WSL2-Linux-Kernel/drivers/net/qlge/qlge_main.c

3941 строка
106 KiB
C

/*
* QLogic qlge NIC HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
* See LICENSE.qlge for copyright and licensing details.
* Author: Linux qlge network device driver by
* Ron Mercer <ron.mercer@qlogic.com>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/if_vlan.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <net/ip6_checksum.h>
#include "qlge.h"
char qlge_driver_name[] = DRV_NAME;
const char qlge_driver_version[] = DRV_VERSION;
MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
MODULE_DESCRIPTION(DRV_STRING " ");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
/* NETIF_MSG_TIMER | */
NETIF_MSG_IFDOWN |
NETIF_MSG_IFUP |
NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR |
NETIF_MSG_TX_QUEUED |
NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
/* NETIF_MSG_PKTDATA | */
NETIF_MSG_HW | NETIF_MSG_WOL | 0;
static int debug = 0x00007fff; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
#define MSIX_IRQ 0
#define MSI_IRQ 1
#define LEG_IRQ 2
static int irq_type = MSIX_IRQ;
module_param(irq_type, int, MSIX_IRQ);
MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
/* This hardware semaphore causes exclusive access to
* resources shared between the NIC driver, MPI firmware,
* FCOE firmware and the FC driver.
*/
static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
{
u32 sem_bits = 0;
switch (sem_mask) {
case SEM_XGMAC0_MASK:
sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
break;
case SEM_XGMAC1_MASK:
sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
break;
case SEM_ICB_MASK:
sem_bits = SEM_SET << SEM_ICB_SHIFT;
break;
case SEM_MAC_ADDR_MASK:
sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
break;
case SEM_FLASH_MASK:
sem_bits = SEM_SET << SEM_FLASH_SHIFT;
break;
case SEM_PROBE_MASK:
sem_bits = SEM_SET << SEM_PROBE_SHIFT;
break;
case SEM_RT_IDX_MASK:
sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
break;
case SEM_PROC_REG_MASK:
sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
break;
default:
QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
return -EINVAL;
}
ql_write32(qdev, SEM, sem_bits | sem_mask);
return !(ql_read32(qdev, SEM) & sem_bits);
}
int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
{
unsigned int wait_count = 30;
do {
if (!ql_sem_trylock(qdev, sem_mask))
return 0;
udelay(100);
} while (--wait_count);
return -ETIMEDOUT;
}
void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
{
ql_write32(qdev, SEM, sem_mask);
ql_read32(qdev, SEM); /* flush */
}
/* This function waits for a specific bit to come ready
* in a given register. It is used mostly by the initialize
* process, but is also used in kernel thread API such as
* netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
*/
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
{
u32 temp;
int count = UDELAY_COUNT;
while (count) {
temp = ql_read32(qdev, reg);
/* check for errors */
if (temp & err_bit) {
QPRINTK(qdev, PROBE, ALERT,
"register 0x%.08x access error, value = 0x%.08x!.\n",
reg, temp);
return -EIO;
} else if (temp & bit)
return 0;
udelay(UDELAY_DELAY);
count--;
}
QPRINTK(qdev, PROBE, ALERT,
"Timed out waiting for reg %x to come ready.\n", reg);
return -ETIMEDOUT;
}
/* The CFG register is used to download TX and RX control blocks
* to the chip. This function waits for an operation to complete.
*/
static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
{
int count = UDELAY_COUNT;
u32 temp;
while (count) {
temp = ql_read32(qdev, CFG);
if (temp & CFG_LE)
return -EIO;
if (!(temp & bit))
return 0;
udelay(UDELAY_DELAY);
count--;
}
return -ETIMEDOUT;
}
/* Used to issue init control blocks to hw. Maps control block,
* sets address, triggers download, waits for completion.
*/
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
u16 q_id)
{
u64 map;
int status = 0;
int direction;
u32 mask;
u32 value;
direction =
(bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
PCI_DMA_FROMDEVICE;
map = pci_map_single(qdev->pdev, ptr, size, direction);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
return -ENOMEM;
}
status = ql_wait_cfg(qdev, bit);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Timed out waiting for CFG to come ready.\n");
goto exit;
}
status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
if (status)
goto exit;
ql_write32(qdev, ICB_L, (u32) map);
ql_write32(qdev, ICB_H, (u32) (map >> 32));
ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
mask = CFG_Q_MASK | (bit << 16);
value = bit | (q_id << CFG_Q_SHIFT);
ql_write32(qdev, CFG, (mask | value));
/*
* Wait for the bit to clear after signaling hw.
*/
status = ql_wait_cfg(qdev, bit);
exit:
pci_unmap_single(qdev->pdev, map, size, direction);
return status;
}
/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
u32 *value)
{
u32 offset = 0;
int status;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
case MAC_ADDR_TYPE_CAM_MAC:
{
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
if (type == MAC_ADDR_TYPE_CAM_MAC) {
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
}
break;
}
case MAC_ADDR_TYPE_VLAN:
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
QPRINTK(qdev, IFUP, CRIT,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
/* Set up a MAC, multicast or VLAN address for the
* inbound frame matching.
*/
static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
u16 index)
{
u32 offset = 0;
int status = 0;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
case MAC_ADDR_TYPE_CAM_MAC:
{
u32 cam_output;
u32 upper = (addr[0] << 8) | addr[1];
u32 lower =
(addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
(addr[5]);
QPRINTK(qdev, IFUP, INFO,
"Adding %s address %pM"
" at index %d in the CAM.\n",
((type ==
MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
"UNICAST"), addr, index);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, lower);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, upper);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
/* This field should also include the queue id
and possibly the function id. Right now we hardcode
the route field to NIC core.
*/
if (type == MAC_ADDR_TYPE_CAM_MAC) {
cam_output = (CAM_OUT_ROUTE_NIC |
(qdev->
func << CAM_OUT_FUNC_SHIFT) |
(qdev->
rss_ring_first_cq_id <<
CAM_OUT_CQ_ID_SHIFT));
if (qdev->vlgrp)
cam_output |= CAM_OUT_RV;
/* route to NIC core */
ql_write32(qdev, MAC_ADDR_DATA, cam_output);
}
break;
}
case MAC_ADDR_TYPE_VLAN:
{
u32 enable_bit = *((u32 *) &addr[0]);
/* For VLAN, the addr actually holds a bit that
* either enables or disables the vlan id we are
* addressing. It's either MAC_ADDR_E on or off.
* That's bit-27 we're talking about.
*/
QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
(enable_bit ? "Adding" : "Removing"),
index, (enable_bit ? "to" : "from"));
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type | /* type */
enable_bit); /* enable/disable */
break;
}
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
QPRINTK(qdev, IFUP, CRIT,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
/* Get a specific frame routing value from the CAM.
* Used for debug and reg dump.
*/
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
{
int status = 0;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
goto exit;
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
ql_write32(qdev, RT_IDX,
RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
if (status)
goto exit;
*value = ql_read32(qdev, RT_DATA);
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* The NIC function for this chip has 16 routing indexes. Each one can be used
* to route different frame types to various inbound queues. We send broadcast/
* multicast/error frames to the default queue for slow handling,
* and CAM hit/RSS frames to the fast handling queues.
*/
static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
int enable)
{
int status;
u32 value = 0;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
QPRINTK(qdev, IFUP, DEBUG,
"%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
(enable ? "Adding" : "Removing"),
((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
((index ==
RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
(enable ? "to" : "from"));
switch (mask) {
case RT_IDX_CAM_HIT:
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_VALID: /* Promiscuous Mode frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST: /* Pass up All Multicast frames. */
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
{
value = RT_IDX_DST_RSS | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case 0: /* Clear the E-bit on an entry. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(index << RT_IDX_IDX_SHIFT);/* index */
break;
}
default:
QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
mask);
status = -EPERM;
goto exit;
}
if (value) {
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
value |= (enable ? RT_IDX_E : 0);
ql_write32(qdev, RT_IDX, value);
ql_write32(qdev, RT_DATA, enable ? mask : 0);
}
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
static void ql_enable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
}
static void ql_disable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
}
/* If we're running with multiple MSI-X vectors then we enable on the fly.
* Otherwise, we may have multiple outstanding workers and don't want to
* enable until the last one finishes. In this case, the irq_cnt gets
* incremented everytime we queue a worker and decremented everytime
* a worker finishes. Once it hits zero we enable the interrupt.
*/
u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
unsigned long hw_flags = 0;
struct intr_context *ctx = qdev->intr_context + intr;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
/* Always enable if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
return var;
}
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (atomic_dec_and_test(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return var;
}
static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
unsigned long hw_flags;
struct intr_context *ctx;
/* HW disables for us if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
return 0;
ctx = qdev->intr_context + intr;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (!atomic_read(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_dis_mask);
var = ql_read32(qdev, STS);
}
atomic_inc(&ctx->irq_cnt);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return var;
}
static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->intr_count; i++) {
/* The enable call does a atomic_dec_and_test
* and enables only if the result is zero.
* So we precharge it here.
*/
if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
i == 0))
atomic_set(&qdev->intr_context[i].irq_cnt, 1);
ql_enable_completion_interrupt(qdev, i);
}
}
static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* This data is stored on flash as an array of
* __le32. Since ql_read32() returns cpu endian
* we need to swap it back.
*/
*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
exit:
return status;
}
static int ql_get_flash_params(struct ql_adapter *qdev)
{
int i;
int status;
__le32 *p = (__le32 *)&qdev->flash;
u32 offset = 0;
/* Second function's parameters follow the first
* function's.
*/
if (qdev->func)
offset = sizeof(qdev->flash) / sizeof(u32);
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
return -ETIMEDOUT;
for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
status = ql_read_flash_word(qdev, i+offset, p);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
goto exit;
}
}
exit:
ql_sem_unlock(qdev, SEM_FLASH_MASK);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
return status;
/* write the data to the data reg */
ql_write32(qdev, XGMAC_DATA, data);
/* trigger the write */
ql_write32(qdev, XGMAC_ADDR, reg);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, XGMAC_DATA);
exit:
return status;
}
/* This is used for reading the 64-bit statistics regs. */
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
{
int status = 0;
u32 hi = 0;
u32 lo = 0;
status = ql_read_xgmac_reg(qdev, reg, &lo);
if (status)
goto exit;
status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
if (status)
goto exit;
*data = (u64) lo | ((u64) hi << 32);
exit:
return status;
}
/* Take the MAC Core out of reset.
* Enable statistics counting.
* Take the transmitter/receiver out of reset.
* This functionality may be done in the MPI firmware at a
* later date.
*/
static int ql_port_initialize(struct ql_adapter *qdev)
{
int status = 0;
u32 data;
if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
/* Another function has the semaphore, so
* wait for the port init bit to come ready.
*/
QPRINTK(qdev, LINK, INFO,
"Another function has the semaphore, so wait for the port init bit to come ready.\n");
status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
if (status) {
QPRINTK(qdev, LINK, CRIT,
"Port initialize timed out.\n");
}
return status;
}
QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
/* Set the core reset. */
status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
if (status)
goto end;
data |= GLOBAL_CFG_RESET;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Clear the core reset and turn on jumbo for receiver. */
data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
data |= GLOBAL_CFG_TX_STAT_EN;
data |= GLOBAL_CFG_RX_STAT_EN;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Enable transmitter, and clear it's reset. */
status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
if (status)
goto end;
data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
data |= TX_CFG_EN; /* Enable the transmitter. */
status = ql_write_xgmac_reg(qdev, TX_CFG, data);
if (status)
goto end;
/* Enable receiver and clear it's reset. */
status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
if (status)
goto end;
data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
data |= RX_CFG_EN; /* Enable the receiver. */
status = ql_write_xgmac_reg(qdev, RX_CFG, data);
if (status)
goto end;
/* Turn on jumbo. */
status =
ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
if (status)
goto end;
status =
ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
if (status)
goto end;
/* Signal to the world that the port is enabled. */
ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
end:
ql_sem_unlock(qdev, qdev->xg_sem_mask);
return status;
}
/* Get the next large buffer. */
static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
rx_ring->lbq_curr_idx++;
if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_free_cnt++;
return lbq_desc;
}
/* Get the next small buffer. */
static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
{
struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
rx_ring->sbq_curr_idx++;
if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_free_cnt++;
return sbq_desc;
}
/* Update an rx ring index. */
static void ql_update_cq(struct rx_ring *rx_ring)
{
rx_ring->cnsmr_idx++;
rx_ring->curr_entry++;
if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
}
}
static void ql_write_cq_idx(struct rx_ring *rx_ring)
{
ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
}
/* Process (refill) a large buffer queue. */
static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int clean_idx = rx_ring->lbq_clean_idx;
struct bq_desc *lbq_desc;
u64 map;
int i;
while (rx_ring->lbq_free_cnt > 16) {
for (i = 0; i < 16; i++) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"lbq: try cleaning clean_idx = %d.\n",
clean_idx);
lbq_desc = &rx_ring->lbq[clean_idx];
if (lbq_desc->p.lbq_page == NULL) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"lbq: getting new page for index %d.\n",
lbq_desc->index);
lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
if (lbq_desc->p.lbq_page == NULL) {
rx_ring->lbq_clean_idx = clean_idx;
QPRINTK(qdev, RX_STATUS, ERR,
"Couldn't get a page.\n");
return;
}
map = pci_map_page(qdev->pdev,
lbq_desc->p.lbq_page,
0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
rx_ring->lbq_clean_idx = clean_idx;
put_page(lbq_desc->p.lbq_page);
lbq_desc->p.lbq_page = NULL;
QPRINTK(qdev, RX_STATUS, ERR,
"PCI mapping failed.\n");
return;
}
pci_unmap_addr_set(lbq_desc, mapaddr, map);
pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
*lbq_desc->addr = cpu_to_le64(map);
}
clean_idx++;
if (clean_idx == rx_ring->lbq_len)
clean_idx = 0;
}
rx_ring->lbq_clean_idx = clean_idx;
rx_ring->lbq_prod_idx += 16;
if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
rx_ring->lbq_prod_idx = 0;
QPRINTK(qdev, RX_STATUS, DEBUG,
"lbq: updating prod idx = %d.\n",
rx_ring->lbq_prod_idx);
ql_write_db_reg(rx_ring->lbq_prod_idx,
rx_ring->lbq_prod_idx_db_reg);
rx_ring->lbq_free_cnt -= 16;
}
}
/* Process (refill) a small buffer queue. */
static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int clean_idx = rx_ring->sbq_clean_idx;
struct bq_desc *sbq_desc;
u64 map;
int i;
while (rx_ring->sbq_free_cnt > 16) {
for (i = 0; i < 16; i++) {
sbq_desc = &rx_ring->sbq[clean_idx];
QPRINTK(qdev, RX_STATUS, DEBUG,
"sbq: try cleaning clean_idx = %d.\n",
clean_idx);
if (sbq_desc->p.skb == NULL) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"sbq: getting new skb for index %d.\n",
sbq_desc->index);
sbq_desc->p.skb =
netdev_alloc_skb(qdev->ndev,
rx_ring->sbq_buf_size);
if (sbq_desc->p.skb == NULL) {
QPRINTK(qdev, PROBE, ERR,
"Couldn't get an skb.\n");
rx_ring->sbq_clean_idx = clean_idx;
return;
}
skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
map = pci_map_single(qdev->pdev,
sbq_desc->p.skb->data,
rx_ring->sbq_buf_size /
2, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
rx_ring->sbq_clean_idx = clean_idx;
dev_kfree_skb_any(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
return;
}
pci_unmap_addr_set(sbq_desc, mapaddr, map);
pci_unmap_len_set(sbq_desc, maplen,
rx_ring->sbq_buf_size / 2);
*sbq_desc->addr = cpu_to_le64(map);
}
clean_idx++;
if (clean_idx == rx_ring->sbq_len)
clean_idx = 0;
}
rx_ring->sbq_clean_idx = clean_idx;
rx_ring->sbq_prod_idx += 16;
if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
rx_ring->sbq_prod_idx = 0;
QPRINTK(qdev, RX_STATUS, DEBUG,
"sbq: updating prod idx = %d.\n",
rx_ring->sbq_prod_idx);
ql_write_db_reg(rx_ring->sbq_prod_idx,
rx_ring->sbq_prod_idx_db_reg);
rx_ring->sbq_free_cnt -= 16;
}
}
static void ql_update_buffer_queues(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
ql_update_sbq(qdev, rx_ring);
ql_update_lbq(qdev, rx_ring);
}
/* Unmaps tx buffers. Can be called from send() if a pci mapping
* fails at some stage, or from the interrupt when a tx completes.
*/
static void ql_unmap_send(struct ql_adapter *qdev,
struct tx_ring_desc *tx_ring_desc, int mapped)
{
int i;
for (i = 0; i < mapped; i++) {
if (i == 0 || (i == 7 && mapped > 7)) {
/*
* Unmap the skb->data area, or the
* external sglist (AKA the Outbound
* Address List (OAL)).
* If its the zeroeth element, then it's
* the skb->data area. If it's the 7th
* element and there is more than 6 frags,
* then its an OAL.
*/
if (i == 7) {
QPRINTK(qdev, TX_DONE, DEBUG,
"unmapping OAL area.\n");
}
pci_unmap_single(qdev->pdev,
pci_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
pci_unmap_len(&tx_ring_desc->map[i],
maplen),
PCI_DMA_TODEVICE);
} else {
QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
i);
pci_unmap_page(qdev->pdev,
pci_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
pci_unmap_len(&tx_ring_desc->map[i],
maplen), PCI_DMA_TODEVICE);
}
}
}
/* Map the buffers for this transmit. This will return
* NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
*/
static int ql_map_send(struct ql_adapter *qdev,
struct ob_mac_iocb_req *mac_iocb_ptr,
struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
{
int len = skb_headlen(skb);
dma_addr_t map;
int frag_idx, err, map_idx = 0;
struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
int frag_cnt = skb_shinfo(skb)->nr_frags;
if (frag_cnt) {
QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
}
/*
* Map the skb buffer first.
*/
map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
QPRINTK(qdev, TX_QUEUED, ERR,
"PCI mapping failed with error: %d\n", err);
return NETDEV_TX_BUSY;
}
tbd->len = cpu_to_le32(len);
tbd->addr = cpu_to_le64(map);
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
map_idx++;
/*
* This loop fills the remainder of the 8 address descriptors
* in the IOCB. If there are more than 7 fragments, then the
* eighth address desc will point to an external list (OAL).
* When this happens, the remainder of the frags will be stored
* in this list.
*/
for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
tbd++;
if (frag_idx == 6 && frag_cnt > 7) {
/* Let's tack on an sglist.
* Our control block will now
* look like this:
* iocb->seg[0] = skb->data
* iocb->seg[1] = frag[0]
* iocb->seg[2] = frag[1]
* iocb->seg[3] = frag[2]
* iocb->seg[4] = frag[3]
* iocb->seg[5] = frag[4]
* iocb->seg[6] = frag[5]
* iocb->seg[7] = ptr to OAL (external sglist)
* oal->seg[0] = frag[6]
* oal->seg[1] = frag[7]
* oal->seg[2] = frag[8]
* oal->seg[3] = frag[9]
* oal->seg[4] = frag[10]
* etc...
*/
/* Tack on the OAL in the eighth segment of IOCB. */
map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
sizeof(struct oal),
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
QPRINTK(qdev, TX_QUEUED, ERR,
"PCI mapping outbound address list with error: %d\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
/*
* The length is the number of fragments
* that remain to be mapped times the length
* of our sglist (OAL).
*/
tbd->len =
cpu_to_le32((sizeof(struct tx_buf_desc) *
(frag_cnt - frag_idx)) | TX_DESC_C);
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
map);
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
sizeof(struct oal));
tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
map_idx++;
}
map =
pci_map_page(qdev->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
QPRINTK(qdev, TX_QUEUED, ERR,
"PCI mapping frags failed with error: %d.\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
tbd->len = cpu_to_le32(frag->size);
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
frag->size);
}
/* Save the number of segments we've mapped. */
tx_ring_desc->map_cnt = map_idx;
/* Terminate the last segment. */
tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
return NETDEV_TX_OK;
map_error:
/*
* If the first frag mapping failed, then i will be zero.
* This causes the unmap of the skb->data area. Otherwise
* we pass in the number of frags that mapped successfully
* so they can be umapped.
*/
ql_unmap_send(qdev, tx_ring_desc, map_idx);
return NETDEV_TX_BUSY;
}
static void ql_realign_skb(struct sk_buff *skb, int len)
{
void *temp_addr = skb->data;
/* Undo the skb_reserve(skb,32) we did before
* giving to hardware, and realign data on
* a 2-byte boundary.
*/
skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
skb_copy_to_linear_data(skb, temp_addr,
(unsigned int)len);
}
/*
* This function builds an skb for the given inbound
* completion. It will be rewritten for readability in the near
* future, but for not it works well.
*/
static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
struct bq_desc *lbq_desc;
struct bq_desc *sbq_desc;
struct sk_buff *skb = NULL;
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
/*
* Handle the header buffer if present.
*/
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
/*
* Headers fit nicely into a small buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc, mapaddr),
pci_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, hdr_len);
skb_put(skb, hdr_len);
sbq_desc->p.skb = NULL;
}
/*
* Handle the data buffer(s).
*/
if (unlikely(!length)) { /* Is there data too? */
QPRINTK(qdev, RX_STATUS, DEBUG,
"No Data buffer in this packet.\n");
return skb;
}
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Headers in small, data of %d bytes in small, combine them.\n", length);
/*
* Data is less than small buffer size so it's
* stuffed in a small buffer.
* For this case we append the data
* from the "data" small buffer to the "header" small
* buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_dma_sync_single_for_cpu(qdev->pdev,
pci_unmap_addr
(sbq_desc, mapaddr),
pci_unmap_len
(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, length),
sbq_desc->p.skb->data, length);
pci_dma_sync_single_for_device(qdev->pdev,
pci_unmap_addr
(sbq_desc,
mapaddr),
pci_unmap_len
(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
} else {
QPRINTK(qdev, RX_STATUS, DEBUG,
"%d bytes in a single small buffer.\n", length);
sbq_desc = ql_get_curr_sbuf(rx_ring);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, length);
skb_put(skb, length);
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc,
mapaddr),
pci_unmap_len(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
sbq_desc->p.skb = NULL;
}
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Header in small, %d bytes in large. Chain large to small!\n", length);
/*
* The data is in a single large buffer. We
* chain it to the header buffer's skb and let
* it rip.
*/
lbq_desc = ql_get_curr_lbuf(rx_ring);
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc,
mapaddr),
pci_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
QPRINTK(qdev, RX_STATUS, DEBUG,
"Chaining page to skb.\n");
skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
0, length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
lbq_desc->p.lbq_page = NULL;
} else {
/*
* The headers and data are in a single large buffer. We
* copy it to a new skb and let it go. This can happen with
* jumbo mtu on a non-TCP/UDP frame.
*/
lbq_desc = ql_get_curr_lbuf(rx_ring);
skb = netdev_alloc_skb(qdev->ndev, length);
if (skb == NULL) {
QPRINTK(qdev, PROBE, DEBUG,
"No skb available, drop the packet.\n");
return NULL;
}
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc,
mapaddr),
pci_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb_reserve(skb, NET_IP_ALIGN);
QPRINTK(qdev, RX_STATUS, DEBUG,
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
0, length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
length -= length;
lbq_desc->p.lbq_page = NULL;
__pskb_pull_tail(skb,
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
} else {
/*
* The data is in a chain of large buffers
* pointed to by a small buffer. We loop
* thru and chain them to the our small header
* buffer's skb.
* frags: There are 18 max frags and our small
* buffer will hold 32 of them. The thing is,
* we'll use 3 max for our 9000 byte jumbo
* frames. If the MTU goes up we could
* eventually be in trouble.
*/
int size, offset, i = 0;
__le64 *bq, bq_array[8];
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc, mapaddr),
pci_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
/*
* This is an non TCP/UDP IP frame, so
* the headers aren't split into a small
* buffer. We have to use the small buffer
* that contains our sg list as our skb to
* send upstairs. Copy the sg list here to
* a local buffer and use it to find the
* pages to chain.
*/
QPRINTK(qdev, RX_STATUS, DEBUG,
"%d bytes of headers & data in chain of large.\n", length);
skb = sbq_desc->p.skb;
bq = &bq_array[0];
memcpy(bq, skb->data, sizeof(bq_array));
sbq_desc->p.skb = NULL;
skb_reserve(skb, NET_IP_ALIGN);
} else {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Headers in small, %d bytes of data in chain of large.\n", length);
bq = (__le64 *)sbq_desc->p.skb->data;
}
while (length > 0) {
lbq_desc = ql_get_curr_lbuf(rx_ring);
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc,
mapaddr),
pci_unmap_len(lbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
offset = 0;
QPRINTK(qdev, RX_STATUS, DEBUG,
"Adding page %d to skb for %d bytes.\n",
i, size);
skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
offset, size);
skb->len += size;
skb->data_len += size;
skb->truesize += size;
length -= size;
lbq_desc->p.lbq_page = NULL;
bq++;
i++;
}
__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
return skb;
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
if (unlikely(!skb)) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"No skb available, drop packet.\n");
return;
}
prefetch(skb->data);
skb->dev = ndev;
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
}
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
}
if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
QPRINTK(qdev, RX_STATUS, ERR,
"Bad checksum for this %s packet.\n",
((ib_mac_rsp->
flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
skb->ip_summed = CHECKSUM_NONE;
} else if (qdev->rx_csum &&
((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
!(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
qdev->stats.rx_packets++;
qdev->stats.rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, ndev);
if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Passing a VLAN packet upstream.\n");
vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
le16_to_cpu(ib_mac_rsp->vlan_id));
} else {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Passing a normal packet upstream.\n");
netif_receive_skb(skb);
}
}
/* Process an outbound completion from an rx ring. */
static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
struct ob_mac_iocb_rsp *mac_rsp)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
QL_DUMP_OB_MAC_RSP(mac_rsp);
tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
tx_ring_desc = &tx_ring->q[mac_rsp->tid];
ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
qdev->stats.tx_packets++;
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
OB_MAC_IOCB_RSP_S |
OB_MAC_IOCB_RSP_L |
OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
QPRINTK(qdev, TX_DONE, WARNING,
"Total descriptor length did not match transfer length.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
QPRINTK(qdev, TX_DONE, WARNING,
"Frame too short to be legal, not sent.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
QPRINTK(qdev, TX_DONE, WARNING,
"Frame too long, but sent anyway.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
QPRINTK(qdev, TX_DONE, WARNING,
"PCI backplane error. Frame not sent.\n");
}
}
atomic_inc(&tx_ring->tx_count);
}
/* Fire up a handler to reset the MPI processor. */
void ql_queue_fw_error(struct ql_adapter *qdev)
{
netif_stop_queue(qdev->ndev);
netif_carrier_off(qdev->ndev);
queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
}
void ql_queue_asic_error(struct ql_adapter *qdev)
{
netif_stop_queue(qdev->ndev);
netif_carrier_off(qdev->ndev);
ql_disable_interrupts(qdev);
/* Clear adapter up bit to signal the recovery
* process that it shouldn't kill the reset worker
* thread
*/
clear_bit(QL_ADAPTER_UP, &qdev->flags);
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
}
static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
struct ib_ae_iocb_rsp *ib_ae_rsp)
{
switch (ib_ae_rsp->event) {
case MGMT_ERR_EVENT:
QPRINTK(qdev, RX_ERR, ERR,
"Management Processor Fatal Error.\n");
ql_queue_fw_error(qdev);
return;
case CAM_LOOKUP_ERR_EVENT:
QPRINTK(qdev, LINK, ERR,
"Multiple CAM hits lookup occurred.\n");
QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
ql_queue_asic_error(qdev);
return;
case SOFT_ECC_ERROR_EVENT:
QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
ql_queue_asic_error(qdev);
break;
case PCI_ERR_ANON_BUF_RD:
QPRINTK(qdev, RX_ERR, ERR,
"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
ib_ae_rsp->q_id);
ql_queue_asic_error(qdev);
break;
default:
QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
ib_ae_rsp->event);
ql_queue_asic_error(qdev);
break;
}
}
static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ob_mac_iocb_rsp *net_rsp = NULL;
int count = 0;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
prod, rx_ring->cnsmr_idx);
net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_OB_MAC_TSO_IOCB:
case OPCODE_OB_MAC_IOCB:
ql_process_mac_tx_intr(qdev, net_rsp);
break;
default:
QPRINTK(qdev, RX_STATUS, DEBUG,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
}
ql_write_cq_idx(rx_ring);
if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
if (atomic_read(&tx_ring->queue_stopped) &&
(atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
/*
* The queue got stopped because the tx_ring was full.
* Wake it up, because it's now at least 25% empty.
*/
netif_wake_queue(qdev->ndev);
}
return count;
}
static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ql_net_rsp_iocb *net_rsp;
int count = 0;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
prod, rx_ring->cnsmr_idx);
net_rsp = rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_IB_MAC_IOCB:
ql_process_mac_rx_intr(qdev, rx_ring,
(struct ib_mac_iocb_rsp *)
net_rsp);
break;
case OPCODE_IB_AE_IOCB:
ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
net_rsp);
break;
default:
{
QPRINTK(qdev, RX_STATUS, DEBUG,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
}
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
if (count == budget)
break;
}
ql_update_buffer_queues(qdev, rx_ring);
ql_write_cq_idx(rx_ring);
return count;
}
static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
{
struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
struct ql_adapter *qdev = rx_ring->qdev;
int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
rx_ring->cq_id);
if (work_done < budget) {
__netif_rx_complete(napi);
ql_enable_completion_interrupt(qdev, rx_ring->irq);
}
return work_done;
}
static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
{
struct ql_adapter *qdev = netdev_priv(ndev);
qdev->vlgrp = grp;
if (grp) {
QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
NIC_RCV_CFG_VLAN_MATCH_AND_NON);
} else {
QPRINTK(qdev, IFUP, DEBUG,
"Turning off VLAN in NIC_RCV_CFG.\n");
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
}
}
static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
u32 enable_bit = MAC_ADDR_E;
spin_lock(&qdev->hw_lock);
if (ql_set_mac_addr_reg
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
}
spin_unlock(&qdev->hw_lock);
}
static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
u32 enable_bit = 0;
spin_lock(&qdev->hw_lock);
if (ql_set_mac_addr_reg
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
}
spin_unlock(&qdev->hw_lock);
}
/* Worker thread to process a given rx_ring that is dedicated
* to outbound completions.
*/
static void ql_tx_clean(struct work_struct *work)
{
struct rx_ring *rx_ring =
container_of(work, struct rx_ring, rx_work.work);
ql_clean_outbound_rx_ring(rx_ring);
ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
}
/* Worker thread to process a given rx_ring that is dedicated
* to inbound completions.
*/
static void ql_rx_clean(struct work_struct *work)
{
struct rx_ring *rx_ring =
container_of(work, struct rx_ring, rx_work.work);
ql_clean_inbound_rx_ring(rx_ring, 64);
ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
}
/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
&rx_ring->rx_work, 0);
return IRQ_HANDLED;
}
/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
netif_rx_schedule(&rx_ring->napi);
return IRQ_HANDLED;
}
/* This handles a fatal error, MPI activity, and the default
* rx_ring in an MSI-X multiple vector environment.
* In MSI/Legacy environment it also process the rest of
* the rx_rings.
*/
static irqreturn_t qlge_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
struct ql_adapter *qdev = rx_ring->qdev;
struct intr_context *intr_context = &qdev->intr_context[0];
u32 var;
int i;
int work_done = 0;
spin_lock(&qdev->hw_lock);
if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
spin_unlock(&qdev->hw_lock);
return IRQ_NONE;
}
spin_unlock(&qdev->hw_lock);
var = ql_disable_completion_interrupt(qdev, intr_context->intr);
/*
* Check for fatal error.
*/
if (var & STS_FE) {
ql_queue_asic_error(qdev);
QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
var = ql_read32(qdev, ERR_STS);
QPRINTK(qdev, INTR, ERR,
"Resetting chip. Error Status Register = 0x%x\n", var);
return IRQ_HANDLED;
}
/*
* Check MPI processor activity.
*/
if (var & STS_PI) {
/*
* We've got an async event or mailbox completion.
* Handle it and clear the source of the interrupt.
*/
QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
&qdev->mpi_work, 0);
work_done++;
}
/*
* Check the default queue and wake handler if active.
*/
rx_ring = &qdev->rx_ring[0];
if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
&rx_ring->rx_work, 0);
work_done++;
}
if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
/*
* Start the DPC for each active queue.
*/
for (i = 1; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
rx_ring->cnsmr_idx) {
QPRINTK(qdev, INTR, INFO,
"Waking handler for rx_ring[%d].\n", i);
ql_disable_completion_interrupt(qdev,
intr_context->
intr);
if (i < qdev->rss_ring_first_cq_id)
queue_delayed_work_on(rx_ring->cpu,
qdev->q_workqueue,
&rx_ring->rx_work,
0);
else
netif_rx_schedule(&rx_ring->napi);
work_done++;
}
}
}
ql_enable_completion_interrupt(qdev, intr_context->intr);
return work_done ? IRQ_HANDLED : IRQ_NONE;
}
static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
if (skb_is_gso(skb)) {
int err;
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb)
<< OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
if (likely(skb->protocol == htons(ETH_P_IP))) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 1;
}
return 0;
}
static void ql_hw_csum_setup(struct sk_buff *skb,
struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
int len;
struct iphdr *iph = ip_hdr(skb);
__sum16 *check;
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
len = (ntohs(iph->tot_len) - (iph->ihl << 2));
if (likely(iph->protocol == IPPROTO_TCP)) {
check = &(tcp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
(tcp_hdr(skb)->doff << 2));
} else {
check = &(udp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
sizeof(struct udphdr));
}
*check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, len, iph->protocol, 0);
}
static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
{
struct tx_ring_desc *tx_ring_desc;
struct ob_mac_iocb_req *mac_iocb_ptr;
struct ql_adapter *qdev = netdev_priv(ndev);
int tso;
struct tx_ring *tx_ring;
u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
tx_ring = &qdev->tx_ring[tx_ring_idx];
if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
QPRINTK(qdev, TX_QUEUED, INFO,
"%s: shutting down tx queue %d du to lack of resources.\n",
__func__, tx_ring_idx);
netif_stop_queue(ndev);
atomic_inc(&tx_ring->queue_stopped);
return NETDEV_TX_BUSY;
}
tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
mac_iocb_ptr = tx_ring_desc->queue_entry;
memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
mac_iocb_ptr->tid = tx_ring_desc->index;
/* We use the upper 32-bits to store the tx queue for this IO.
* When we get the completion we can use it to establish the context.
*/
mac_iocb_ptr->txq_idx = tx_ring_idx;
tx_ring_desc->skb = skb;
mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
vlan_tx_tag_get(skb));
mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
}
tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
ql_hw_csum_setup(skb,
(struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
}
if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
NETDEV_TX_OK) {
QPRINTK(qdev, TX_QUEUED, ERR,
"Could not map the segments.\n");
return NETDEV_TX_BUSY;
}
QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
tx_ring->prod_idx++;
if (tx_ring->prod_idx == tx_ring->wq_len)
tx_ring->prod_idx = 0;
wmb();
ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ndev->trans_start = jiffies;
QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
tx_ring->prod_idx, skb->len);
atomic_dec(&tx_ring->tx_count);
return NETDEV_TX_OK;
}
static void ql_free_shadow_space(struct ql_adapter *qdev)
{
if (qdev->rx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
qdev->rx_ring_shadow_reg_area = NULL;
}
if (qdev->tx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->tx_ring_shadow_reg_area,
qdev->tx_ring_shadow_reg_dma);
qdev->tx_ring_shadow_reg_area = NULL;
}
}
static int ql_alloc_shadow_space(struct ql_adapter *qdev)
{
qdev->rx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev,
PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
if (qdev->rx_ring_shadow_reg_area == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Allocation of RX shadow space failed.\n");
return -ENOMEM;
}
qdev->tx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
&qdev->tx_ring_shadow_reg_dma);
if (qdev->tx_ring_shadow_reg_area == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Allocation of TX shadow space failed.\n");
goto err_wqp_sh_area;
}
return 0;
err_wqp_sh_area:
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
return -ENOMEM;
}
static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct tx_ring_desc *tx_ring_desc;
int i;
struct ob_mac_iocb_req *mac_iocb_ptr;
mac_iocb_ptr = tx_ring->wq_base;
tx_ring_desc = tx_ring->q;
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc->index = i;
tx_ring_desc->skb = NULL;
tx_ring_desc->queue_entry = mac_iocb_ptr;
mac_iocb_ptr++;
tx_ring_desc++;
}
atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
atomic_set(&tx_ring->queue_stopped, 0);
}
static void ql_free_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
if (tx_ring->wq_base) {
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
tx_ring->wq_base = NULL;
}
kfree(tx_ring->q);
tx_ring->q = NULL;
}
static int ql_alloc_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
tx_ring->wq_base =
pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
&tx_ring->wq_base_dma);
if ((tx_ring->wq_base == NULL)
|| tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
return -ENOMEM;
}
tx_ring->q =
kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
if (tx_ring->q == NULL)
goto err;
return 0;
err:
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
return -ENOMEM;
}
static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int i;
struct bq_desc *lbq_desc;
for (i = 0; i < rx_ring->lbq_len; i++) {
lbq_desc = &rx_ring->lbq[i];
if (lbq_desc->p.lbq_page) {
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc, mapaddr),
pci_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
put_page(lbq_desc->p.lbq_page);
lbq_desc->p.lbq_page = NULL;
}
}
}
/*
* Allocate and map a page for each element of the lbq.
*/
static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *lbq_desc;
u64 map;
__le64 *bq = rx_ring->lbq_base;
for (i = 0; i < rx_ring->lbq_len; i++) {
lbq_desc = &rx_ring->lbq[i];
memset(lbq_desc, 0, sizeof(lbq_desc));
lbq_desc->addr = bq;
lbq_desc->index = i;
lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
if (unlikely(!lbq_desc->p.lbq_page)) {
QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
goto mem_error;
} else {
map = pci_map_page(qdev->pdev,
lbq_desc->p.lbq_page,
0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR,
"PCI mapping failed.\n");
goto mem_error;
}
pci_unmap_addr_set(lbq_desc, mapaddr, map);
pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
*lbq_desc->addr = cpu_to_le64(map);
}
bq++;
}
return 0;
mem_error:
ql_free_lbq_buffers(qdev, rx_ring);
return -ENOMEM;
}
static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
if (sbq_desc == NULL) {
QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
return;
}
if (sbq_desc->p.skb) {
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc, mapaddr),
pci_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
}
}
}
/* Allocate and map an skb for each element of the sbq. */
static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
struct sk_buff *skb;
u64 map;
__le64 *bq = rx_ring->sbq_base;
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
memset(sbq_desc, 0, sizeof(sbq_desc));
sbq_desc->index = i;
sbq_desc->addr = bq;
skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
if (unlikely(!skb)) {
/* Better luck next round */
QPRINTK(qdev, IFUP, ERR,
"small buff alloc failed for %d bytes at index %d.\n",
rx_ring->sbq_buf_size, i);
goto mem_err;
}
skb_reserve(skb, QLGE_SB_PAD);
sbq_desc->p.skb = skb;
/*
* Map only half the buffer. Because the
* other half may get some data copied to it
* when the completion arrives.
*/
map = pci_map_single(qdev->pdev,
skb->data,
rx_ring->sbq_buf_size / 2,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
goto mem_err;
}
pci_unmap_addr_set(sbq_desc, mapaddr, map);
pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
*sbq_desc->addr = cpu_to_le64(map);
bq++;
}
return 0;
mem_err:
ql_free_sbq_buffers(qdev, rx_ring);
return -ENOMEM;
}
static void ql_free_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
if (rx_ring->sbq_len)
ql_free_sbq_buffers(qdev, rx_ring);
if (rx_ring->lbq_len)
ql_free_lbq_buffers(qdev, rx_ring);
/* Free the small buffer queue. */
if (rx_ring->sbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->sbq_size,
rx_ring->sbq_base, rx_ring->sbq_base_dma);
rx_ring->sbq_base = NULL;
}
/* Free the small buffer queue control blocks. */
kfree(rx_ring->sbq);
rx_ring->sbq = NULL;
/* Free the large buffer queue. */
if (rx_ring->lbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->lbq_size,
rx_ring->lbq_base, rx_ring->lbq_base_dma);
rx_ring->lbq_base = NULL;
}
/* Free the large buffer queue control blocks. */
kfree(rx_ring->lbq);
rx_ring->lbq = NULL;
/* Free the rx queue. */
if (rx_ring->cq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->cq_size,
rx_ring->cq_base, rx_ring->cq_base_dma);
rx_ring->cq_base = NULL;
}
}
/* Allocate queues and buffers for this completions queue based
* on the values in the parameter structure. */
static int ql_alloc_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
/*
* Allocate the completion queue for this rx_ring.
*/
rx_ring->cq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
&rx_ring->cq_base_dma);
if (rx_ring->cq_base == NULL) {
QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
return -ENOMEM;
}
if (rx_ring->sbq_len) {
/*
* Allocate small buffer queue.
*/
rx_ring->sbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
&rx_ring->sbq_base_dma);
if (rx_ring->sbq_base == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Small buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate small buffer queue control blocks.
*/
rx_ring->sbq =
kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->sbq == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Small buffer queue control block allocation failed.\n");
goto err_mem;
}
if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
QPRINTK(qdev, IFUP, ERR,
"Small buffer allocation failed.\n");
goto err_mem;
}
}
if (rx_ring->lbq_len) {
/*
* Allocate large buffer queue.
*/
rx_ring->lbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
&rx_ring->lbq_base_dma);
if (rx_ring->lbq_base == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Large buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate large buffer queue control blocks.
*/
rx_ring->lbq =
kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->lbq == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Large buffer queue control block allocation failed.\n");
goto err_mem;
}
/*
* Allocate the buffers.
*/
if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
QPRINTK(qdev, IFUP, ERR,
"Large buffer allocation failed.\n");
goto err_mem;
}
}
return 0;
err_mem:
ql_free_rx_resources(qdev, rx_ring);
return -ENOMEM;
}
static void ql_tx_ring_clean(struct ql_adapter *qdev)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
int i, j;
/*
* Loop through all queues and free
* any resources.
*/
for (j = 0; j < qdev->tx_ring_count; j++) {
tx_ring = &qdev->tx_ring[j];
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc = &tx_ring->q[i];
if (tx_ring_desc && tx_ring_desc->skb) {
QPRINTK(qdev, IFDOWN, ERR,
"Freeing lost SKB %p, from queue %d, index %d.\n",
tx_ring_desc->skb, j,
tx_ring_desc->index);
ql_unmap_send(qdev, tx_ring_desc,
tx_ring_desc->map_cnt);
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
}
}
}
}
static void ql_free_mem_resources(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->tx_ring_count; i++)
ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
for (i = 0; i < qdev->rx_ring_count; i++)
ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
ql_free_shadow_space(qdev);
}
static int ql_alloc_mem_resources(struct ql_adapter *qdev)
{
int i;
/* Allocate space for our shadow registers and such. */
if (ql_alloc_shadow_space(qdev))
return -ENOMEM;
for (i = 0; i < qdev->rx_ring_count; i++) {
if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
QPRINTK(qdev, IFUP, ERR,
"RX resource allocation failed.\n");
goto err_mem;
}
}
/* Allocate tx queue resources */
for (i = 0; i < qdev->tx_ring_count; i++) {
if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
QPRINTK(qdev, IFUP, ERR,
"TX resource allocation failed.\n");
goto err_mem;
}
}
return 0;
err_mem:
ql_free_mem_resources(qdev);
return -ENOMEM;
}
/* Set up the rx ring control block and pass it to the chip.
* The control block is defined as
* "Completion Queue Initialization Control Block", or cqicb.
*/
static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
struct cqicb *cqicb = &rx_ring->cqicb;
void *shadow_reg = qdev->rx_ring_shadow_reg_area +
(rx_ring->cq_id * sizeof(u64) * 4);
u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
(rx_ring->cq_id * sizeof(u64) * 4);
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
int err = 0;
u16 bq_len;
/* Set up the shadow registers for this ring. */
rx_ring->prod_idx_sh_reg = shadow_reg;
rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
shadow_reg += sizeof(u64);
shadow_reg_dma += sizeof(u64);
rx_ring->lbq_base_indirect = shadow_reg;
rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
shadow_reg += sizeof(u64);
shadow_reg_dma += sizeof(u64);
rx_ring->sbq_base_indirect = shadow_reg;
rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
/* PCI doorbell mem area + 0x00 for consumer index register */
rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
/* PCI doorbell mem area + 0x04 for valid register */
rx_ring->valid_db_reg = doorbell_area + 0x04;
/* PCI doorbell mem area + 0x18 for large buffer consumer */
rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
/* PCI doorbell mem area + 0x1c */
rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
memset((void *)cqicb, 0, sizeof(struct cqicb));
cqicb->msix_vect = rx_ring->irq;
bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
/*
* Set up the control block load flags.
*/
cqicb->flags = FLAGS_LC | /* Load queue base address */
FLAGS_LV | /* Load MSI-X vector */
FLAGS_LI; /* Load irq delay values */
if (rx_ring->lbq_len) {
cqicb->flags |= FLAGS_LL; /* Load lbq values */
*((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
cqicb->lbq_addr =
cpu_to_le64(rx_ring->lbq_base_indirect_dma);
bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
(u16) rx_ring->lbq_buf_size;
cqicb->lbq_buf_size = cpu_to_le16(bq_len);
bq_len = (rx_ring->lbq_len == 65536) ? 0 :
(u16) rx_ring->lbq_len;
cqicb->lbq_len = cpu_to_le16(bq_len);
rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
rx_ring->lbq_free_cnt = 16;
}
if (rx_ring->sbq_len) {
cqicb->flags |= FLAGS_LS; /* Load sbq values */
*((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
cqicb->sbq_addr =
cpu_to_le64(rx_ring->sbq_base_indirect_dma);
cqicb->sbq_buf_size =
cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
bq_len = (rx_ring->sbq_len == 65536) ? 0 :
(u16) rx_ring->sbq_len;
cqicb->sbq_len = cpu_to_le16(bq_len);
rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
rx_ring->sbq_free_cnt = 16;
}
switch (rx_ring->type) {
case TX_Q:
/* If there's only one interrupt, then we use
* worker threads to process the outbound
* completion handling rx_rings. We do this so
* they can be run on multiple CPUs. There is
* room to play with this more where we would only
* run in a worker if there are more than x number
* of outbound completions on the queue and more
* than one queue active. Some threshold that
* would indicate a benefit in spite of the cost
* of a context switch.
* If there's more than one interrupt, then the
* outbound completions are processed in the ISR.
*/
if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
else {
/* With all debug warnings on we see a WARN_ON message
* when we free the skb in the interrupt context.
*/
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
}
cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
break;
case DEFAULT_Q:
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
cqicb->irq_delay = 0;
cqicb->pkt_delay = 0;
break;
case RX_Q:
/* Inbound completion handling rx_rings run in
* separate NAPI contexts.
*/
netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
64);
cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
break;
default:
QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
rx_ring->type);
}
QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
CFG_LCQ, rx_ring->cq_id);
if (err) {
QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
return err;
}
QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
/*
* Advance the producer index for the buffer queues.
*/
wmb();
if (rx_ring->lbq_len)
ql_write_db_reg(rx_ring->lbq_prod_idx,
rx_ring->lbq_prod_idx_db_reg);
if (rx_ring->sbq_len)
ql_write_db_reg(rx_ring->sbq_prod_idx,
rx_ring->sbq_prod_idx_db_reg);
return err;
}
static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct wqicb *wqicb = (struct wqicb *)tx_ring;
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
void *shadow_reg = qdev->tx_ring_shadow_reg_area +
(tx_ring->wq_id * sizeof(u64));
u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
(tx_ring->wq_id * sizeof(u64));
int err = 0;
/*
* Assign doorbell registers for this tx_ring.
*/
/* TX PCI doorbell mem area for tx producer index */
tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
tx_ring->prod_idx = 0;
/* TX PCI doorbell mem area + 0x04 */
tx_ring->valid_db_reg = doorbell_area + 0x04;
/*
* Assign shadow registers for this tx_ring.
*/
tx_ring->cnsmr_idx_sh_reg = shadow_reg;
tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
wqicb->rid = 0;
wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
ql_init_tx_ring(qdev, tx_ring);
err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
(u16) tx_ring->wq_id);
if (err) {
QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
return err;
}
QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
return err;
}
static void ql_disable_msix(struct ql_adapter *qdev)
{
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
pci_disable_msix(qdev->pdev);
clear_bit(QL_MSIX_ENABLED, &qdev->flags);
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
pci_disable_msi(qdev->pdev);
clear_bit(QL_MSI_ENABLED, &qdev->flags);
}
}
static void ql_enable_msix(struct ql_adapter *qdev)
{
int i;
qdev->intr_count = 1;
/* Get the MSIX vectors. */
if (irq_type == MSIX_IRQ) {
/* Try to alloc space for the msix struct,
* if it fails then go to MSI/legacy.
*/
qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!qdev->msi_x_entry) {
irq_type = MSI_IRQ;
goto msi;
}
for (i = 0; i < qdev->rx_ring_count; i++)
qdev->msi_x_entry[i].entry = i;
if (!pci_enable_msix
(qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
set_bit(QL_MSIX_ENABLED, &qdev->flags);
qdev->intr_count = qdev->rx_ring_count;
QPRINTK(qdev, IFUP, INFO,
"MSI-X Enabled, got %d vectors.\n",
qdev->intr_count);
return;
} else {
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
QPRINTK(qdev, IFUP, WARNING,
"MSI-X Enable failed, trying MSI.\n");
irq_type = MSI_IRQ;
}
}
msi:
if (irq_type == MSI_IRQ) {
if (!pci_enable_msi(qdev->pdev)) {
set_bit(QL_MSI_ENABLED, &qdev->flags);
QPRINTK(qdev, IFUP, INFO,
"Running with MSI interrupts.\n");
return;
}
}
irq_type = LEG_IRQ;
QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
}
/*
* Here we build the intr_context structures based on
* our rx_ring count and intr vector count.
* The intr_context structure is used to hook each vector
* to possibly different handlers.
*/
static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
{
int i = 0;
struct intr_context *intr_context = &qdev->intr_context[0];
ql_enable_msix(qdev);
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Each rx_ring has it's
* own intr_context since we have separate
* vectors for each queue.
* This only true when MSI-X is enabled.
*/
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
qdev->rx_ring[i].irq = i;
intr_context->intr = i;
intr_context->qdev = qdev;
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
| i;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
INTR_EN_IHD | i;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
i;
if (i == 0) {
/*
* Default queue handles bcast/mcast plus
* async events. Needs buffers.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-default-queue",
qdev->ndev->name);
} else if (i < qdev->rss_ring_first_cq_id) {
/*
* Outbound queue is for outbound completions only.
*/
intr_context->handler = qlge_msix_tx_isr;
sprintf(intr_context->name, "%s-tx-%d",
qdev->ndev->name, i);
} else {
/*
* Inbound queues handle unicast frames only.
*/
intr_context->handler = qlge_msix_rx_isr;
sprintf(intr_context->name, "%s-rx-%d",
qdev->ndev->name, i);
}
}
} else {
/*
* All rx_rings use the same intr_context since
* there is only one vector.
*/
intr_context->intr = 0;
intr_context->qdev = qdev;
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
/*
* Single interrupt means one handler for all rings.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
for (i = 0; i < qdev->rx_ring_count; i++)
qdev->rx_ring[i].irq = 0;
}
}
static void ql_free_irq(struct ql_adapter *qdev)
{
int i;
struct intr_context *intr_context = &qdev->intr_context[0];
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
if (intr_context->hooked) {
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
free_irq(qdev->msi_x_entry[i].vector,
&qdev->rx_ring[i]);
QPRINTK(qdev, IFDOWN, ERR,
"freeing msix interrupt %d.\n", i);
} else {
free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
QPRINTK(qdev, IFDOWN, ERR,
"freeing msi interrupt %d.\n", i);
}
}
}
ql_disable_msix(qdev);
}
static int ql_request_irq(struct ql_adapter *qdev)
{
int i;
int status = 0;
struct pci_dev *pdev = qdev->pdev;
struct intr_context *intr_context = &qdev->intr_context[0];
ql_resolve_queues_to_irqs(qdev);
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
atomic_set(&intr_context->irq_cnt, 0);
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
status = request_irq(qdev->msi_x_entry[i].vector,
intr_context->handler,
0,
intr_context->name,
&qdev->rx_ring[i]);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed request for MSIX interrupt %d.\n",
i);
goto err_irq;
} else {
QPRINTK(qdev, IFUP, INFO,
"Hooked intr %d, queue type %s%s%s, with name %s.\n",
i,
qdev->rx_ring[i].type ==
DEFAULT_Q ? "DEFAULT_Q" : "",
qdev->rx_ring[i].type ==
TX_Q ? "TX_Q" : "",
qdev->rx_ring[i].type ==
RX_Q ? "RX_Q" : "", intr_context->name);
}
} else {
QPRINTK(qdev, IFUP, DEBUG,
"trying msi or legacy interrupts.\n");
QPRINTK(qdev, IFUP, DEBUG,
"%s: irq = %d.\n", __func__, pdev->irq);
QPRINTK(qdev, IFUP, DEBUG,
"%s: context->name = %s.\n", __func__,
intr_context->name);
QPRINTK(qdev, IFUP, DEBUG,
"%s: dev_id = 0x%p.\n", __func__,
&qdev->rx_ring[0]);
status =
request_irq(pdev->irq, qlge_isr,
test_bit(QL_MSI_ENABLED,
&qdev->
flags) ? 0 : IRQF_SHARED,
intr_context->name, &qdev->rx_ring[0]);
if (status)
goto err_irq;
QPRINTK(qdev, IFUP, ERR,
"Hooked intr %d, queue type %s%s%s, with name %s.\n",
i,
qdev->rx_ring[0].type ==
DEFAULT_Q ? "DEFAULT_Q" : "",
qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
intr_context->name);
}
intr_context->hooked = 1;
}
return status;
err_irq:
QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
ql_free_irq(qdev);
return status;
}
static int ql_start_rss(struct ql_adapter *qdev)
{
struct ricb *ricb = &qdev->ricb;
int status = 0;
int i;
u8 *hash_id = (u8 *) ricb->hash_cq_id;
memset((void *)ricb, 0, sizeof(ricb));
ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
ricb->flags =
(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
RSS_RT6);
ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
/*
* Fill out the Indirection Table.
*/
for (i = 0; i < 256; i++)
hash_id[i] = i & (qdev->rss_ring_count - 1);
/*
* Random values for the IPv6 and IPv4 Hash Keys.
*/
get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
return status;
}
QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
return status;
}
/* Initialize the frame-to-queue routing. */
static int ql_route_initialize(struct ql_adapter *qdev)
{
int status = 0;
int i;
/* Clear all the entries in the routing table. */
for (i = 0; i < 16; i++) {
status = ql_set_routing_reg(qdev, i, 0, 0);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for CAM packets.\n");
return status;
}
}
status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for error packets.\n");
return status;
}
status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for broadcast packets.\n");
return status;
}
/* If we have more than one inbound queue, then turn on RSS in the
* routing block.
*/
if (qdev->rss_ring_count > 1) {
status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
RT_IDX_RSS_MATCH, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for MATCH RSS packets.\n");
return status;
}
}
status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
RT_IDX_CAM_HIT, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for CAM packets.\n");
return status;
}
return status;
}
static int ql_adapter_initialize(struct ql_adapter *qdev)
{
u32 value, mask;
int i;
int status = 0;
/*
* Set up the System register to halt on errors.
*/
value = SYS_EFE | SYS_FAE;
mask = value << 16;
ql_write32(qdev, SYS, mask | value);
/* Set the default queue. */
value = NIC_RCV_CFG_DFQ;
mask = NIC_RCV_CFG_DFQ_MASK;
ql_write32(qdev, NIC_RCV_CFG, (mask | value));
/* Set the MPI interrupt to enabled. */
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
/* Enable the function, set pagesize, enable error checking. */
value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
/* Set/clear header splitting. */
mask = FSC_VM_PAGESIZE_MASK |
FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
ql_write32(qdev, FSC, mask | value);
ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
/* Start up the rx queues. */
for (i = 0; i < qdev->rx_ring_count; i++) {
status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to start rx ring[%d].\n", i);
return status;
}
}
/* If there is more than one inbound completion queue
* then download a RICB to configure RSS.
*/
if (qdev->rss_ring_count > 1) {
status = ql_start_rss(qdev);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
return status;
}
}
/* Start up the tx queues. */
for (i = 0; i < qdev->tx_ring_count; i++) {
status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to start tx ring[%d].\n", i);
return status;
}
}
status = ql_port_initialize(qdev);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
return status;
}
status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
return status;
}
status = ql_route_initialize(qdev);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
return status;
}
/* Start NAPI for the RSS queues. */
for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
i);
napi_enable(&qdev->rx_ring[i].napi);
}
return status;
}
/* Issue soft reset to chip. */
static int ql_adapter_reset(struct ql_adapter *qdev)
{
u32 value;
int max_wait_time;
int status = 0;
int resetCnt = 0;
#define MAX_RESET_CNT 1
issueReset:
resetCnt++;
QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
/* Wait for reset to complete. */
max_wait_time = 3;
QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
max_wait_time);
do {
value = ql_read32(qdev, RST_FO);
if ((value & RST_FO_FR) == 0)
break;
ssleep(1);
} while ((--max_wait_time));
if (value & RST_FO_FR) {
QPRINTK(qdev, IFDOWN, ERR,
"Stuck in SoftReset: FSC_SR:0x%08x\n", value);
if (resetCnt < MAX_RESET_CNT)
goto issueReset;
}
if (max_wait_time == 0) {
status = -ETIMEDOUT;
QPRINTK(qdev, IFDOWN, ERR,
"ETIMEOUT!!! errored out of resetting the chip!\n");
}
return status;
}
static void ql_display_dev_info(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
QPRINTK(qdev, PROBE, INFO,
"Function #%d, NIC Roll %d, NIC Rev = %d, "
"XG Roll = %d, XG Rev = %d.\n",
qdev->func,
qdev->chip_rev_id & 0x0000000f,
qdev->chip_rev_id >> 4 & 0x0000000f,
qdev->chip_rev_id >> 8 & 0x0000000f,
qdev->chip_rev_id >> 12 & 0x0000000f);
QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
}
static int ql_adapter_down(struct ql_adapter *qdev)
{
struct net_device *ndev = qdev->ndev;
int i, status = 0;
struct rx_ring *rx_ring;
netif_stop_queue(ndev);
netif_carrier_off(ndev);
/* Don't kill the reset worker thread if we
* are in the process of recovery.
*/
if (test_bit(QL_ADAPTER_UP, &qdev->flags))
cancel_delayed_work_sync(&qdev->asic_reset_work);
cancel_delayed_work_sync(&qdev->mpi_reset_work);
cancel_delayed_work_sync(&qdev->mpi_work);
/* The default queue at index 0 is always processed in
* a workqueue.
*/
cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
/* The rest of the rx_rings are processed in
* a workqueue only if it's a single interrupt
* environment (MSI/Legacy).
*/
for (i = 1; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
/* Only the RSS rings use NAPI on multi irq
* environment. Outbound completion processing
* is done in interrupt context.
*/
if (i >= qdev->rss_ring_first_cq_id) {
napi_disable(&rx_ring->napi);
} else {
cancel_delayed_work_sync(&rx_ring->rx_work);
}
}
clear_bit(QL_ADAPTER_UP, &qdev->flags);
ql_disable_interrupts(qdev);
ql_tx_ring_clean(qdev);
spin_lock(&qdev->hw_lock);
status = ql_adapter_reset(qdev);
if (status)
QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
qdev->func);
spin_unlock(&qdev->hw_lock);
return status;
}
static int ql_adapter_up(struct ql_adapter *qdev)
{
int err = 0;
spin_lock(&qdev->hw_lock);
err = ql_adapter_initialize(qdev);
if (err) {
QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
spin_unlock(&qdev->hw_lock);
goto err_init;
}
spin_unlock(&qdev->hw_lock);
set_bit(QL_ADAPTER_UP, &qdev->flags);
ql_enable_interrupts(qdev);
ql_enable_all_completion_interrupts(qdev);
if ((ql_read32(qdev, STS) & qdev->port_init)) {
netif_carrier_on(qdev->ndev);
netif_start_queue(qdev->ndev);
}
return 0;
err_init:
ql_adapter_reset(qdev);
return err;
}
static int ql_cycle_adapter(struct ql_adapter *qdev)
{
int status;
status = ql_adapter_down(qdev);
if (status)
goto error;
status = ql_adapter_up(qdev);
if (status)
goto error;
return status;
error:
QPRINTK(qdev, IFUP, ALERT,
"Driver up/down cycle failed, closing device\n");
rtnl_lock();
dev_close(qdev->ndev);
rtnl_unlock();
return status;
}
static void ql_release_adapter_resources(struct ql_adapter *qdev)
{
ql_free_mem_resources(qdev);
ql_free_irq(qdev);
}
static int ql_get_adapter_resources(struct ql_adapter *qdev)
{
int status = 0;
if (ql_alloc_mem_resources(qdev)) {
QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
return -ENOMEM;
}
status = ql_request_irq(qdev);
if (status)
goto err_irq;
return status;
err_irq:
ql_free_mem_resources(qdev);
return status;
}
static int qlge_close(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
/*
* Wait for device to recover from a reset.
* (Rarely happens, but possible.)
*/
while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
msleep(1);
ql_adapter_down(qdev);
ql_release_adapter_resources(qdev);
return 0;
}
static int ql_configure_rings(struct ql_adapter *qdev)
{
int i;
struct rx_ring *rx_ring;
struct tx_ring *tx_ring;
int cpu_cnt = num_online_cpus();
/*
* For each processor present we allocate one
* rx_ring for outbound completions, and one
* rx_ring for inbound completions. Plus there is
* always the one default queue. For the CPU
* counts we end up with the following rx_rings:
* rx_ring count =
* one default queue +
* (CPU count * outbound completion rx_ring) +
* (CPU count * inbound (RSS) completion rx_ring)
* To keep it simple we limit the total number of
* queues to < 32, so we truncate CPU to 8.
* This limitation can be removed when requested.
*/
if (cpu_cnt > MAX_CPUS)
cpu_cnt = MAX_CPUS;
/*
* rx_ring[0] is always the default queue.
*/
/* Allocate outbound completion ring for each CPU. */
qdev->tx_ring_count = cpu_cnt;
/* Allocate inbound completion (RSS) ring for each CPU. */
qdev->rss_ring_count = cpu_cnt;
/* cq_id for the first inbound ring handler. */
qdev->rss_ring_first_cq_id = cpu_cnt + 1;
/*
* qdev->rx_ring_count:
* Total number of rx_rings. This includes the one
* default queue, a number of outbound completion
* handler rx_rings, and the number of inbound
* completion handler rx_rings.
*/
qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
for (i = 0; i < qdev->tx_ring_count; i++) {
tx_ring = &qdev->tx_ring[i];
memset((void *)tx_ring, 0, sizeof(tx_ring));
tx_ring->qdev = qdev;
tx_ring->wq_id = i;
tx_ring->wq_len = qdev->tx_ring_size;
tx_ring->wq_size =
tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
/*
* The completion queue ID for the tx rings start
* immediately after the default Q ID, which is zero.
*/
tx_ring->cq_id = i + 1;
}
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
memset((void *)rx_ring, 0, sizeof(rx_ring));
rx_ring->qdev = qdev;
rx_ring->cq_id = i;
rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
if (i == 0) { /* Default queue at index 0. */
/*
* Default queue handles bcast/mcast plus
* async events. Needs buffers.
*/
rx_ring->cq_len = qdev->rx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
rx_ring->lbq_size =
rx_ring->lbq_len * sizeof(__le64);
rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
rx_ring->sbq_size =
rx_ring->sbq_len * sizeof(__le64);
rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
rx_ring->type = DEFAULT_Q;
} else if (i < qdev->rss_ring_first_cq_id) {
/*
* Outbound queue handles outbound completions only.
*/
/* outbound cq is same size as tx_ring it services. */
rx_ring->cq_len = qdev->tx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = 0;
rx_ring->lbq_size = 0;
rx_ring->lbq_buf_size = 0;
rx_ring->sbq_len = 0;
rx_ring->sbq_size = 0;
rx_ring->sbq_buf_size = 0;
rx_ring->type = TX_Q;
} else { /* Inbound completions (RSS) queues */
/*
* Inbound queues handle unicast frames only.
*/
rx_ring->cq_len = qdev->rx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
rx_ring->lbq_size =
rx_ring->lbq_len * sizeof(__le64);
rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
rx_ring->sbq_size =
rx_ring->sbq_len * sizeof(__le64);
rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
rx_ring->type = RX_Q;
}
}
return 0;
}
static int qlge_open(struct net_device *ndev)
{
int err = 0;
struct ql_adapter *qdev = netdev_priv(ndev);
err = ql_configure_rings(qdev);
if (err)
return err;
err = ql_get_adapter_resources(qdev);
if (err)
goto error_up;
err = ql_adapter_up(qdev);
if (err)
goto error_up;
return err;
error_up:
ql_release_adapter_resources(qdev);
return err;
}
static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
{
struct ql_adapter *qdev = netdev_priv(ndev);
if (ndev->mtu == 1500 && new_mtu == 9000) {
QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
} else if (ndev->mtu == 9000 && new_mtu == 1500) {
QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
} else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
(ndev->mtu == 9000 && new_mtu == 9000)) {
return 0;
} else
return -EINVAL;
ndev->mtu = new_mtu;
return 0;
}
static struct net_device_stats *qlge_get_stats(struct net_device
*ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
return &qdev->stats;
}
static void qlge_set_multicast_list(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
struct dev_mc_list *mc_ptr;
int i;
spin_lock(&qdev->hw_lock);
/*
* Set or clear promiscuous mode if a
* transition is taking place.
*/
if (ndev->flags & IFF_PROMISC) {
if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
QPRINTK(qdev, HW, ERR,
"Failed to set promiscous mode.\n");
} else {
set_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
} else {
if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
QPRINTK(qdev, HW, ERR,
"Failed to clear promiscous mode.\n");
} else {
clear_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
}
/*
* Set or clear all multicast mode if a
* transition is taking place.
*/
if ((ndev->flags & IFF_ALLMULTI) ||
(ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
QPRINTK(qdev, HW, ERR,
"Failed to set all-multi mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
} else {
if (test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
QPRINTK(qdev, HW, ERR,
"Failed to clear all-multi mode.\n");
} else {
clear_bit(QL_ALLMULTI, &qdev->flags);
}
}
}
if (ndev->mc_count) {
for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
i++, mc_ptr = mc_ptr->next)
if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
MAC_ADDR_TYPE_MULTI_MAC, i)) {
QPRINTK(qdev, HW, ERR,
"Failed to loadmulticast address.\n");
goto exit;
}
if (ql_set_routing_reg
(qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
QPRINTK(qdev, HW, ERR,
"Failed to set multicast match mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
exit:
spin_unlock(&qdev->hw_lock);
}
static int qlge_set_mac_address(struct net_device *ndev, void *p)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
struct sockaddr *addr = p;
int ret = 0;
if (netif_running(ndev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
spin_lock(&qdev->hw_lock);
if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
ret = -1;
}
spin_unlock(&qdev->hw_lock);
return ret;
}
static void qlge_tx_timeout(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
ql_queue_asic_error(qdev);
}
static void ql_asic_reset_work(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, asic_reset_work.work);
ql_cycle_adapter(qdev);
}
static void ql_get_board_info(struct ql_adapter *qdev)
{
qdev->func =
(ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
if (qdev->func) {
qdev->xg_sem_mask = SEM_XGMAC1_MASK;
qdev->port_link_up = STS_PL1;
qdev->port_init = STS_PI1;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
} else {
qdev->xg_sem_mask = SEM_XGMAC0_MASK;
qdev->port_link_up = STS_PL0;
qdev->port_init = STS_PI0;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
}
qdev->chip_rev_id = ql_read32(qdev, REV_ID);
}
static void ql_release_all(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (qdev->workqueue) {
destroy_workqueue(qdev->workqueue);
qdev->workqueue = NULL;
}
if (qdev->q_workqueue) {
destroy_workqueue(qdev->q_workqueue);
qdev->q_workqueue = NULL;
}
if (qdev->reg_base)
iounmap(qdev->reg_base);
if (qdev->doorbell_area)
iounmap(qdev->doorbell_area);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
}
static int __devinit ql_init_device(struct pci_dev *pdev,
struct net_device *ndev, int cards_found)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int pos, err = 0;
u16 val16;
memset((void *)qdev, 0, sizeof(qdev));
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "PCI device enable failed.\n");
return err;
}
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (pos <= 0) {
dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
"aborting.\n");
goto err_out;
} else {
pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
val16 |= (PCI_EXP_DEVCTL_CERE |
PCI_EXP_DEVCTL_NFERE |
PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "PCI region request failed.\n");
goto err_out;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
set_bit(QL_DMA64, &qdev->flags);
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
}
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration.\n");
goto err_out;
}
pci_set_drvdata(pdev, ndev);
qdev->reg_base =
ioremap_nocache(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
if (!qdev->reg_base) {
dev_err(&pdev->dev, "Register mapping failed.\n");
err = -ENOMEM;
goto err_out;
}
qdev->doorbell_area_size = pci_resource_len(pdev, 3);
qdev->doorbell_area =
ioremap_nocache(pci_resource_start(pdev, 3),
pci_resource_len(pdev, 3));
if (!qdev->doorbell_area) {
dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
err = -ENOMEM;
goto err_out;
}
ql_get_board_info(qdev);
qdev->ndev = ndev;
qdev->pdev = pdev;
qdev->msg_enable = netif_msg_init(debug, default_msg);
spin_lock_init(&qdev->hw_lock);
spin_lock_init(&qdev->stats_lock);
/* make sure the EEPROM is good */
err = ql_get_flash_params(qdev);
if (err) {
dev_err(&pdev->dev, "Invalid FLASH.\n");
goto err_out;
}
if (!is_valid_ether_addr(qdev->flash.mac_addr))
goto err_out;
memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
/* Set up the default ring sizes. */
qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
/* Set up the coalescing parameters. */
qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
/*
* Set up the operating parameters.
*/
qdev->rx_csum = 1;
qdev->q_workqueue = create_workqueue(ndev->name);
qdev->workqueue = create_singlethread_workqueue(ndev->name);
INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
if (!cards_found) {
dev_info(&pdev->dev, "%s\n", DRV_STRING);
dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
DRV_NAME, DRV_VERSION);
}
return 0;
err_out:
ql_release_all(pdev);
pci_disable_device(pdev);
return err;
}
static const struct net_device_ops qlge_netdev_ops = {
.ndo_open = qlge_open,
.ndo_stop = qlge_close,
.ndo_start_xmit = qlge_send,
.ndo_change_mtu = qlge_change_mtu,
.ndo_get_stats = qlge_get_stats,
.ndo_set_multicast_list = qlge_set_multicast_list,
.ndo_set_mac_address = qlge_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = qlge_tx_timeout,
.ndo_vlan_rx_register = ql_vlan_rx_register,
.ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
};
static int __devinit qlge_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_entry)
{
struct net_device *ndev = NULL;
struct ql_adapter *qdev = NULL;
static int cards_found = 0;
int err = 0;
ndev = alloc_etherdev(sizeof(struct ql_adapter));
if (!ndev)
return -ENOMEM;
err = ql_init_device(pdev, ndev, cards_found);
if (err < 0) {
free_netdev(ndev);
return err;
}
qdev = netdev_priv(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->features = (0
| NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
| NETIF_F_TSO6
| NETIF_F_TSO_ECN
| NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
if (test_bit(QL_DMA64, &qdev->flags))
ndev->features |= NETIF_F_HIGHDMA;
/*
* Set up net_device structure.
*/
ndev->tx_queue_len = qdev->tx_ring_size;
ndev->irq = pdev->irq;
ndev->netdev_ops = &qlge_netdev_ops;
SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
ndev->watchdog_timeo = 10 * HZ;
err = register_netdev(ndev);
if (err) {
dev_err(&pdev->dev, "net device registration failed.\n");
ql_release_all(pdev);
pci_disable_device(pdev);
return err;
}
netif_carrier_off(ndev);
netif_stop_queue(ndev);
ql_display_dev_info(ndev);
cards_found++;
return 0;
}
static void __devexit qlge_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
unregister_netdev(ndev);
ql_release_all(pdev);
pci_disable_device(pdev);
free_netdev(ndev);
}
/*
* This callback is called by the PCI subsystem whenever
* a PCI bus error is detected.
*/
static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
enum pci_channel_state state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (netif_running(ndev))
ql_adapter_down(qdev);
pci_disable_device(pdev);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/*
* This callback is called after the PCI buss has been reset.
* Basically, this tries to restart the card from scratch.
* This is a shortened version of the device probe/discovery code,
* it resembles the first-half of the () routine.
*/
static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (pci_enable_device(pdev)) {
QPRINTK(qdev, IFUP, ERR,
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
netif_carrier_off(ndev);
netif_stop_queue(ndev);
ql_adapter_reset(qdev);
/* Make sure the EEPROM is good */
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
if (!is_valid_ether_addr(ndev->perm_addr)) {
QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
static void qlge_io_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
pci_set_master(pdev);
if (netif_running(ndev)) {
if (ql_adapter_up(qdev)) {
QPRINTK(qdev, IFUP, ERR,
"Device initialization failed after reset.\n");
return;
}
}
netif_device_attach(ndev);
}
static struct pci_error_handlers qlge_err_handler = {
.error_detected = qlge_io_error_detected,
.slot_reset = qlge_io_slot_reset,
.resume = qlge_io_resume,
};
static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err, i;
netif_device_detach(ndev);
if (netif_running(ndev)) {
err = ql_adapter_down(qdev);
if (!err)
return err;
}
for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
netif_napi_del(&qdev->rx_ring[i].napi);
err = pci_save_state(pdev);
if (err)
return err;
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int qlge_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (netif_running(ndev)) {
err = ql_adapter_up(qdev);
if (err)
return err;
}
netif_device_attach(ndev);
return 0;
}
#endif /* CONFIG_PM */
static void qlge_shutdown(struct pci_dev *pdev)
{
qlge_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver qlge_driver = {
.name = DRV_NAME,
.id_table = qlge_pci_tbl,
.probe = qlge_probe,
.remove = __devexit_p(qlge_remove),
#ifdef CONFIG_PM
.suspend = qlge_suspend,
.resume = qlge_resume,
#endif
.shutdown = qlge_shutdown,
.err_handler = &qlge_err_handler
};
static int __init qlge_init_module(void)
{
return pci_register_driver(&qlge_driver);
}
static void __exit qlge_exit(void)
{
pci_unregister_driver(&qlge_driver);
}
module_init(qlge_init_module);
module_exit(qlge_exit);