1461 строка
33 KiB
C
1461 строка
33 KiB
C
/*
|
|
*
|
|
* Intel Management Engine Interface (Intel MEI) Linux driver
|
|
* Copyright (c) 2003-2012, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/kthread.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include "mei_dev.h"
|
|
#include "hbm.h"
|
|
|
|
#include "hw-me.h"
|
|
#include "hw-me-regs.h"
|
|
|
|
#include "mei-trace.h"
|
|
|
|
/**
|
|
* mei_me_reg_read - Reads 32bit data from the mei device
|
|
*
|
|
* @hw: the me hardware structure
|
|
* @offset: offset from which to read the data
|
|
*
|
|
* Return: register value (u32)
|
|
*/
|
|
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
|
|
unsigned long offset)
|
|
{
|
|
return ioread32(hw->mem_addr + offset);
|
|
}
|
|
|
|
|
|
/**
|
|
* mei_me_reg_write - Writes 32bit data to the mei device
|
|
*
|
|
* @hw: the me hardware structure
|
|
* @offset: offset from which to write the data
|
|
* @value: register value to write (u32)
|
|
*/
|
|
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
|
|
unsigned long offset, u32 value)
|
|
{
|
|
iowrite32(value, hw->mem_addr + offset);
|
|
}
|
|
|
|
/**
|
|
* mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
|
|
* read window register
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: ME_CB_RW register value (u32)
|
|
*/
|
|
static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
|
|
{
|
|
return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
|
|
}
|
|
|
|
/**
|
|
* mei_me_hcbww_write - write 32bit data to the host circular buffer
|
|
*
|
|
* @dev: the device structure
|
|
* @data: 32bit data to be written to the host circular buffer
|
|
*/
|
|
static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
|
|
{
|
|
mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
|
|
}
|
|
|
|
/**
|
|
* mei_me_mecsr_read - Reads 32bit data from the ME CSR
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: ME_CSR_HA register value (u32)
|
|
*/
|
|
static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
|
|
trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
|
|
|
|
return reg;
|
|
}
|
|
|
|
/**
|
|
* mei_hcsr_read - Reads 32bit data from the host CSR
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: H_CSR register value (u32)
|
|
*/
|
|
static inline u32 mei_hcsr_read(const struct mei_device *dev)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
|
|
trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
|
|
|
|
return reg;
|
|
}
|
|
|
|
/**
|
|
* mei_hcsr_write - writes H_CSR register to the mei device
|
|
*
|
|
* @dev: the device structure
|
|
* @reg: new register value
|
|
*/
|
|
static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
|
|
{
|
|
trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
|
|
mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_hcsr_set - writes H_CSR register to the mei device,
|
|
* and ignores the H_IS bit for it is write-one-to-zero.
|
|
*
|
|
* @dev: the device structure
|
|
* @reg: new register value
|
|
*/
|
|
static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
|
|
{
|
|
reg &= ~H_CSR_IS_MASK;
|
|
mei_hcsr_write(dev, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_hcsr_set_hig - set host interrupt (set H_IG)
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static inline void mei_hcsr_set_hig(struct mei_device *dev)
|
|
{
|
|
u32 hcsr;
|
|
|
|
hcsr = mei_hcsr_read(dev) | H_IG;
|
|
mei_hcsr_set(dev, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: H_D0I3C register value (u32)
|
|
*/
|
|
static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
|
|
trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
|
|
|
|
return reg;
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3c_write - writes H_D0I3C register to device
|
|
*
|
|
* @dev: the device structure
|
|
* @reg: new register value
|
|
*/
|
|
static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
|
|
{
|
|
trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
|
|
mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_me_fw_status - read fw status register from pci config space
|
|
*
|
|
* @dev: mei device
|
|
* @fw_status: fw status register values
|
|
*
|
|
* Return: 0 on success, error otherwise
|
|
*/
|
|
static int mei_me_fw_status(struct mei_device *dev,
|
|
struct mei_fw_status *fw_status)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!fw_status)
|
|
return -EINVAL;
|
|
|
|
fw_status->count = fw_src->count;
|
|
for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
|
|
ret = pci_read_config_dword(pdev, fw_src->status[i],
|
|
&fw_status->status[i]);
|
|
trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
|
|
fw_src->status[i],
|
|
fw_status->status[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_config - configure hw dependent settings
|
|
*
|
|
* @dev: mei device
|
|
*/
|
|
static void mei_me_hw_config(struct mei_device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr, reg;
|
|
|
|
/* Doesn't change in runtime */
|
|
hcsr = mei_hcsr_read(dev);
|
|
dev->hbuf_depth = (hcsr & H_CBD) >> 24;
|
|
|
|
reg = 0;
|
|
pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®);
|
|
trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
|
|
hw->d0i3_supported =
|
|
((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
|
|
|
|
hw->pg_state = MEI_PG_OFF;
|
|
if (hw->d0i3_supported) {
|
|
reg = mei_me_d0i3c_read(dev);
|
|
if (reg & H_D0I3C_I3)
|
|
hw->pg_state = MEI_PG_ON;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_state - translate internal pg state
|
|
* to the mei power gating state
|
|
*
|
|
* @dev: mei device
|
|
*
|
|
* Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
|
|
*/
|
|
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
return hw->pg_state;
|
|
}
|
|
|
|
static inline u32 me_intr_src(u32 hcsr)
|
|
{
|
|
return hcsr & H_CSR_IS_MASK;
|
|
}
|
|
|
|
/**
|
|
* me_intr_disable - disables mei device interrupts
|
|
* using supplied hcsr register value.
|
|
*
|
|
* @dev: the device structure
|
|
* @hcsr: supplied hcsr register value
|
|
*/
|
|
static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
|
|
{
|
|
hcsr &= ~H_CSR_IE_MASK;
|
|
mei_hcsr_set(dev, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_intr_clear - clear and stop interrupts
|
|
*
|
|
* @dev: the device structure
|
|
* @hcsr: supplied hcsr register value
|
|
*/
|
|
static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
|
|
{
|
|
if (me_intr_src(hcsr))
|
|
mei_hcsr_write(dev, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_intr_clear - clear and stop interrupts
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_intr_clear(struct mei_device *dev)
|
|
{
|
|
u32 hcsr = mei_hcsr_read(dev);
|
|
|
|
me_intr_clear(dev, hcsr);
|
|
}
|
|
/**
|
|
* mei_me_intr_enable - enables mei device interrupts
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_intr_enable(struct mei_device *dev)
|
|
{
|
|
u32 hcsr = mei_hcsr_read(dev);
|
|
|
|
hcsr |= H_CSR_IE_MASK;
|
|
mei_hcsr_set(dev, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_intr_disable - disables mei device interrupts
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_intr_disable(struct mei_device *dev)
|
|
{
|
|
u32 hcsr = mei_hcsr_read(dev);
|
|
|
|
me_intr_disable(dev, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_synchronize_irq - wait for pending IRQ handlers
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_synchronize_irq(struct mei_device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
synchronize_irq(pdev->irq);
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_reset_release - release device from the reset
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_hw_reset_release(struct mei_device *dev)
|
|
{
|
|
u32 hcsr = mei_hcsr_read(dev);
|
|
|
|
hcsr |= H_IG;
|
|
hcsr &= ~H_RST;
|
|
mei_hcsr_set(dev, hcsr);
|
|
|
|
/* complete this write before we set host ready on another CPU */
|
|
mmiowb();
|
|
}
|
|
|
|
/**
|
|
* mei_me_host_set_ready - enable device
|
|
*
|
|
* @dev: mei device
|
|
*/
|
|
static void mei_me_host_set_ready(struct mei_device *dev)
|
|
{
|
|
u32 hcsr = mei_hcsr_read(dev);
|
|
|
|
hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
|
|
mei_hcsr_set(dev, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_host_is_ready - check whether the host has turned ready
|
|
*
|
|
* @dev: mei device
|
|
* Return: bool
|
|
*/
|
|
static bool mei_me_host_is_ready(struct mei_device *dev)
|
|
{
|
|
u32 hcsr = mei_hcsr_read(dev);
|
|
|
|
return (hcsr & H_RDY) == H_RDY;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_is_ready - check whether the me(hw) has turned ready
|
|
*
|
|
* @dev: mei device
|
|
* Return: bool
|
|
*/
|
|
static bool mei_me_hw_is_ready(struct mei_device *dev)
|
|
{
|
|
u32 mecsr = mei_me_mecsr_read(dev);
|
|
|
|
return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_is_resetting - check whether the me(hw) is in reset
|
|
*
|
|
* @dev: mei device
|
|
* Return: bool
|
|
*/
|
|
static bool mei_me_hw_is_resetting(struct mei_device *dev)
|
|
{
|
|
u32 mecsr = mei_me_mecsr_read(dev);
|
|
|
|
return (mecsr & ME_RST_HRA) == ME_RST_HRA;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_ready_wait - wait until the me(hw) has turned ready
|
|
* or timeout is reached
|
|
*
|
|
* @dev: mei device
|
|
* Return: 0 on success, error otherwise
|
|
*/
|
|
static int mei_me_hw_ready_wait(struct mei_device *dev)
|
|
{
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_hw_ready,
|
|
dev->recvd_hw_ready,
|
|
mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
|
|
mutex_lock(&dev->device_lock);
|
|
if (!dev->recvd_hw_ready) {
|
|
dev_err(dev->dev, "wait hw ready failed\n");
|
|
return -ETIME;
|
|
}
|
|
|
|
mei_me_hw_reset_release(dev);
|
|
dev->recvd_hw_ready = false;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_start - hw start routine
|
|
*
|
|
* @dev: mei device
|
|
* Return: 0 on success, error otherwise
|
|
*/
|
|
static int mei_me_hw_start(struct mei_device *dev)
|
|
{
|
|
int ret = mei_me_hw_ready_wait(dev);
|
|
|
|
if (ret)
|
|
return ret;
|
|
dev_dbg(dev->dev, "hw is ready\n");
|
|
|
|
mei_me_host_set_ready(dev);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* mei_hbuf_filled_slots - gets number of device filled buffer slots
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: number of filled slots
|
|
*/
|
|
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
|
|
{
|
|
u32 hcsr;
|
|
char read_ptr, write_ptr;
|
|
|
|
hcsr = mei_hcsr_read(dev);
|
|
|
|
read_ptr = (char) ((hcsr & H_CBRP) >> 8);
|
|
write_ptr = (char) ((hcsr & H_CBWP) >> 16);
|
|
|
|
return (unsigned char) (write_ptr - read_ptr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_hbuf_is_empty - checks if host buffer is empty.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: true if empty, false - otherwise.
|
|
*/
|
|
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
|
|
{
|
|
return mei_hbuf_filled_slots(dev) == 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hbuf_empty_slots - counts write empty slots.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: -EOVERFLOW if overflow, otherwise empty slots count
|
|
*/
|
|
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
|
|
{
|
|
unsigned char filled_slots, empty_slots;
|
|
|
|
filled_slots = mei_hbuf_filled_slots(dev);
|
|
empty_slots = dev->hbuf_depth - filled_slots;
|
|
|
|
/* check for overflow */
|
|
if (filled_slots > dev->hbuf_depth)
|
|
return -EOVERFLOW;
|
|
|
|
return empty_slots;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hbuf_max_len - returns size of hw buffer.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: size of hw buffer in bytes
|
|
*/
|
|
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
|
|
{
|
|
return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
|
|
}
|
|
|
|
|
|
/**
|
|
* mei_me_hbuf_write - writes a message to host hw buffer.
|
|
*
|
|
* @dev: the device structure
|
|
* @header: mei HECI header of message
|
|
* @buf: message payload will be written
|
|
*
|
|
* Return: -EIO if write has failed
|
|
*/
|
|
static int mei_me_hbuf_write(struct mei_device *dev,
|
|
struct mei_msg_hdr *header,
|
|
const unsigned char *buf)
|
|
{
|
|
unsigned long rem;
|
|
unsigned long length = header->length;
|
|
u32 *reg_buf = (u32 *)buf;
|
|
u32 dw_cnt;
|
|
int i;
|
|
int empty_slots;
|
|
|
|
dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
|
|
|
|
empty_slots = mei_hbuf_empty_slots(dev);
|
|
dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
|
|
|
|
dw_cnt = mei_data2slots(length);
|
|
if (empty_slots < 0 || dw_cnt > empty_slots)
|
|
return -EMSGSIZE;
|
|
|
|
mei_me_hcbww_write(dev, *((u32 *) header));
|
|
|
|
for (i = 0; i < length / 4; i++)
|
|
mei_me_hcbww_write(dev, reg_buf[i]);
|
|
|
|
rem = length & 0x3;
|
|
if (rem > 0) {
|
|
u32 reg = 0;
|
|
|
|
memcpy(®, &buf[length - rem], rem);
|
|
mei_me_hcbww_write(dev, reg);
|
|
}
|
|
|
|
mei_hcsr_set_hig(dev);
|
|
if (!mei_me_hw_is_ready(dev))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_count_full_read_slots - counts read full slots.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: -EOVERFLOW if overflow, otherwise filled slots count
|
|
*/
|
|
static int mei_me_count_full_read_slots(struct mei_device *dev)
|
|
{
|
|
u32 me_csr;
|
|
char read_ptr, write_ptr;
|
|
unsigned char buffer_depth, filled_slots;
|
|
|
|
me_csr = mei_me_mecsr_read(dev);
|
|
buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
|
|
read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
|
|
write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
|
|
filled_slots = (unsigned char) (write_ptr - read_ptr);
|
|
|
|
/* check for overflow */
|
|
if (filled_slots > buffer_depth)
|
|
return -EOVERFLOW;
|
|
|
|
dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
|
|
return (int)filled_slots;
|
|
}
|
|
|
|
/**
|
|
* mei_me_read_slots - reads a message from mei device.
|
|
*
|
|
* @dev: the device structure
|
|
* @buffer: message buffer will be written
|
|
* @buffer_length: message size will be read
|
|
*
|
|
* Return: always 0
|
|
*/
|
|
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
|
|
unsigned long buffer_length)
|
|
{
|
|
u32 *reg_buf = (u32 *)buffer;
|
|
|
|
for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
|
|
*reg_buf++ = mei_me_mecbrw_read(dev);
|
|
|
|
if (buffer_length > 0) {
|
|
u32 reg = mei_me_mecbrw_read(dev);
|
|
|
|
memcpy(reg_buf, ®, buffer_length);
|
|
}
|
|
|
|
mei_hcsr_set_hig(dev);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_set - write pg enter register
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_pg_set(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg;
|
|
|
|
reg = mei_me_reg_read(hw, H_HPG_CSR);
|
|
trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
|
|
|
|
reg |= H_HPG_CSR_PGI;
|
|
|
|
trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
|
|
mei_me_reg_write(hw, H_HPG_CSR, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_unset - write pg exit register
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_pg_unset(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg;
|
|
|
|
reg = mei_me_reg_read(hw, H_HPG_CSR);
|
|
trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
|
|
|
|
WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
|
|
|
|
reg |= H_HPG_CSR_PGIHEXR;
|
|
|
|
trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
|
|
mei_me_reg_write(hw, H_HPG_CSR, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
|
|
int ret;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_WAIT;
|
|
|
|
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
|
|
mei_me_pg_set(dev);
|
|
ret = 0;
|
|
} else {
|
|
ret = -ETIME;
|
|
}
|
|
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
hw->pg_state = MEI_PG_ON;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
|
|
int ret;
|
|
|
|
if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
|
|
goto reply;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_WAIT;
|
|
|
|
mei_me_pg_unset(dev);
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
reply:
|
|
if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
|
|
dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
|
|
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
|
|
ret = 0;
|
|
else
|
|
ret = -ETIME;
|
|
|
|
out:
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
hw->pg_state = MEI_PG_OFF;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_in_transition - is device now in pg transition
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: true if in pg transition, false otherwise
|
|
*/
|
|
static bool mei_me_pg_in_transition(struct mei_device *dev)
|
|
{
|
|
return dev->pg_event >= MEI_PG_EVENT_WAIT &&
|
|
dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_is_enabled - detect if PG is supported by HW
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: true is pg supported, false otherwise
|
|
*/
|
|
static bool mei_me_pg_is_enabled(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg = mei_me_mecsr_read(dev);
|
|
|
|
if (hw->d0i3_supported)
|
|
return true;
|
|
|
|
if ((reg & ME_PGIC_HRA) == 0)
|
|
goto notsupported;
|
|
|
|
if (!dev->hbm_f_pg_supported)
|
|
goto notsupported;
|
|
|
|
return true;
|
|
|
|
notsupported:
|
|
dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
|
|
hw->d0i3_supported,
|
|
!!(reg & ME_PGIC_HRA),
|
|
dev->version.major_version,
|
|
dev->version.minor_version,
|
|
HBM_MAJOR_VERSION_PGI,
|
|
HBM_MINOR_VERSION_PGI);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3_set - write d0i3 register bit on mei device.
|
|
*
|
|
* @dev: the device structure
|
|
* @intr: ask for interrupt
|
|
*
|
|
* Return: D0I3C register value
|
|
*/
|
|
static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
|
|
{
|
|
u32 reg = mei_me_d0i3c_read(dev);
|
|
|
|
reg |= H_D0I3C_I3;
|
|
if (intr)
|
|
reg |= H_D0I3C_IR;
|
|
else
|
|
reg &= ~H_D0I3C_IR;
|
|
mei_me_d0i3c_write(dev, reg);
|
|
/* read it to ensure HW consistency */
|
|
reg = mei_me_d0i3c_read(dev);
|
|
return reg;
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3_unset - clean d0i3 register bit on mei device.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: D0I3C register value
|
|
*/
|
|
static u32 mei_me_d0i3_unset(struct mei_device *dev)
|
|
{
|
|
u32 reg = mei_me_d0i3c_read(dev);
|
|
|
|
reg &= ~H_D0I3C_I3;
|
|
reg |= H_D0I3C_IR;
|
|
mei_me_d0i3c_write(dev, reg);
|
|
/* read it to ensure HW consistency */
|
|
reg = mei_me_d0i3c_read(dev);
|
|
return reg;
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3_enter_sync - perform d0i3 entry procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
static int mei_me_d0i3_enter_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
|
|
unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
|
|
int ret;
|
|
u32 reg;
|
|
|
|
reg = mei_me_d0i3c_read(dev);
|
|
if (reg & H_D0I3C_I3) {
|
|
/* we are in d0i3, nothing to do */
|
|
dev_dbg(dev->dev, "d0i3 set not needed\n");
|
|
ret = 0;
|
|
goto on;
|
|
}
|
|
|
|
/* PGI entry procedure */
|
|
dev->pg_event = MEI_PG_EVENT_WAIT;
|
|
|
|
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
|
|
if (ret)
|
|
/* FIXME: should we reset here? */
|
|
goto out;
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
/* end PGI entry procedure */
|
|
|
|
dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
|
|
|
|
reg = mei_me_d0i3_set(dev, true);
|
|
if (!(reg & H_D0I3C_CIP)) {
|
|
dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
|
|
ret = 0;
|
|
goto on;
|
|
}
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
|
|
reg = mei_me_d0i3c_read(dev);
|
|
if (!(reg & H_D0I3C_I3)) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
on:
|
|
hw->pg_state = MEI_PG_ON;
|
|
out:
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3_enter - perform d0i3 entry procedure
|
|
* no hbm PG handshake
|
|
* no waiting for confirmation; runs with interrupts
|
|
* disabled
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
static int mei_me_d0i3_enter(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg;
|
|
|
|
reg = mei_me_d0i3c_read(dev);
|
|
if (reg & H_D0I3C_I3) {
|
|
/* we are in d0i3, nothing to do */
|
|
dev_dbg(dev->dev, "already d0i3 : set not needed\n");
|
|
goto on;
|
|
}
|
|
|
|
mei_me_d0i3_set(dev, false);
|
|
on:
|
|
hw->pg_state = MEI_PG_ON;
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
dev_dbg(dev->dev, "d0i3 enter\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3_exit_sync - perform d0i3 exit procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
static int mei_me_d0i3_exit_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
|
|
int ret;
|
|
u32 reg;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
|
|
|
|
reg = mei_me_d0i3c_read(dev);
|
|
if (!(reg & H_D0I3C_I3)) {
|
|
/* we are not in d0i3, nothing to do */
|
|
dev_dbg(dev->dev, "d0i3 exit not needed\n");
|
|
ret = 0;
|
|
goto off;
|
|
}
|
|
|
|
reg = mei_me_d0i3_unset(dev);
|
|
if (!(reg & H_D0I3C_CIP)) {
|
|
dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
|
|
ret = 0;
|
|
goto off;
|
|
}
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
|
|
reg = mei_me_d0i3c_read(dev);
|
|
if (reg & H_D0I3C_I3) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
off:
|
|
hw->pg_state = MEI_PG_OFF;
|
|
out:
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
|
|
dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_legacy_intr - perform legacy pg processing
|
|
* in interrupt thread handler
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_pg_legacy_intr(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
|
|
return;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
|
|
hw->pg_state = MEI_PG_OFF;
|
|
if (waitqueue_active(&dev->wait_pg))
|
|
wake_up(&dev->wait_pg);
|
|
}
|
|
|
|
/**
|
|
* mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
|
|
*
|
|
* @dev: the device structure
|
|
* @intr_source: interrupt source
|
|
*/
|
|
static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
|
|
(intr_source & H_D0I3C_IS)) {
|
|
dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
|
|
if (hw->pg_state == MEI_PG_ON) {
|
|
hw->pg_state = MEI_PG_OFF;
|
|
if (dev->hbm_state != MEI_HBM_IDLE) {
|
|
/*
|
|
* force H_RDY because it could be
|
|
* wiped off during PG
|
|
*/
|
|
dev_dbg(dev->dev, "d0i3 set host ready\n");
|
|
mei_me_host_set_ready(dev);
|
|
}
|
|
} else {
|
|
hw->pg_state = MEI_PG_ON;
|
|
}
|
|
|
|
wake_up(&dev->wait_pg);
|
|
}
|
|
|
|
if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
|
|
/*
|
|
* HW sent some data and we are in D0i3, so
|
|
* we got here because of HW initiated exit from D0i3.
|
|
* Start runtime pm resume sequence to exit low power state.
|
|
*/
|
|
dev_dbg(dev->dev, "d0i3 want resume\n");
|
|
mei_hbm_pg_resume(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_intr - perform pg processing in interrupt thread handler
|
|
*
|
|
* @dev: the device structure
|
|
* @intr_source: interrupt source
|
|
*/
|
|
static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
if (hw->d0i3_supported)
|
|
mei_me_d0i3_intr(dev, intr_source);
|
|
else
|
|
mei_me_pg_legacy_intr(dev);
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_enter_sync - perform runtime pm entry procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
int mei_me_pg_enter_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
if (hw->d0i3_supported)
|
|
return mei_me_d0i3_enter_sync(dev);
|
|
else
|
|
return mei_me_pg_legacy_enter_sync(dev);
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_exit_sync - perform runtime pm exit procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
int mei_me_pg_exit_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
if (hw->d0i3_supported)
|
|
return mei_me_d0i3_exit_sync(dev);
|
|
else
|
|
return mei_me_pg_legacy_exit_sync(dev);
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_reset - resets fw via mei csr register.
|
|
*
|
|
* @dev: the device structure
|
|
* @intr_enable: if interrupt should be enabled after reset.
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
int ret;
|
|
u32 hcsr;
|
|
|
|
if (intr_enable) {
|
|
mei_me_intr_enable(dev);
|
|
if (hw->d0i3_supported) {
|
|
ret = mei_me_d0i3_exit_sync(dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
pm_runtime_set_active(dev->dev);
|
|
|
|
hcsr = mei_hcsr_read(dev);
|
|
/* H_RST may be found lit before reset is started,
|
|
* for example if preceding reset flow hasn't completed.
|
|
* In that case asserting H_RST will be ignored, therefore
|
|
* we need to clean H_RST bit to start a successful reset sequence.
|
|
*/
|
|
if ((hcsr & H_RST) == H_RST) {
|
|
dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
|
|
hcsr &= ~H_RST;
|
|
mei_hcsr_set(dev, hcsr);
|
|
hcsr = mei_hcsr_read(dev);
|
|
}
|
|
|
|
hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
|
|
|
|
if (!intr_enable)
|
|
hcsr &= ~H_CSR_IE_MASK;
|
|
|
|
dev->recvd_hw_ready = false;
|
|
mei_hcsr_write(dev, hcsr);
|
|
|
|
/*
|
|
* Host reads the H_CSR once to ensure that the
|
|
* posted write to H_CSR completes.
|
|
*/
|
|
hcsr = mei_hcsr_read(dev);
|
|
|
|
if ((hcsr & H_RST) == 0)
|
|
dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
|
|
|
|
if ((hcsr & H_RDY) == H_RDY)
|
|
dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
|
|
|
|
if (!intr_enable) {
|
|
mei_me_hw_reset_release(dev);
|
|
if (hw->d0i3_supported) {
|
|
ret = mei_me_d0i3_enter(dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_irq_quick_handler - The ISR of the MEI device
|
|
*
|
|
* @irq: The irq number
|
|
* @dev_id: pointer to the device structure
|
|
*
|
|
* Return: irqreturn_t
|
|
*/
|
|
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
|
|
{
|
|
struct mei_device *dev = (struct mei_device *)dev_id;
|
|
u32 hcsr;
|
|
|
|
hcsr = mei_hcsr_read(dev);
|
|
if (!me_intr_src(hcsr))
|
|
return IRQ_NONE;
|
|
|
|
dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
|
|
|
|
/* disable interrupts on device */
|
|
me_intr_disable(dev, hcsr);
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/**
|
|
* mei_me_irq_thread_handler - function called after ISR to handle the interrupt
|
|
* processing.
|
|
*
|
|
* @irq: The irq number
|
|
* @dev_id: pointer to the device structure
|
|
*
|
|
* Return: irqreturn_t
|
|
*
|
|
*/
|
|
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
|
|
{
|
|
struct mei_device *dev = (struct mei_device *) dev_id;
|
|
struct list_head cmpl_list;
|
|
s32 slots;
|
|
u32 hcsr;
|
|
int rets = 0;
|
|
|
|
dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
|
|
/* initialize our complete list */
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
hcsr = mei_hcsr_read(dev);
|
|
me_intr_clear(dev, hcsr);
|
|
|
|
INIT_LIST_HEAD(&cmpl_list);
|
|
|
|
/* check if ME wants a reset */
|
|
if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
|
|
dev_warn(dev->dev, "FW not ready: resetting.\n");
|
|
schedule_work(&dev->reset_work);
|
|
goto end;
|
|
}
|
|
|
|
if (mei_me_hw_is_resetting(dev))
|
|
mei_hcsr_set_hig(dev);
|
|
|
|
mei_me_pg_intr(dev, me_intr_src(hcsr));
|
|
|
|
/* check if we need to start the dev */
|
|
if (!mei_host_is_ready(dev)) {
|
|
if (mei_hw_is_ready(dev)) {
|
|
dev_dbg(dev->dev, "we need to start the dev.\n");
|
|
dev->recvd_hw_ready = true;
|
|
wake_up(&dev->wait_hw_ready);
|
|
} else {
|
|
dev_dbg(dev->dev, "Spurious Interrupt\n");
|
|
}
|
|
goto end;
|
|
}
|
|
/* check slots available for reading */
|
|
slots = mei_count_full_read_slots(dev);
|
|
while (slots > 0) {
|
|
dev_dbg(dev->dev, "slots to read = %08x\n", slots);
|
|
rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
|
|
/* There is a race between ME write and interrupt delivery:
|
|
* Not all data is always available immediately after the
|
|
* interrupt, so try to read again on the next interrupt.
|
|
*/
|
|
if (rets == -ENODATA)
|
|
break;
|
|
|
|
if (rets &&
|
|
(dev->dev_state != MEI_DEV_RESETTING &&
|
|
dev->dev_state != MEI_DEV_POWER_DOWN)) {
|
|
dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
|
|
rets);
|
|
schedule_work(&dev->reset_work);
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
|
|
|
|
/*
|
|
* During PG handshake only allowed write is the replay to the
|
|
* PG exit message, so block calling write function
|
|
* if the pg event is in PG handshake
|
|
*/
|
|
if (dev->pg_event != MEI_PG_EVENT_WAIT &&
|
|
dev->pg_event != MEI_PG_EVENT_RECEIVED) {
|
|
rets = mei_irq_write_handler(dev, &cmpl_list);
|
|
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
|
|
}
|
|
|
|
mei_irq_compl_handler(dev, &cmpl_list);
|
|
|
|
end:
|
|
dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
|
|
mei_me_intr_enable(dev);
|
|
mutex_unlock(&dev->device_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct mei_hw_ops mei_me_hw_ops = {
|
|
|
|
.fw_status = mei_me_fw_status,
|
|
.pg_state = mei_me_pg_state,
|
|
|
|
.host_is_ready = mei_me_host_is_ready,
|
|
|
|
.hw_is_ready = mei_me_hw_is_ready,
|
|
.hw_reset = mei_me_hw_reset,
|
|
.hw_config = mei_me_hw_config,
|
|
.hw_start = mei_me_hw_start,
|
|
|
|
.pg_in_transition = mei_me_pg_in_transition,
|
|
.pg_is_enabled = mei_me_pg_is_enabled,
|
|
|
|
.intr_clear = mei_me_intr_clear,
|
|
.intr_enable = mei_me_intr_enable,
|
|
.intr_disable = mei_me_intr_disable,
|
|
.synchronize_irq = mei_me_synchronize_irq,
|
|
|
|
.hbuf_free_slots = mei_me_hbuf_empty_slots,
|
|
.hbuf_is_ready = mei_me_hbuf_is_empty,
|
|
.hbuf_max_len = mei_me_hbuf_max_len,
|
|
|
|
.write = mei_me_hbuf_write,
|
|
|
|
.rdbuf_full_slots = mei_me_count_full_read_slots,
|
|
.read_hdr = mei_me_mecbrw_read,
|
|
.read = mei_me_read_slots
|
|
};
|
|
|
|
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®);
|
|
trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
|
|
/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
|
|
return (reg & 0x600) == 0x200;
|
|
}
|
|
|
|
#define MEI_CFG_FW_NM \
|
|
.quirk_probe = mei_me_fw_type_nm
|
|
|
|
static bool mei_me_fw_type_sps(struct pci_dev *pdev)
|
|
{
|
|
u32 reg;
|
|
unsigned int devfn;
|
|
|
|
/*
|
|
* Read ME FW Status register to check for SPS Firmware
|
|
* The SPS FW is only signaled in pci function 0
|
|
*/
|
|
devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
|
|
pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, ®);
|
|
trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
|
|
/* if bits [19:16] = 15, running SPS Firmware */
|
|
return (reg & 0xf0000) == 0xf0000;
|
|
}
|
|
|
|
#define MEI_CFG_FW_SPS \
|
|
.quirk_probe = mei_me_fw_type_sps
|
|
|
|
|
|
#define MEI_CFG_ICH_HFS \
|
|
.fw_status.count = 0
|
|
|
|
#define MEI_CFG_ICH10_HFS \
|
|
.fw_status.count = 1, \
|
|
.fw_status.status[0] = PCI_CFG_HFS_1
|
|
|
|
#define MEI_CFG_PCH_HFS \
|
|
.fw_status.count = 2, \
|
|
.fw_status.status[0] = PCI_CFG_HFS_1, \
|
|
.fw_status.status[1] = PCI_CFG_HFS_2
|
|
|
|
#define MEI_CFG_PCH8_HFS \
|
|
.fw_status.count = 6, \
|
|
.fw_status.status[0] = PCI_CFG_HFS_1, \
|
|
.fw_status.status[1] = PCI_CFG_HFS_2, \
|
|
.fw_status.status[2] = PCI_CFG_HFS_3, \
|
|
.fw_status.status[3] = PCI_CFG_HFS_4, \
|
|
.fw_status.status[4] = PCI_CFG_HFS_5, \
|
|
.fw_status.status[5] = PCI_CFG_HFS_6
|
|
|
|
/* ICH Legacy devices */
|
|
static const struct mei_cfg mei_me_ich_cfg = {
|
|
MEI_CFG_ICH_HFS,
|
|
};
|
|
|
|
/* ICH devices */
|
|
static const struct mei_cfg mei_me_ich10_cfg = {
|
|
MEI_CFG_ICH10_HFS,
|
|
};
|
|
|
|
/* PCH devices */
|
|
static const struct mei_cfg mei_me_pch_cfg = {
|
|
MEI_CFG_PCH_HFS,
|
|
};
|
|
|
|
/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
|
|
static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
|
|
MEI_CFG_PCH_HFS,
|
|
MEI_CFG_FW_NM,
|
|
};
|
|
|
|
/* PCH8 Lynx Point and newer devices */
|
|
static const struct mei_cfg mei_me_pch8_cfg = {
|
|
MEI_CFG_PCH8_HFS,
|
|
};
|
|
|
|
/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
|
|
static const struct mei_cfg mei_me_pch8_sps_cfg = {
|
|
MEI_CFG_PCH8_HFS,
|
|
MEI_CFG_FW_SPS,
|
|
};
|
|
|
|
/*
|
|
* mei_cfg_list - A list of platform platform specific configurations.
|
|
* Note: has to be synchronized with enum mei_cfg_idx.
|
|
*/
|
|
static const struct mei_cfg *const mei_cfg_list[] = {
|
|
[MEI_ME_UNDEF_CFG] = NULL,
|
|
[MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
|
|
[MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
|
|
[MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
|
|
[MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
|
|
[MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
|
|
[MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
|
|
};
|
|
|
|
const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
|
|
{
|
|
BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
|
|
|
|
if (idx >= MEI_ME_NUM_CFG)
|
|
return NULL;
|
|
|
|
return mei_cfg_list[idx];
|
|
};
|
|
|
|
/**
|
|
* mei_me_dev_init - allocates and initializes the mei device structure
|
|
*
|
|
* @pdev: The pci device structure
|
|
* @cfg: per device generation config
|
|
*
|
|
* Return: The mei_device pointer on success, NULL on failure.
|
|
*/
|
|
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
|
|
const struct mei_cfg *cfg)
|
|
{
|
|
struct mei_device *dev;
|
|
struct mei_me_hw *hw;
|
|
|
|
dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
|
|
sizeof(struct mei_me_hw), GFP_KERNEL);
|
|
if (!dev)
|
|
return NULL;
|
|
hw = to_me_hw(dev);
|
|
|
|
mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
|
|
hw->cfg = cfg;
|
|
return dev;
|
|
}
|
|
|