1728 строки
44 KiB
C
1728 строки
44 KiB
C
/*
|
|
BlueZ - Bluetooth protocol stack for Linux
|
|
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
|
|
|
|
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License version 2 as
|
|
published by the Free Software Foundation;
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
|
|
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
|
|
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
|
|
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
|
|
SOFTWARE IS DISCLAIMED.
|
|
*/
|
|
|
|
/* Bluetooth HCI connection handling. */
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <net/bluetooth/bluetooth.h>
|
|
#include <net/bluetooth/hci_core.h>
|
|
#include <net/bluetooth/l2cap.h>
|
|
|
|
#include "hci_request.h"
|
|
#include "smp.h"
|
|
#include "a2mp.h"
|
|
|
|
struct sco_param {
|
|
u16 pkt_type;
|
|
u16 max_latency;
|
|
u8 retrans_effort;
|
|
};
|
|
|
|
static const struct sco_param esco_param_cvsd[] = {
|
|
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
|
|
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
|
|
{ EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
|
|
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
|
|
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
|
|
};
|
|
|
|
static const struct sco_param sco_param_cvsd[] = {
|
|
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
|
|
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
|
|
};
|
|
|
|
static const struct sco_param esco_param_msbc[] = {
|
|
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
|
|
{ EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
|
|
};
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
|
|
{
|
|
struct hci_conn_params *params;
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct smp_irk *irk;
|
|
bdaddr_t *bdaddr;
|
|
u8 bdaddr_type;
|
|
|
|
bdaddr = &conn->dst;
|
|
bdaddr_type = conn->dst_type;
|
|
|
|
/* Check if we need to convert to identity address */
|
|
irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
|
|
if (irk) {
|
|
bdaddr = &irk->bdaddr;
|
|
bdaddr_type = irk->addr_type;
|
|
}
|
|
|
|
params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
|
|
bdaddr_type);
|
|
if (!params || !params->explicit_connect)
|
|
return;
|
|
|
|
/* The connection attempt was doing scan for new RPA, and is
|
|
* in scan phase. If params are not associated with any other
|
|
* autoconnect action, remove them completely. If they are, just unmark
|
|
* them as waiting for connection, by clearing explicit_connect field.
|
|
*/
|
|
params->explicit_connect = false;
|
|
|
|
list_del_init(¶ms->action);
|
|
|
|
switch (params->auto_connect) {
|
|
case HCI_AUTO_CONN_EXPLICIT:
|
|
hci_conn_params_del(hdev, bdaddr, bdaddr_type);
|
|
/* return instead of break to avoid duplicate scan update */
|
|
return;
|
|
case HCI_AUTO_CONN_DIRECT:
|
|
case HCI_AUTO_CONN_ALWAYS:
|
|
list_add(¶ms->action, &hdev->pend_le_conns);
|
|
break;
|
|
case HCI_AUTO_CONN_REPORT:
|
|
list_add(¶ms->action, &hdev->pend_le_reports);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
hci_update_background_scan(hdev);
|
|
}
|
|
|
|
static void hci_conn_cleanup(struct hci_conn *conn)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
|
|
hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
|
|
|
|
hci_chan_list_flush(conn);
|
|
|
|
hci_conn_hash_del(hdev, conn);
|
|
|
|
if (hdev->notify)
|
|
hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
|
|
|
|
hci_conn_del_sysfs(conn);
|
|
|
|
debugfs_remove_recursive(conn->debugfs);
|
|
|
|
hci_dev_put(hdev);
|
|
|
|
hci_conn_put(conn);
|
|
}
|
|
|
|
static void le_scan_cleanup(struct work_struct *work)
|
|
{
|
|
struct hci_conn *conn = container_of(work, struct hci_conn,
|
|
le_scan_cleanup);
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_conn *c = NULL;
|
|
|
|
BT_DBG("%s hcon %p", hdev->name, conn);
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
/* Check that the hci_conn is still around */
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
|
|
if (c == conn)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (c == conn) {
|
|
hci_connect_le_scan_cleanup(conn);
|
|
hci_conn_cleanup(conn);
|
|
}
|
|
|
|
hci_dev_unlock(hdev);
|
|
hci_dev_put(hdev);
|
|
hci_conn_put(conn);
|
|
}
|
|
|
|
static void hci_connect_le_scan_remove(struct hci_conn *conn)
|
|
{
|
|
BT_DBG("%s hcon %p", conn->hdev->name, conn);
|
|
|
|
/* We can't call hci_conn_del/hci_conn_cleanup here since that
|
|
* could deadlock with another hci_conn_del() call that's holding
|
|
* hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
|
|
* Instead, grab temporary extra references to the hci_dev and
|
|
* hci_conn and perform the necessary cleanup in a separate work
|
|
* callback.
|
|
*/
|
|
|
|
hci_dev_hold(conn->hdev);
|
|
hci_conn_get(conn);
|
|
|
|
/* Even though we hold a reference to the hdev, many other
|
|
* things might get cleaned up meanwhile, including the hdev's
|
|
* own workqueue, so we can't use that for scheduling.
|
|
*/
|
|
schedule_work(&conn->le_scan_cleanup);
|
|
}
|
|
|
|
static void hci_acl_create_connection(struct hci_conn *conn)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct inquiry_entry *ie;
|
|
struct hci_cp_create_conn cp;
|
|
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
conn->state = BT_CONNECT;
|
|
conn->out = true;
|
|
conn->role = HCI_ROLE_MASTER;
|
|
|
|
conn->attempt++;
|
|
|
|
conn->link_policy = hdev->link_policy;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
bacpy(&cp.bdaddr, &conn->dst);
|
|
cp.pscan_rep_mode = 0x02;
|
|
|
|
ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
|
|
if (ie) {
|
|
if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
|
|
cp.pscan_rep_mode = ie->data.pscan_rep_mode;
|
|
cp.pscan_mode = ie->data.pscan_mode;
|
|
cp.clock_offset = ie->data.clock_offset |
|
|
cpu_to_le16(0x8000);
|
|
}
|
|
|
|
memcpy(conn->dev_class, ie->data.dev_class, 3);
|
|
if (ie->data.ssp_mode > 0)
|
|
set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
|
|
}
|
|
|
|
cp.pkt_type = cpu_to_le16(conn->pkt_type);
|
|
if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
|
|
cp.role_switch = 0x01;
|
|
else
|
|
cp.role_switch = 0x00;
|
|
|
|
hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
|
|
}
|
|
|
|
int hci_disconnect(struct hci_conn *conn, __u8 reason)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
/* When we are master of an established connection and it enters
|
|
* the disconnect timeout, then go ahead and try to read the
|
|
* current clock offset. Processing of the result is done
|
|
* within the event handling and hci_clock_offset_evt function.
|
|
*/
|
|
if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
|
|
(conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_cp_read_clock_offset clkoff_cp;
|
|
|
|
clkoff_cp.handle = cpu_to_le16(conn->handle);
|
|
hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
|
|
&clkoff_cp);
|
|
}
|
|
|
|
return hci_abort_conn(conn, reason);
|
|
}
|
|
|
|
static void hci_add_sco(struct hci_conn *conn, __u16 handle)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_cp_add_sco cp;
|
|
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
conn->state = BT_CONNECT;
|
|
conn->out = true;
|
|
|
|
conn->attempt++;
|
|
|
|
cp.handle = cpu_to_le16(handle);
|
|
cp.pkt_type = cpu_to_le16(conn->pkt_type);
|
|
|
|
hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
|
|
}
|
|
|
|
bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_cp_setup_sync_conn cp;
|
|
const struct sco_param *param;
|
|
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
conn->state = BT_CONNECT;
|
|
conn->out = true;
|
|
|
|
conn->attempt++;
|
|
|
|
cp.handle = cpu_to_le16(handle);
|
|
|
|
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
|
|
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
|
|
cp.voice_setting = cpu_to_le16(conn->setting);
|
|
|
|
switch (conn->setting & SCO_AIRMODE_MASK) {
|
|
case SCO_AIRMODE_TRANSP:
|
|
if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
|
|
return false;
|
|
param = &esco_param_msbc[conn->attempt - 1];
|
|
break;
|
|
case SCO_AIRMODE_CVSD:
|
|
if (lmp_esco_capable(conn->link)) {
|
|
if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
|
|
return false;
|
|
param = &esco_param_cvsd[conn->attempt - 1];
|
|
} else {
|
|
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
|
|
return false;
|
|
param = &sco_param_cvsd[conn->attempt - 1];
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
cp.retrans_effort = param->retrans_effort;
|
|
cp.pkt_type = __cpu_to_le16(param->pkt_type);
|
|
cp.max_latency = __cpu_to_le16(param->max_latency);
|
|
|
|
if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
|
|
u16 to_multiplier)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_conn_params *params;
|
|
struct hci_cp_le_conn_update cp;
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
|
|
if (params) {
|
|
params->conn_min_interval = min;
|
|
params->conn_max_interval = max;
|
|
params->conn_latency = latency;
|
|
params->supervision_timeout = to_multiplier;
|
|
}
|
|
|
|
hci_dev_unlock(hdev);
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
cp.conn_interval_min = cpu_to_le16(min);
|
|
cp.conn_interval_max = cpu_to_le16(max);
|
|
cp.conn_latency = cpu_to_le16(latency);
|
|
cp.supervision_timeout = cpu_to_le16(to_multiplier);
|
|
cp.min_ce_len = cpu_to_le16(0x0000);
|
|
cp.max_ce_len = cpu_to_le16(0x0000);
|
|
|
|
hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
|
|
|
|
if (params)
|
|
return 0x01;
|
|
|
|
return 0x00;
|
|
}
|
|
|
|
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
|
|
__u8 ltk[16], __u8 key_size)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_cp_le_start_enc cp;
|
|
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
cp.rand = rand;
|
|
cp.ediv = ediv;
|
|
memcpy(cp.ltk, ltk, key_size);
|
|
|
|
hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
|
|
}
|
|
|
|
/* Device _must_ be locked */
|
|
void hci_sco_setup(struct hci_conn *conn, __u8 status)
|
|
{
|
|
struct hci_conn *sco = conn->link;
|
|
|
|
if (!sco)
|
|
return;
|
|
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
if (!status) {
|
|
if (lmp_esco_capable(conn->hdev))
|
|
hci_setup_sync(sco, conn->handle);
|
|
else
|
|
hci_add_sco(sco, conn->handle);
|
|
} else {
|
|
hci_connect_cfm(sco, status);
|
|
hci_conn_del(sco);
|
|
}
|
|
}
|
|
|
|
static void hci_conn_timeout(struct work_struct *work)
|
|
{
|
|
struct hci_conn *conn = container_of(work, struct hci_conn,
|
|
disc_work.work);
|
|
int refcnt = atomic_read(&conn->refcnt);
|
|
|
|
BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
|
|
|
|
WARN_ON(refcnt < 0);
|
|
|
|
/* FIXME: It was observed that in pairing failed scenario, refcnt
|
|
* drops below 0. Probably this is because l2cap_conn_del calls
|
|
* l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
|
|
* dropped. After that loop hci_chan_del is called which also drops
|
|
* conn. For now make sure that ACL is alive if refcnt is higher then 0,
|
|
* otherwise drop it.
|
|
*/
|
|
if (refcnt > 0)
|
|
return;
|
|
|
|
/* LE connections in scanning state need special handling */
|
|
if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
|
|
test_bit(HCI_CONN_SCANNING, &conn->flags)) {
|
|
hci_connect_le_scan_remove(conn);
|
|
return;
|
|
}
|
|
|
|
hci_abort_conn(conn, hci_proto_disconn_ind(conn));
|
|
}
|
|
|
|
/* Enter sniff mode */
|
|
static void hci_conn_idle(struct work_struct *work)
|
|
{
|
|
struct hci_conn *conn = container_of(work, struct hci_conn,
|
|
idle_work.work);
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
BT_DBG("hcon %p mode %d", conn, conn->mode);
|
|
|
|
if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
|
|
return;
|
|
|
|
if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
|
|
return;
|
|
|
|
if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
|
|
struct hci_cp_sniff_subrate cp;
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
cp.max_latency = cpu_to_le16(0);
|
|
cp.min_remote_timeout = cpu_to_le16(0);
|
|
cp.min_local_timeout = cpu_to_le16(0);
|
|
hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
|
|
}
|
|
|
|
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
|
|
struct hci_cp_sniff_mode cp;
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
|
|
cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
|
|
cp.attempt = cpu_to_le16(4);
|
|
cp.timeout = cpu_to_le16(1);
|
|
hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
|
|
}
|
|
}
|
|
|
|
static void hci_conn_auto_accept(struct work_struct *work)
|
|
{
|
|
struct hci_conn *conn = container_of(work, struct hci_conn,
|
|
auto_accept_work.work);
|
|
|
|
hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
|
|
&conn->dst);
|
|
}
|
|
|
|
static void le_conn_timeout(struct work_struct *work)
|
|
{
|
|
struct hci_conn *conn = container_of(work, struct hci_conn,
|
|
le_conn_timeout.work);
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
BT_DBG("");
|
|
|
|
/* We could end up here due to having done directed advertising,
|
|
* so clean up the state if necessary. This should however only
|
|
* happen with broken hardware or if low duty cycle was used
|
|
* (which doesn't have a timeout of its own).
|
|
*/
|
|
if (conn->role == HCI_ROLE_SLAVE) {
|
|
u8 enable = 0x00;
|
|
hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
|
|
&enable);
|
|
hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
|
|
return;
|
|
}
|
|
|
|
hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
|
|
}
|
|
|
|
struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
|
|
u8 role)
|
|
{
|
|
struct hci_conn *conn;
|
|
|
|
BT_DBG("%s dst %pMR", hdev->name, dst);
|
|
|
|
conn = kzalloc(sizeof(*conn), GFP_KERNEL);
|
|
if (!conn)
|
|
return NULL;
|
|
|
|
bacpy(&conn->dst, dst);
|
|
bacpy(&conn->src, &hdev->bdaddr);
|
|
conn->hdev = hdev;
|
|
conn->type = type;
|
|
conn->role = role;
|
|
conn->mode = HCI_CM_ACTIVE;
|
|
conn->state = BT_OPEN;
|
|
conn->auth_type = HCI_AT_GENERAL_BONDING;
|
|
conn->io_capability = hdev->io_capability;
|
|
conn->remote_auth = 0xff;
|
|
conn->key_type = 0xff;
|
|
conn->rssi = HCI_RSSI_INVALID;
|
|
conn->tx_power = HCI_TX_POWER_INVALID;
|
|
conn->max_tx_power = HCI_TX_POWER_INVALID;
|
|
|
|
set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
|
|
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
|
|
|
|
/* Set Default Authenticated payload timeout to 30s */
|
|
conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
|
|
|
|
if (conn->role == HCI_ROLE_MASTER)
|
|
conn->out = true;
|
|
|
|
switch (type) {
|
|
case ACL_LINK:
|
|
conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
|
|
break;
|
|
case LE_LINK:
|
|
/* conn->src should reflect the local identity address */
|
|
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
|
|
break;
|
|
case SCO_LINK:
|
|
if (lmp_esco_capable(hdev))
|
|
conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
|
|
(hdev->esco_type & EDR_ESCO_MASK);
|
|
else
|
|
conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
|
|
break;
|
|
case ESCO_LINK:
|
|
conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
|
|
break;
|
|
}
|
|
|
|
skb_queue_head_init(&conn->data_q);
|
|
|
|
INIT_LIST_HEAD(&conn->chan_list);
|
|
|
|
INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
|
|
INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
|
|
INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
|
|
INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
|
|
INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
|
|
|
|
atomic_set(&conn->refcnt, 0);
|
|
|
|
hci_dev_hold(hdev);
|
|
|
|
hci_conn_hash_add(hdev, conn);
|
|
if (hdev->notify)
|
|
hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
|
|
|
|
hci_conn_init_sysfs(conn);
|
|
|
|
return conn;
|
|
}
|
|
|
|
int hci_conn_del(struct hci_conn *conn)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
|
|
|
|
cancel_delayed_work_sync(&conn->disc_work);
|
|
cancel_delayed_work_sync(&conn->auto_accept_work);
|
|
cancel_delayed_work_sync(&conn->idle_work);
|
|
|
|
if (conn->type == ACL_LINK) {
|
|
struct hci_conn *sco = conn->link;
|
|
if (sco)
|
|
sco->link = NULL;
|
|
|
|
/* Unacked frames */
|
|
hdev->acl_cnt += conn->sent;
|
|
} else if (conn->type == LE_LINK) {
|
|
cancel_delayed_work(&conn->le_conn_timeout);
|
|
|
|
if (hdev->le_pkts)
|
|
hdev->le_cnt += conn->sent;
|
|
else
|
|
hdev->acl_cnt += conn->sent;
|
|
} else {
|
|
struct hci_conn *acl = conn->link;
|
|
if (acl) {
|
|
acl->link = NULL;
|
|
hci_conn_drop(acl);
|
|
}
|
|
}
|
|
|
|
if (conn->amp_mgr)
|
|
amp_mgr_put(conn->amp_mgr);
|
|
|
|
skb_queue_purge(&conn->data_q);
|
|
|
|
/* Remove the connection from the list and cleanup its remaining
|
|
* state. This is a separate function since for some cases like
|
|
* BT_CONNECT_SCAN we *only* want the cleanup part without the
|
|
* rest of hci_conn_del.
|
|
*/
|
|
hci_conn_cleanup(conn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
|
|
{
|
|
int use_src = bacmp(src, BDADDR_ANY);
|
|
struct hci_dev *hdev = NULL, *d;
|
|
|
|
BT_DBG("%pMR -> %pMR", src, dst);
|
|
|
|
read_lock(&hci_dev_list_lock);
|
|
|
|
list_for_each_entry(d, &hci_dev_list, list) {
|
|
if (!test_bit(HCI_UP, &d->flags) ||
|
|
hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
|
|
d->dev_type != HCI_PRIMARY)
|
|
continue;
|
|
|
|
/* Simple routing:
|
|
* No source address - find interface with bdaddr != dst
|
|
* Source address - find interface with bdaddr == src
|
|
*/
|
|
|
|
if (use_src) {
|
|
bdaddr_t id_addr;
|
|
u8 id_addr_type;
|
|
|
|
if (src_type == BDADDR_BREDR) {
|
|
if (!lmp_bredr_capable(d))
|
|
continue;
|
|
bacpy(&id_addr, &d->bdaddr);
|
|
id_addr_type = BDADDR_BREDR;
|
|
} else {
|
|
if (!lmp_le_capable(d))
|
|
continue;
|
|
|
|
hci_copy_identity_address(d, &id_addr,
|
|
&id_addr_type);
|
|
|
|
/* Convert from HCI to three-value type */
|
|
if (id_addr_type == ADDR_LE_DEV_PUBLIC)
|
|
id_addr_type = BDADDR_LE_PUBLIC;
|
|
else
|
|
id_addr_type = BDADDR_LE_RANDOM;
|
|
}
|
|
|
|
if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
|
|
hdev = d; break;
|
|
}
|
|
} else {
|
|
if (bacmp(&d->bdaddr, dst)) {
|
|
hdev = d; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hdev)
|
|
hdev = hci_dev_hold(hdev);
|
|
|
|
read_unlock(&hci_dev_list_lock);
|
|
return hdev;
|
|
}
|
|
EXPORT_SYMBOL(hci_get_route);
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
void hci_le_conn_failed(struct hci_conn *conn, u8 status)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_conn_params *params;
|
|
|
|
params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
|
|
conn->dst_type);
|
|
if (params && params->conn) {
|
|
hci_conn_drop(params->conn);
|
|
hci_conn_put(params->conn);
|
|
params->conn = NULL;
|
|
}
|
|
|
|
conn->state = BT_CLOSED;
|
|
|
|
/* If the status indicates successful cancellation of
|
|
* the attempt (i.e. Unkown Connection Id) there's no point of
|
|
* notifying failure since we'll go back to keep trying to
|
|
* connect. The only exception is explicit connect requests
|
|
* where a timeout + cancel does indicate an actual failure.
|
|
*/
|
|
if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
|
|
(params && params->explicit_connect))
|
|
mgmt_connect_failed(hdev, &conn->dst, conn->type,
|
|
conn->dst_type, status);
|
|
|
|
hci_connect_cfm(conn, status);
|
|
|
|
hci_conn_del(conn);
|
|
|
|
/* Since we may have temporarily stopped the background scanning in
|
|
* favor of connection establishment, we should restart it.
|
|
*/
|
|
hci_update_background_scan(hdev);
|
|
|
|
/* Re-enable advertising in case this was a failed connection
|
|
* attempt as a peripheral.
|
|
*/
|
|
hci_req_reenable_advertising(hdev);
|
|
}
|
|
|
|
static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
|
|
{
|
|
struct hci_conn *conn;
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
conn = hci_lookup_le_connect(hdev);
|
|
|
|
if (!status) {
|
|
hci_connect_le_scan_cleanup(conn);
|
|
goto done;
|
|
}
|
|
|
|
bt_dev_err(hdev, "request failed to create LE connection: "
|
|
"status 0x%2.2x", status);
|
|
|
|
if (!conn)
|
|
goto done;
|
|
|
|
hci_le_conn_failed(conn, status);
|
|
|
|
done:
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
|
|
static bool conn_use_rpa(struct hci_conn *conn)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
return hci_dev_test_flag(hdev, HCI_PRIVACY);
|
|
}
|
|
|
|
static void set_ext_conn_params(struct hci_conn *conn,
|
|
struct hci_cp_le_ext_conn_param *p)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
/* Set window to be the same value as the interval to
|
|
* enable continuous scanning.
|
|
*/
|
|
p->scan_interval = cpu_to_le16(hdev->le_scan_interval);
|
|
p->scan_window = p->scan_interval;
|
|
p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
|
|
p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
|
|
p->conn_latency = cpu_to_le16(conn->le_conn_latency);
|
|
p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
|
|
p->min_ce_len = cpu_to_le16(0x0000);
|
|
p->max_ce_len = cpu_to_le16(0x0000);
|
|
}
|
|
|
|
static void hci_req_add_le_create_conn(struct hci_request *req,
|
|
struct hci_conn *conn,
|
|
bdaddr_t *direct_rpa)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
u8 own_addr_type;
|
|
|
|
/* If direct address was provided we use it instead of current
|
|
* address.
|
|
*/
|
|
if (direct_rpa) {
|
|
if (bacmp(&req->hdev->random_addr, direct_rpa))
|
|
hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
|
|
direct_rpa);
|
|
|
|
/* direct address is always RPA */
|
|
own_addr_type = ADDR_LE_DEV_RANDOM;
|
|
} else {
|
|
/* Update random address, but set require_privacy to false so
|
|
* that we never connect with an non-resolvable address.
|
|
*/
|
|
if (hci_update_random_address(req, false, conn_use_rpa(conn),
|
|
&own_addr_type))
|
|
return;
|
|
}
|
|
|
|
if (use_ext_conn(hdev)) {
|
|
struct hci_cp_le_ext_create_conn *cp;
|
|
struct hci_cp_le_ext_conn_param *p;
|
|
u8 data[sizeof(*cp) + sizeof(*p) * 3];
|
|
u32 plen;
|
|
|
|
cp = (void *) data;
|
|
p = (void *) cp->data;
|
|
|
|
memset(cp, 0, sizeof(*cp));
|
|
|
|
bacpy(&cp->peer_addr, &conn->dst);
|
|
cp->peer_addr_type = conn->dst_type;
|
|
cp->own_addr_type = own_addr_type;
|
|
|
|
plen = sizeof(*cp);
|
|
|
|
if (scan_1m(hdev)) {
|
|
cp->phys |= LE_SCAN_PHY_1M;
|
|
set_ext_conn_params(conn, p);
|
|
|
|
p++;
|
|
plen += sizeof(*p);
|
|
}
|
|
|
|
if (scan_2m(hdev)) {
|
|
cp->phys |= LE_SCAN_PHY_2M;
|
|
set_ext_conn_params(conn, p);
|
|
|
|
p++;
|
|
plen += sizeof(*p);
|
|
}
|
|
|
|
if (scan_coded(hdev)) {
|
|
cp->phys |= LE_SCAN_PHY_CODED;
|
|
set_ext_conn_params(conn, p);
|
|
|
|
plen += sizeof(*p);
|
|
}
|
|
|
|
hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
|
|
|
|
} else {
|
|
struct hci_cp_le_create_conn cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
/* Set window to be the same value as the interval to enable
|
|
* continuous scanning.
|
|
*/
|
|
cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
|
|
cp.scan_window = cp.scan_interval;
|
|
|
|
bacpy(&cp.peer_addr, &conn->dst);
|
|
cp.peer_addr_type = conn->dst_type;
|
|
cp.own_address_type = own_addr_type;
|
|
cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
|
|
cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
|
|
cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
|
|
cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
|
|
cp.min_ce_len = cpu_to_le16(0x0000);
|
|
cp.max_ce_len = cpu_to_le16(0x0000);
|
|
|
|
hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
|
|
}
|
|
|
|
conn->state = BT_CONNECT;
|
|
clear_bit(HCI_CONN_SCANNING, &conn->flags);
|
|
}
|
|
|
|
static void hci_req_directed_advertising(struct hci_request *req,
|
|
struct hci_conn *conn)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 own_addr_type;
|
|
u8 enable;
|
|
|
|
if (ext_adv_capable(hdev)) {
|
|
struct hci_cp_le_set_ext_adv_params cp;
|
|
bdaddr_t random_addr;
|
|
|
|
/* Set require_privacy to false so that the remote device has a
|
|
* chance of identifying us.
|
|
*/
|
|
if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
|
|
&own_addr_type, &random_addr) < 0)
|
|
return;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
|
|
cp.own_addr_type = own_addr_type;
|
|
cp.channel_map = hdev->le_adv_channel_map;
|
|
cp.tx_power = HCI_TX_POWER_INVALID;
|
|
cp.primary_phy = HCI_ADV_PHY_1M;
|
|
cp.secondary_phy = HCI_ADV_PHY_1M;
|
|
cp.handle = 0; /* Use instance 0 for directed adv */
|
|
cp.own_addr_type = own_addr_type;
|
|
cp.peer_addr_type = conn->dst_type;
|
|
bacpy(&cp.peer_addr, &conn->dst);
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
|
|
|
|
if (own_addr_type == ADDR_LE_DEV_RANDOM &&
|
|
bacmp(&random_addr, BDADDR_ANY) &&
|
|
bacmp(&random_addr, &hdev->random_addr)) {
|
|
struct hci_cp_le_set_adv_set_rand_addr cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
cp.handle = 0;
|
|
bacpy(&cp.bdaddr, &random_addr);
|
|
|
|
hci_req_add(req,
|
|
HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
|
|
sizeof(cp), &cp);
|
|
}
|
|
|
|
__hci_req_enable_ext_advertising(req, 0x00);
|
|
} else {
|
|
struct hci_cp_le_set_adv_param cp;
|
|
|
|
/* Clear the HCI_LE_ADV bit temporarily so that the
|
|
* hci_update_random_address knows that it's safe to go ahead
|
|
* and write a new random address. The flag will be set back on
|
|
* as soon as the SET_ADV_ENABLE HCI command completes.
|
|
*/
|
|
hci_dev_clear_flag(hdev, HCI_LE_ADV);
|
|
|
|
/* Set require_privacy to false so that the remote device has a
|
|
* chance of identifying us.
|
|
*/
|
|
if (hci_update_random_address(req, false, conn_use_rpa(conn),
|
|
&own_addr_type) < 0)
|
|
return;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
/* Some controllers might reject command if intervals are not
|
|
* within range for undirected advertising.
|
|
* BCM20702A0 is known to be affected by this.
|
|
*/
|
|
cp.min_interval = cpu_to_le16(0x0020);
|
|
cp.max_interval = cpu_to_le16(0x0020);
|
|
|
|
cp.type = LE_ADV_DIRECT_IND;
|
|
cp.own_address_type = own_addr_type;
|
|
cp.direct_addr_type = conn->dst_type;
|
|
bacpy(&cp.direct_addr, &conn->dst);
|
|
cp.channel_map = hdev->le_adv_channel_map;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
|
|
|
|
enable = 0x01;
|
|
hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
|
|
&enable);
|
|
}
|
|
|
|
conn->state = BT_CONNECT;
|
|
}
|
|
|
|
struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
|
|
u8 dst_type, u8 sec_level, u16 conn_timeout,
|
|
u8 role, bdaddr_t *direct_rpa)
|
|
{
|
|
struct hci_conn_params *params;
|
|
struct hci_conn *conn;
|
|
struct smp_irk *irk;
|
|
struct hci_request req;
|
|
int err;
|
|
|
|
/* Let's make sure that le is enabled.*/
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
|
|
if (lmp_le_capable(hdev))
|
|
return ERR_PTR(-ECONNREFUSED);
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
/* Since the controller supports only one LE connection attempt at a
|
|
* time, we return -EBUSY if there is any connection attempt running.
|
|
*/
|
|
if (hci_lookup_le_connect(hdev))
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
/* If there's already a connection object but it's not in
|
|
* scanning state it means it must already be established, in
|
|
* which case we can't do anything else except report a failure
|
|
* to connect.
|
|
*/
|
|
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
|
|
if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
/* When given an identity address with existing identity
|
|
* resolving key, the connection needs to be established
|
|
* to a resolvable random address.
|
|
*
|
|
* Storing the resolvable random address is required here
|
|
* to handle connection failures. The address will later
|
|
* be resolved back into the original identity address
|
|
* from the connect request.
|
|
*/
|
|
irk = hci_find_irk_by_addr(hdev, dst, dst_type);
|
|
if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
|
|
dst = &irk->rpa;
|
|
dst_type = ADDR_LE_DEV_RANDOM;
|
|
}
|
|
|
|
if (conn) {
|
|
bacpy(&conn->dst, dst);
|
|
} else {
|
|
conn = hci_conn_add(hdev, LE_LINK, dst, role);
|
|
if (!conn)
|
|
return ERR_PTR(-ENOMEM);
|
|
hci_conn_hold(conn);
|
|
conn->pending_sec_level = sec_level;
|
|
}
|
|
|
|
conn->dst_type = dst_type;
|
|
conn->sec_level = BT_SECURITY_LOW;
|
|
conn->conn_timeout = conn_timeout;
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
/* Disable advertising if we're active. For master role
|
|
* connections most controllers will refuse to connect if
|
|
* advertising is enabled, and for slave role connections we
|
|
* anyway have to disable it in order to start directed
|
|
* advertising.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
|
|
u8 enable = 0x00;
|
|
hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
|
|
&enable);
|
|
}
|
|
|
|
/* If requested to connect as slave use directed advertising */
|
|
if (conn->role == HCI_ROLE_SLAVE) {
|
|
/* If we're active scanning most controllers are unable
|
|
* to initiate advertising. Simply reject the attempt.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
|
|
hdev->le_scan_type == LE_SCAN_ACTIVE) {
|
|
hci_req_purge(&req);
|
|
hci_conn_del(conn);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
hci_req_directed_advertising(&req, conn);
|
|
goto create_conn;
|
|
}
|
|
|
|
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
|
|
if (params) {
|
|
conn->le_conn_min_interval = params->conn_min_interval;
|
|
conn->le_conn_max_interval = params->conn_max_interval;
|
|
conn->le_conn_latency = params->conn_latency;
|
|
conn->le_supv_timeout = params->supervision_timeout;
|
|
} else {
|
|
conn->le_conn_min_interval = hdev->le_conn_min_interval;
|
|
conn->le_conn_max_interval = hdev->le_conn_max_interval;
|
|
conn->le_conn_latency = hdev->le_conn_latency;
|
|
conn->le_supv_timeout = hdev->le_supv_timeout;
|
|
}
|
|
|
|
/* If controller is scanning, we stop it since some controllers are
|
|
* not able to scan and connect at the same time. Also set the
|
|
* HCI_LE_SCAN_INTERRUPTED flag so that the command complete
|
|
* handler for scan disabling knows to set the correct discovery
|
|
* state.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
|
|
hci_req_add_le_scan_disable(&req);
|
|
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
|
|
}
|
|
|
|
hci_req_add_le_create_conn(&req, conn, direct_rpa);
|
|
|
|
create_conn:
|
|
err = hci_req_run(&req, create_le_conn_complete);
|
|
if (err) {
|
|
hci_conn_del(conn);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return conn;
|
|
}
|
|
|
|
static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
|
|
{
|
|
struct hci_conn *conn;
|
|
|
|
conn = hci_conn_hash_lookup_le(hdev, addr, type);
|
|
if (!conn)
|
|
return false;
|
|
|
|
if (conn->state != BT_CONNECTED)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
static int hci_explicit_conn_params_set(struct hci_dev *hdev,
|
|
bdaddr_t *addr, u8 addr_type)
|
|
{
|
|
struct hci_conn_params *params;
|
|
|
|
if (is_connected(hdev, addr, addr_type))
|
|
return -EISCONN;
|
|
|
|
params = hci_conn_params_lookup(hdev, addr, addr_type);
|
|
if (!params) {
|
|
params = hci_conn_params_add(hdev, addr, addr_type);
|
|
if (!params)
|
|
return -ENOMEM;
|
|
|
|
/* If we created new params, mark them to be deleted in
|
|
* hci_connect_le_scan_cleanup. It's different case than
|
|
* existing disabled params, those will stay after cleanup.
|
|
*/
|
|
params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
|
|
}
|
|
|
|
/* We're trying to connect, so make sure params are at pend_le_conns */
|
|
if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
|
|
params->auto_connect == HCI_AUTO_CONN_REPORT ||
|
|
params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
|
|
list_del_init(¶ms->action);
|
|
list_add(¶ms->action, &hdev->pend_le_conns);
|
|
}
|
|
|
|
params->explicit_connect = true;
|
|
|
|
BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
|
|
params->auto_connect);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
|
|
u8 dst_type, u8 sec_level,
|
|
u16 conn_timeout)
|
|
{
|
|
struct hci_conn *conn;
|
|
|
|
/* Let's make sure that le is enabled.*/
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
|
|
if (lmp_le_capable(hdev))
|
|
return ERR_PTR(-ECONNREFUSED);
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
/* Some devices send ATT messages as soon as the physical link is
|
|
* established. To be able to handle these ATT messages, the user-
|
|
* space first establishes the connection and then starts the pairing
|
|
* process.
|
|
*
|
|
* So if a hci_conn object already exists for the following connection
|
|
* attempt, we simply update pending_sec_level and auth_type fields
|
|
* and return the object found.
|
|
*/
|
|
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
|
|
if (conn) {
|
|
if (conn->pending_sec_level < sec_level)
|
|
conn->pending_sec_level = sec_level;
|
|
goto done;
|
|
}
|
|
|
|
BT_DBG("requesting refresh of dst_addr");
|
|
|
|
conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
|
|
if (!conn)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
|
|
hci_conn_del(conn);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
conn->state = BT_CONNECT;
|
|
set_bit(HCI_CONN_SCANNING, &conn->flags);
|
|
conn->dst_type = dst_type;
|
|
conn->sec_level = BT_SECURITY_LOW;
|
|
conn->pending_sec_level = sec_level;
|
|
conn->conn_timeout = conn_timeout;
|
|
|
|
hci_update_background_scan(hdev);
|
|
|
|
done:
|
|
hci_conn_hold(conn);
|
|
return conn;
|
|
}
|
|
|
|
struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
|
|
u8 sec_level, u8 auth_type)
|
|
{
|
|
struct hci_conn *acl;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
|
|
if (lmp_bredr_capable(hdev))
|
|
return ERR_PTR(-ECONNREFUSED);
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
|
|
if (!acl) {
|
|
acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
|
|
if (!acl)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
hci_conn_hold(acl);
|
|
|
|
if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
|
|
acl->sec_level = BT_SECURITY_LOW;
|
|
acl->pending_sec_level = sec_level;
|
|
acl->auth_type = auth_type;
|
|
hci_acl_create_connection(acl);
|
|
}
|
|
|
|
return acl;
|
|
}
|
|
|
|
struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
|
|
__u16 setting)
|
|
{
|
|
struct hci_conn *acl;
|
|
struct hci_conn *sco;
|
|
|
|
acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
|
|
if (IS_ERR(acl))
|
|
return acl;
|
|
|
|
sco = hci_conn_hash_lookup_ba(hdev, type, dst);
|
|
if (!sco) {
|
|
sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
|
|
if (!sco) {
|
|
hci_conn_drop(acl);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
}
|
|
|
|
acl->link = sco;
|
|
sco->link = acl;
|
|
|
|
hci_conn_hold(sco);
|
|
|
|
sco->setting = setting;
|
|
|
|
if (acl->state == BT_CONNECTED &&
|
|
(sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
|
|
set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
|
|
hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
|
|
|
|
if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
|
|
/* defer SCO setup until mode change completed */
|
|
set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
|
|
return sco;
|
|
}
|
|
|
|
hci_sco_setup(acl, 0x00);
|
|
}
|
|
|
|
return sco;
|
|
}
|
|
|
|
/* Check link security requirement */
|
|
int hci_conn_check_link_mode(struct hci_conn *conn)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
/* In Secure Connections Only mode, it is required that Secure
|
|
* Connections is used and the link is encrypted with AES-CCM
|
|
* using a P-256 authenticated combination key.
|
|
*/
|
|
if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
|
|
if (!hci_conn_sc_enabled(conn) ||
|
|
!test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
|
|
conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
|
|
return 0;
|
|
}
|
|
|
|
if (hci_conn_ssp_enabled(conn) &&
|
|
!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Authenticate remote device */
|
|
static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
if (conn->pending_sec_level > sec_level)
|
|
sec_level = conn->pending_sec_level;
|
|
|
|
if (sec_level > conn->sec_level)
|
|
conn->pending_sec_level = sec_level;
|
|
else if (test_bit(HCI_CONN_AUTH, &conn->flags))
|
|
return 1;
|
|
|
|
/* Make sure we preserve an existing MITM requirement*/
|
|
auth_type |= (conn->auth_type & 0x01);
|
|
|
|
conn->auth_type = auth_type;
|
|
|
|
if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
|
|
struct hci_cp_auth_requested cp;
|
|
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
|
|
sizeof(cp), &cp);
|
|
|
|
/* If we're already encrypted set the REAUTH_PEND flag,
|
|
* otherwise set the ENCRYPT_PEND.
|
|
*/
|
|
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
|
|
set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
|
|
else
|
|
set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Encrypt the the link */
|
|
static void hci_conn_encrypt(struct hci_conn *conn)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
|
|
struct hci_cp_set_conn_encrypt cp;
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
cp.encrypt = 0x01;
|
|
hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
|
|
&cp);
|
|
}
|
|
}
|
|
|
|
/* Enable security */
|
|
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
|
|
bool initiator)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
if (conn->type == LE_LINK)
|
|
return smp_conn_security(conn, sec_level);
|
|
|
|
/* For sdp we don't need the link key. */
|
|
if (sec_level == BT_SECURITY_SDP)
|
|
return 1;
|
|
|
|
/* For non 2.1 devices and low security level we don't need the link
|
|
key. */
|
|
if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
|
|
return 1;
|
|
|
|
/* For other security levels we need the link key. */
|
|
if (!test_bit(HCI_CONN_AUTH, &conn->flags))
|
|
goto auth;
|
|
|
|
/* An authenticated FIPS approved combination key has sufficient
|
|
* security for security level 4. */
|
|
if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
|
|
sec_level == BT_SECURITY_FIPS)
|
|
goto encrypt;
|
|
|
|
/* An authenticated combination key has sufficient security for
|
|
security level 3. */
|
|
if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
|
|
conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
|
|
sec_level == BT_SECURITY_HIGH)
|
|
goto encrypt;
|
|
|
|
/* An unauthenticated combination key has sufficient security for
|
|
security level 1 and 2. */
|
|
if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
|
|
conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
|
|
(sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
|
|
goto encrypt;
|
|
|
|
/* A combination key has always sufficient security for the security
|
|
levels 1 or 2. High security level requires the combination key
|
|
is generated using maximum PIN code length (16).
|
|
For pre 2.1 units. */
|
|
if (conn->key_type == HCI_LK_COMBINATION &&
|
|
(sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
|
|
conn->pin_length == 16))
|
|
goto encrypt;
|
|
|
|
auth:
|
|
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
|
|
return 0;
|
|
|
|
if (initiator)
|
|
set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
|
|
|
|
if (!hci_conn_auth(conn, sec_level, auth_type))
|
|
return 0;
|
|
|
|
encrypt:
|
|
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
|
|
/* Ensure that the encryption key size has been read,
|
|
* otherwise stall the upper layer responses.
|
|
*/
|
|
if (!conn->enc_key_size)
|
|
return 0;
|
|
|
|
/* Nothing else needed, all requirements are met */
|
|
return 1;
|
|
}
|
|
|
|
hci_conn_encrypt(conn);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_conn_security);
|
|
|
|
/* Check secure link requirement */
|
|
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
/* Accept if non-secure or higher security level is required */
|
|
if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
|
|
return 1;
|
|
|
|
/* Accept if secure or higher security level is already present */
|
|
if (conn->sec_level == BT_SECURITY_HIGH ||
|
|
conn->sec_level == BT_SECURITY_FIPS)
|
|
return 1;
|
|
|
|
/* Reject not secure link */
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_conn_check_secure);
|
|
|
|
/* Switch role */
|
|
int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
|
|
{
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
if (role == conn->role)
|
|
return 1;
|
|
|
|
if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
|
|
struct hci_cp_switch_role cp;
|
|
bacpy(&cp.bdaddr, &conn->dst);
|
|
cp.role = role;
|
|
hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_conn_switch_role);
|
|
|
|
/* Enter active mode */
|
|
void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
BT_DBG("hcon %p mode %d", conn, conn->mode);
|
|
|
|
if (conn->mode != HCI_CM_SNIFF)
|
|
goto timer;
|
|
|
|
if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
|
|
goto timer;
|
|
|
|
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
|
|
struct hci_cp_exit_sniff_mode cp;
|
|
cp.handle = cpu_to_le16(conn->handle);
|
|
hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
|
|
}
|
|
|
|
timer:
|
|
if (hdev->idle_timeout > 0)
|
|
queue_delayed_work(hdev->workqueue, &conn->idle_work,
|
|
msecs_to_jiffies(hdev->idle_timeout));
|
|
}
|
|
|
|
/* Drop all connection on the device */
|
|
void hci_conn_hash_flush(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_conn *c, *n;
|
|
|
|
BT_DBG("hdev %s", hdev->name);
|
|
|
|
list_for_each_entry_safe(c, n, &h->list, list) {
|
|
c->state = BT_CLOSED;
|
|
|
|
hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
|
|
hci_conn_del(c);
|
|
}
|
|
}
|
|
|
|
/* Check pending connect attempts */
|
|
void hci_conn_check_pending(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn *conn;
|
|
|
|
BT_DBG("hdev %s", hdev->name);
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
|
|
if (conn)
|
|
hci_acl_create_connection(conn);
|
|
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
|
|
static u32 get_link_mode(struct hci_conn *conn)
|
|
{
|
|
u32 link_mode = 0;
|
|
|
|
if (conn->role == HCI_ROLE_MASTER)
|
|
link_mode |= HCI_LM_MASTER;
|
|
|
|
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
|
|
link_mode |= HCI_LM_ENCRYPT;
|
|
|
|
if (test_bit(HCI_CONN_AUTH, &conn->flags))
|
|
link_mode |= HCI_LM_AUTH;
|
|
|
|
if (test_bit(HCI_CONN_SECURE, &conn->flags))
|
|
link_mode |= HCI_LM_SECURE;
|
|
|
|
if (test_bit(HCI_CONN_FIPS, &conn->flags))
|
|
link_mode |= HCI_LM_FIPS;
|
|
|
|
return link_mode;
|
|
}
|
|
|
|
int hci_get_conn_list(void __user *arg)
|
|
{
|
|
struct hci_conn *c;
|
|
struct hci_conn_list_req req, *cl;
|
|
struct hci_conn_info *ci;
|
|
struct hci_dev *hdev;
|
|
int n = 0, size, err;
|
|
|
|
if (copy_from_user(&req, arg, sizeof(req)))
|
|
return -EFAULT;
|
|
|
|
if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
|
|
return -EINVAL;
|
|
|
|
size = sizeof(req) + req.conn_num * sizeof(*ci);
|
|
|
|
cl = kmalloc(size, GFP_KERNEL);
|
|
if (!cl)
|
|
return -ENOMEM;
|
|
|
|
hdev = hci_dev_get(req.dev_id);
|
|
if (!hdev) {
|
|
kfree(cl);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ci = cl->conn_info;
|
|
|
|
hci_dev_lock(hdev);
|
|
list_for_each_entry(c, &hdev->conn_hash.list, list) {
|
|
bacpy(&(ci + n)->bdaddr, &c->dst);
|
|
(ci + n)->handle = c->handle;
|
|
(ci + n)->type = c->type;
|
|
(ci + n)->out = c->out;
|
|
(ci + n)->state = c->state;
|
|
(ci + n)->link_mode = get_link_mode(c);
|
|
if (++n >= req.conn_num)
|
|
break;
|
|
}
|
|
hci_dev_unlock(hdev);
|
|
|
|
cl->dev_id = hdev->id;
|
|
cl->conn_num = n;
|
|
size = sizeof(req) + n * sizeof(*ci);
|
|
|
|
hci_dev_put(hdev);
|
|
|
|
err = copy_to_user(arg, cl, size);
|
|
kfree(cl);
|
|
|
|
return err ? -EFAULT : 0;
|
|
}
|
|
|
|
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
|
|
{
|
|
struct hci_conn_info_req req;
|
|
struct hci_conn_info ci;
|
|
struct hci_conn *conn;
|
|
char __user *ptr = arg + sizeof(req);
|
|
|
|
if (copy_from_user(&req, arg, sizeof(req)))
|
|
return -EFAULT;
|
|
|
|
hci_dev_lock(hdev);
|
|
conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
|
|
if (conn) {
|
|
bacpy(&ci.bdaddr, &conn->dst);
|
|
ci.handle = conn->handle;
|
|
ci.type = conn->type;
|
|
ci.out = conn->out;
|
|
ci.state = conn->state;
|
|
ci.link_mode = get_link_mode(conn);
|
|
}
|
|
hci_dev_unlock(hdev);
|
|
|
|
if (!conn)
|
|
return -ENOENT;
|
|
|
|
return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
|
|
}
|
|
|
|
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
|
|
{
|
|
struct hci_auth_info_req req;
|
|
struct hci_conn *conn;
|
|
|
|
if (copy_from_user(&req, arg, sizeof(req)))
|
|
return -EFAULT;
|
|
|
|
hci_dev_lock(hdev);
|
|
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
|
|
if (conn)
|
|
req.type = conn->auth_type;
|
|
hci_dev_unlock(hdev);
|
|
|
|
if (!conn)
|
|
return -ENOENT;
|
|
|
|
return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
|
|
}
|
|
|
|
struct hci_chan *hci_chan_create(struct hci_conn *conn)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_chan *chan;
|
|
|
|
BT_DBG("%s hcon %p", hdev->name, conn);
|
|
|
|
if (test_bit(HCI_CONN_DROP, &conn->flags)) {
|
|
BT_DBG("Refusing to create new hci_chan");
|
|
return NULL;
|
|
}
|
|
|
|
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
|
|
if (!chan)
|
|
return NULL;
|
|
|
|
chan->conn = hci_conn_get(conn);
|
|
skb_queue_head_init(&chan->data_q);
|
|
chan->state = BT_CONNECTED;
|
|
|
|
list_add_rcu(&chan->list, &conn->chan_list);
|
|
|
|
return chan;
|
|
}
|
|
|
|
void hci_chan_del(struct hci_chan *chan)
|
|
{
|
|
struct hci_conn *conn = chan->conn;
|
|
struct hci_dev *hdev = conn->hdev;
|
|
|
|
BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
|
|
|
|
list_del_rcu(&chan->list);
|
|
|
|
synchronize_rcu();
|
|
|
|
/* Prevent new hci_chan's to be created for this hci_conn */
|
|
set_bit(HCI_CONN_DROP, &conn->flags);
|
|
|
|
hci_conn_put(conn);
|
|
|
|
skb_queue_purge(&chan->data_q);
|
|
kfree(chan);
|
|
}
|
|
|
|
void hci_chan_list_flush(struct hci_conn *conn)
|
|
{
|
|
struct hci_chan *chan, *n;
|
|
|
|
BT_DBG("hcon %p", conn);
|
|
|
|
list_for_each_entry_safe(chan, n, &conn->chan_list, list)
|
|
hci_chan_del(chan);
|
|
}
|
|
|
|
static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
|
|
__u16 handle)
|
|
{
|
|
struct hci_chan *hchan;
|
|
|
|
list_for_each_entry(hchan, &hcon->chan_list, list) {
|
|
if (hchan->handle == handle)
|
|
return hchan;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_conn *hcon;
|
|
struct hci_chan *hchan = NULL;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(hcon, &h->list, list) {
|
|
hchan = __hci_chan_lookup_handle(hcon, handle);
|
|
if (hchan)
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return hchan;
|
|
}
|