/* Skip uninteresting entries, i.e. clean on not-first pass */
|
|
if (!first_pass) {
|
|
while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
|
|
!hpte_dirty(revp, hptp)) {
|
|
++i;
|
|
hptp += 2;
|
|
++revp;
|
|
}
|
|
}
|
|
hdr.index = i;
|
|
|
|
/* Grab a series of valid entries */
|
|
while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
|
|
hdr.n_valid < 0xffff &&
|
|
nb + HPTE_SIZE < count &&
|
|
record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
|
|
/* valid entry, write it out */
|
|
++hdr.n_valid;
|
|
if (__put_user(hpte[0], lbuf) ||
|
|
__put_user(hpte[1], lbuf + 1))
|
|
return -EFAULT;
|
|
nb += HPTE_SIZE;
|
|
lbuf += 2;
|
|
++i;
|
|
hptp += 2;
|
|
++revp;
|
|
}
|
|
/* Now skip invalid entries while we can */
|
|
while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
|
|
hdr.n_invalid < 0xffff &&
|
|
record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
|
|
/* found an invalid entry */
|
|
++hdr.n_invalid;
|
|
++i;
|
|
hptp += 2;
|
|
++revp;
|
|
}
|
|
|
|
if (hdr.n_valid || hdr.n_invalid) {
|
|
/* write back the header */
|
|
if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
|
|
return -EFAULT;
|
|
nw = nb;
|
|
buf = (char __user *)lbuf;
|
|
} else {
|
|
nb = nw;
|
|
}
|
|
|
|
/* Check if we've wrapped around the hash table */
|
|
if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
|
|
i = 0;
|
|
ctx->first_pass = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx->index = i;
|
|
|
|
return nb;
|
|
}
|
|
|
|
static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct kvm_htab_ctx *ctx = file->private_data;
|
|
struct kvm *kvm = ctx->kvm;
|
|
struct kvm_get_htab_header hdr;
|
|
unsigned long i, j;
|
|
unsigned long v, r;
|
|
unsigned long __user *lbuf;
|
|
__be64 *hptp;
|
|
unsigned long tmp[2];
|
|
ssize_t nb;
|
|
long int err, ret;
|
|
int mmu_ready;
|
|
int pshift;
|
|
|
|
if (!access_ok(buf, count))
|
|
return -EFAULT;
|
|
if (kvm_is_radix(kvm))
|
|
return -EINVAL;
|
|
|
|
/* lock out vcpus from running while we're doing this */
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
mmu_ready = kvm->arch.mmu_ready;
|
|
if (mmu_ready) {
|
|
kvm->arch.mmu_ready = 0; /* temporarily */
|
|
/* order mmu_ready vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.mmu_ready = 1;
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
err = 0;
|
|
for (nb = 0; nb + sizeof(hdr) <= count; ) {
|
|
err = -EFAULT;
|
|
if (__copy_from_user(&hdr, buf, sizeof(hdr)))
|
|
break;
|
|
|
|
err = 0;
|
|
if (nb + hdr.n_valid * HPTE_SIZE > count)
|
|
break;
|
|
|
|
nb += sizeof(hdr);
|
|
buf += sizeof(hdr);
|
|
|
|
err = -EINVAL;
|
|
i = hdr.index;
|
|
if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
|
|
i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
break;
|
|
|
|
hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
|
|
lbuf = (unsigned long __user *)buf;
|
|
for (j = 0; j < hdr.n_valid; ++j) {
|
|
__be64 hpte_v;
|
|
__be64 hpte_r;
|
|
|
|
err = -EFAULT;
|
|
if (__get_user(hpte_v, lbuf) ||
|
|
__get_user(hpte_r, lbuf + 1))
|
|
goto out;
|
|
v = be64_to_cpu(hpte_v);
|
|
r = be64_to_cpu(hpte_r);
|
|
err = -EINVAL;
|
|
if (!(v & HPTE_V_VALID))
|
|
goto out;
|
|
pshift = kvmppc_hpte_base_page_shift(v, r);
|
|
if (pshift <= 0)
|
|
goto out;
|
|
lbuf += 2;
|
|
nb += HPTE_SIZE;
|
|
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
|
|
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
|
|
err = -EIO;
|
|
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
|
|
tmp);
|
|
if (ret != H_SUCCESS) {
|
|
pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
|
|
"r=%lx\n", ret, i, v, r);
|
|
goto out;
|
|
}
|
|
if (!mmu_ready && is_vrma_hpte(v)) {
|
|
unsigned long senc, lpcr;
|
|
|
|
senc = slb_pgsize_encoding(1ul << pshift);
|
|
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
lpcr = senc << (LPCR_VRMASD_SH - 4);
|
|
kvmppc_update_lpcr(kvm, lpcr,
|
|
LPCR_VRMASD);
|
|
} else {
|
|
kvmppc_setup_partition_table(kvm);
|
|
}
|
|
mmu_ready = 1;
|
|
}
|
|
++i;
|
|
hptp += 2;
|
|
}
|
|
|
|
for (j = 0; j < hdr.n_invalid; ++j) {
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
|
|
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
|
|
++i;
|
|
hptp += 2;
|
|
}
|
|
err = 0;
|
|
}
|
|
|
|
out:
|
|
/* Order HPTE updates vs. mmu_ready */
|
|
smp_wmb();
|
|
kvm->arch.mmu_ready = mmu_ready;
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
|
|
if (err)
|
|
return err;
|
|
return nb;
|
|
}
|
|
|
|
static int kvm_htab_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_htab_ctx *ctx = filp->private_data;
|
|
|
|
filp->private_data = NULL;
|
|
if (!(ctx->flags & KVM_GET_HTAB_WRITE))
|
|
atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
|
|
kvm_put_kvm(ctx->kvm);
|
|
kfree(ctx);
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations kvm_htab_fops = {
|
|
.read = kvm_htab_read,
|
|
.write = kvm_htab_write,
|
|
.llseek = default_llseek,
|
|
.release = kvm_htab_release,
|
|
};
|
|
|
|
int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
|
|
{
|
|
int ret;
|
|
struct kvm_htab_ctx *ctx;
|
|
int rwflag;
|
|
|
|
/* reject flags we don't recognize */
|
|
if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
|
|
return -EINVAL;
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
kvm_get_kvm(kvm);
|
|
ctx->kvm = kvm;
|
|
ctx->index = ghf->start_index;
|
|
ctx->flags = ghf->flags;
|
|
ctx->first_pass = 1;
|
|
|
|
rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
|
|
ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
|
|
if (ret < 0) {
|
|
kfree(ctx);
|
|
kvm_put_kvm_no_destroy(kvm);
|
|
return ret;
|
|
}
|
|
|
|
if (rwflag == O_RDONLY) {
|
|
mutex_lock(&kvm->slots_lock);
|
|
atomic_inc(&kvm->arch.hpte_mod_interest);
|
|
/* make sure kvmppc_do_h_enter etc. see the increment */
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct debugfs_htab_state {
|
|
struct kvm *kvm;
|
|
struct mutex mutex;
|
|
unsigned long hpt_index;
|
|
int chars_left;
|
|
int buf_index;
|
|
char buf[64];
|
|
};
|
|
|
|
static int debugfs_htab_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct kvm *kvm = inode->i_private;
|
|
struct debugfs_htab_state *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
kvm_get_kvm(kvm);
|
|
p->kvm = kvm;
|
|
mutex_init(&p->mutex);
|
|
file->private_data = p;
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int debugfs_htab_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct debugfs_htab_state *p = file->private_data;
|
|
|
|
kvm_put_kvm(p->kvm);
|
|
kfree(p);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
struct debugfs_htab_state *p = file->private_data;
|
|
ssize_t ret, r;
|
|
unsigned long i, n;
|
|
unsigned long v, hr, gr;
|
|
struct kvm *kvm;
|
|
__be64 *hptp;
|
|
|
|
kvm = p->kvm;
|
|
if (kvm_is_radix(kvm))
|
|
return 0;
|
|
|
|
ret = mutex_lock_interruptible(&p->mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (p->chars_left) {
|
|
n = p->chars_left;
|
|
if (n > len)
|
|
n = len;
|
|
r = copy_to_user(buf, p->buf + p->buf_index, n);
|
|
n -= r;
|
|
p->chars_left -= n;
|
|
p->buf_index += n;
|
|
buf += n;
|
|
len -= n;
|
|
ret = n;
|
|
if (r) {
|
|
if (!n)
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
i = p->hpt_index;
|
|
hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
|
|
for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
|
|
++i, hptp += 2) {
|
|
if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
continue;
|
|
|
|
/* lock the HPTE so it's stable and read it */
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
|
|
hr = be64_to_cpu(hptp[1]);
|
|
gr = kvm->arch.hpt.rev[i].guest_rpte;
|
|
unlock_hpte(hptp, v);
|
|
preempt_enable();
|
|
|
|
if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
continue;
|
|
|
|
n = scnprintf(p->buf, sizeof(p->buf),
|
|
"%6lx %.16lx %.16lx %.16lx\n",
|
|
i, v, hr, gr);
|
|
p->chars_left = n;
|
|
if (n > len)
|
|
n = len;
|
|
r = copy_to_user(buf, p->buf, n);
|
|
n -= r;
|
|
p->chars_left -= n;
|
|
p->buf_index = n;
|
|
buf += n;
|
|
len -= n;
|
|
ret += n;
|
|
if (r) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
p->hpt_index = i;
|
|
|
|
out:
|
|
mutex_unlock(&p->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
return -EACCES;
|
|
}
|
|
|
|
static const struct file_operations debugfs_htab_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = debugfs_htab_open,
|
|
.release = debugfs_htab_release,
|
|
.read = debugfs_htab_read,
|
|
.write = debugfs_htab_write,
|
|
.llseek = generic_file_llseek,
|
|
};
|
|
|
|
void kvmppc_mmu_debugfs_init(struct kvm *kvm)
|
|
{
|
|
debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
|
|
&debugfs_htab_fops);
|
|
}
|
|
|
|
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
|
|
|
|
vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
|
|
|
|
mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
|
|
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
|
|
}
|