1034 строки
26 KiB
C
1034 строки
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* arch/alpha/kernel/traps.c
|
|
*
|
|
* (C) Copyright 1994 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file initializes the trap entry points
|
|
*/
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include <asm/gentrap.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unaligned.h>
|
|
#include <asm/sysinfo.h>
|
|
#include <asm/hwrpb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/special_insns.h>
|
|
|
|
#include "proto.h"
|
|
|
|
/* Work-around for some SRMs which mishandle opDEC faults. */
|
|
|
|
static int opDEC_fix;
|
|
|
|
static void
|
|
opDEC_check(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
/* Load the address of... */
|
|
" br $16, 1f\n"
|
|
/* A stub instruction fault handler. Just add 4 to the
|
|
pc and continue. */
|
|
" ldq $16, 8($sp)\n"
|
|
" addq $16, 4, $16\n"
|
|
" stq $16, 8($sp)\n"
|
|
" call_pal %[rti]\n"
|
|
/* Install the instruction fault handler. */
|
|
"1: lda $17, 3\n"
|
|
" call_pal %[wrent]\n"
|
|
/* With that in place, the fault from the round-to-minf fp
|
|
insn will arrive either at the "lda 4" insn (bad) or one
|
|
past that (good). This places the correct fixup in %0. */
|
|
" lda %[fix], 0\n"
|
|
" cvttq/svm $f31,$f31\n"
|
|
" lda %[fix], 4"
|
|
: [fix] "=r" (opDEC_fix)
|
|
: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
|
|
: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
|
|
|
|
if (opDEC_fix)
|
|
printk("opDEC fixup enabled.\n");
|
|
}
|
|
|
|
void
|
|
dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
|
|
{
|
|
printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
|
|
regs->pc, regs->r26, regs->ps, print_tainted());
|
|
printk("pc is at %pSR\n", (void *)regs->pc);
|
|
printk("ra is at %pSR\n", (void *)regs->r26);
|
|
printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
|
|
regs->r0, regs->r1, regs->r2);
|
|
printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
|
|
regs->r3, regs->r4, regs->r5);
|
|
printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
|
|
regs->r6, regs->r7, regs->r8);
|
|
|
|
if (r9_15) {
|
|
printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
|
|
r9_15[9], r9_15[10], r9_15[11]);
|
|
printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
|
|
r9_15[12], r9_15[13], r9_15[14]);
|
|
printk("s6 = %016lx\n", r9_15[15]);
|
|
}
|
|
|
|
printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
|
|
regs->r16, regs->r17, regs->r18);
|
|
printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
|
|
regs->r19, regs->r20, regs->r21);
|
|
printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
|
|
regs->r22, regs->r23, regs->r24);
|
|
printk("t11= %016lx pv = %016lx at = %016lx\n",
|
|
regs->r25, regs->r27, regs->r28);
|
|
printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
|
|
#if 0
|
|
__halt();
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
|
|
"t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
|
|
"a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
|
|
"t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
|
|
#endif
|
|
|
|
static void
|
|
dik_show_code(unsigned int *pc)
|
|
{
|
|
long i;
|
|
|
|
printk("Code:");
|
|
for (i = -6; i < 2; i++) {
|
|
unsigned int insn;
|
|
if (__get_user(insn, (unsigned int __user *)pc + i))
|
|
break;
|
|
printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
static void
|
|
dik_show_trace(unsigned long *sp)
|
|
{
|
|
long i = 0;
|
|
printk("Trace:\n");
|
|
while (0x1ff8 & (unsigned long) sp) {
|
|
extern char _stext[], _etext[];
|
|
unsigned long tmp = *sp;
|
|
sp++;
|
|
if (tmp < (unsigned long) &_stext)
|
|
continue;
|
|
if (tmp >= (unsigned long) &_etext)
|
|
continue;
|
|
printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
|
|
if (i > 40) {
|
|
printk(" ...");
|
|
break;
|
|
}
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
static int kstack_depth_to_print = 24;
|
|
|
|
void show_stack(struct task_struct *task, unsigned long *sp)
|
|
{
|
|
unsigned long *stack;
|
|
int i;
|
|
|
|
/*
|
|
* debugging aid: "show_stack(NULL);" prints the
|
|
* back trace for this cpu.
|
|
*/
|
|
if(sp==NULL)
|
|
sp=(unsigned long*)&sp;
|
|
|
|
stack = sp;
|
|
for(i=0; i < kstack_depth_to_print; i++) {
|
|
if (((long) stack & (THREAD_SIZE-1)) == 0)
|
|
break;
|
|
if ((i % 4) == 0) {
|
|
if (i)
|
|
pr_cont("\n");
|
|
printk(" ");
|
|
} else {
|
|
pr_cont(" ");
|
|
}
|
|
pr_cont("%016lx", *stack++);
|
|
}
|
|
pr_cont("\n");
|
|
dik_show_trace(sp);
|
|
}
|
|
|
|
void
|
|
die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
|
|
{
|
|
if (regs->ps & 8)
|
|
return;
|
|
#ifdef CONFIG_SMP
|
|
printk("CPU %d ", hard_smp_processor_id());
|
|
#endif
|
|
printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
|
|
dik_show_regs(regs, r9_15);
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
dik_show_trace((unsigned long *)(regs+1));
|
|
dik_show_code((unsigned int *)regs->pc);
|
|
|
|
if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
|
|
printk("die_if_kernel recursion detected.\n");
|
|
local_irq_enable();
|
|
while (1);
|
|
}
|
|
do_exit(SIGSEGV);
|
|
}
|
|
|
|
#ifndef CONFIG_MATHEMU
|
|
static long dummy_emul(void) { return 0; }
|
|
long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
|
|
= (void *)dummy_emul;
|
|
EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
|
|
long (*alpha_fp_emul) (unsigned long pc)
|
|
= (void *)dummy_emul;
|
|
EXPORT_SYMBOL_GPL(alpha_fp_emul);
|
|
#else
|
|
long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
|
|
long alpha_fp_emul (unsigned long pc);
|
|
#endif
|
|
|
|
asmlinkage void
|
|
do_entArith(unsigned long summary, unsigned long write_mask,
|
|
struct pt_regs *regs)
|
|
{
|
|
long si_code = FPE_FLTINV;
|
|
siginfo_t info;
|
|
|
|
if (summary & 1) {
|
|
/* Software-completion summary bit is set, so try to
|
|
emulate the instruction. If the processor supports
|
|
precise exceptions, we don't have to search. */
|
|
if (!amask(AMASK_PRECISE_TRAP))
|
|
si_code = alpha_fp_emul(regs->pc - 4);
|
|
else
|
|
si_code = alpha_fp_emul_imprecise(regs, write_mask);
|
|
if (si_code == 0)
|
|
return;
|
|
}
|
|
die_if_kernel("Arithmetic fault", regs, 0, NULL);
|
|
|
|
info.si_signo = SIGFPE;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
send_sig_info(SIGFPE, &info, current);
|
|
}
|
|
|
|
asmlinkage void
|
|
do_entIF(unsigned long type, struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
int signo, code;
|
|
|
|
if ((regs->ps & ~IPL_MAX) == 0) {
|
|
if (type == 1) {
|
|
const unsigned int *data
|
|
= (const unsigned int *) regs->pc;
|
|
printk("Kernel bug at %s:%d\n",
|
|
(const char *)(data[1] | (long)data[2] << 32),
|
|
data[0]);
|
|
}
|
|
#ifdef CONFIG_ALPHA_WTINT
|
|
if (type == 4) {
|
|
/* If CALL_PAL WTINT is totally unsupported by the
|
|
PALcode, e.g. MILO, "emulate" it by overwriting
|
|
the insn. */
|
|
unsigned int *pinsn
|
|
= (unsigned int *) regs->pc - 1;
|
|
if (*pinsn == PAL_wtint) {
|
|
*pinsn = 0x47e01400; /* mov 0,$0 */
|
|
imb();
|
|
regs->r0 = 0;
|
|
return;
|
|
}
|
|
}
|
|
#endif /* ALPHA_WTINT */
|
|
die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
|
|
regs, type, NULL);
|
|
}
|
|
|
|
switch (type) {
|
|
case 0: /* breakpoint */
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_BRKPT;
|
|
info.si_trapno = 0;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
|
|
if (ptrace_cancel_bpt(current)) {
|
|
regs->pc -= 4; /* make pc point to former bpt */
|
|
}
|
|
|
|
send_sig_info(SIGTRAP, &info, current);
|
|
return;
|
|
|
|
case 1: /* bugcheck */
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_FIXME;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
info.si_trapno = 0;
|
|
send_sig_info(SIGTRAP, &info, current);
|
|
return;
|
|
|
|
case 2: /* gentrap */
|
|
info.si_addr = (void __user *) regs->pc;
|
|
info.si_trapno = regs->r16;
|
|
switch ((long) regs->r16) {
|
|
case GEN_INTOVF:
|
|
signo = SIGFPE;
|
|
code = FPE_INTOVF;
|
|
break;
|
|
case GEN_INTDIV:
|
|
signo = SIGFPE;
|
|
code = FPE_INTDIV;
|
|
break;
|
|
case GEN_FLTOVF:
|
|
signo = SIGFPE;
|
|
code = FPE_FLTOVF;
|
|
break;
|
|
case GEN_FLTDIV:
|
|
signo = SIGFPE;
|
|
code = FPE_FLTDIV;
|
|
break;
|
|
case GEN_FLTUND:
|
|
signo = SIGFPE;
|
|
code = FPE_FLTUND;
|
|
break;
|
|
case GEN_FLTINV:
|
|
signo = SIGFPE;
|
|
code = FPE_FLTINV;
|
|
break;
|
|
case GEN_FLTINE:
|
|
signo = SIGFPE;
|
|
code = FPE_FLTRES;
|
|
break;
|
|
case GEN_ROPRAND:
|
|
signo = SIGFPE;
|
|
code = FPE_FIXME;
|
|
break;
|
|
|
|
case GEN_DECOVF:
|
|
case GEN_DECDIV:
|
|
case GEN_DECINV:
|
|
case GEN_ASSERTERR:
|
|
case GEN_NULPTRERR:
|
|
case GEN_STKOVF:
|
|
case GEN_STRLENERR:
|
|
case GEN_SUBSTRERR:
|
|
case GEN_RANGERR:
|
|
case GEN_SUBRNG:
|
|
case GEN_SUBRNG1:
|
|
case GEN_SUBRNG2:
|
|
case GEN_SUBRNG3:
|
|
case GEN_SUBRNG4:
|
|
case GEN_SUBRNG5:
|
|
case GEN_SUBRNG6:
|
|
case GEN_SUBRNG7:
|
|
default:
|
|
signo = SIGTRAP;
|
|
code = TRAP_FIXME;
|
|
break;
|
|
}
|
|
|
|
info.si_signo = signo;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
send_sig_info(signo, &info, current);
|
|
return;
|
|
|
|
case 4: /* opDEC */
|
|
if (implver() == IMPLVER_EV4) {
|
|
long si_code;
|
|
|
|
/* The some versions of SRM do not handle
|
|
the opDEC properly - they return the PC of the
|
|
opDEC fault, not the instruction after as the
|
|
Alpha architecture requires. Here we fix it up.
|
|
We do this by intentionally causing an opDEC
|
|
fault during the boot sequence and testing if
|
|
we get the correct PC. If not, we set a flag
|
|
to correct it every time through. */
|
|
regs->pc += opDEC_fix;
|
|
|
|
/* EV4 does not implement anything except normal
|
|
rounding. Everything else will come here as
|
|
an illegal instruction. Emulate them. */
|
|
si_code = alpha_fp_emul(regs->pc - 4);
|
|
if (si_code == 0)
|
|
return;
|
|
if (si_code > 0) {
|
|
info.si_signo = SIGFPE;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
send_sig_info(SIGFPE, &info, current);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 3: /* FEN fault */
|
|
/* Irritating users can call PAL_clrfen to disable the
|
|
FPU for the process. The kernel will then trap in
|
|
do_switch_stack and undo_switch_stack when we try
|
|
to save and restore the FP registers.
|
|
|
|
Given that GCC by default generates code that uses the
|
|
FP registers, PAL_clrfen is not useful except for DoS
|
|
attacks. So turn the bleeding FPU back on and be done
|
|
with it. */
|
|
current_thread_info()->pcb.flags |= 1;
|
|
__reload_thread(¤t_thread_info()->pcb);
|
|
return;
|
|
|
|
case 5: /* illoc */
|
|
default: /* unexpected instruction-fault type */
|
|
;
|
|
}
|
|
|
|
info.si_signo = SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = ILL_ILLOPC;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
send_sig_info(SIGILL, &info, current);
|
|
}
|
|
|
|
/* There is an ifdef in the PALcode in MILO that enables a
|
|
"kernel debugging entry point" as an unprivileged call_pal.
|
|
|
|
We don't want to have anything to do with it, but unfortunately
|
|
several versions of MILO included in distributions have it enabled,
|
|
and if we don't put something on the entry point we'll oops. */
|
|
|
|
asmlinkage void
|
|
do_entDbg(struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
die_if_kernel("Instruction fault", regs, 0, NULL);
|
|
|
|
info.si_signo = SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = ILL_ILLOPC;
|
|
info.si_addr = (void __user *) regs->pc;
|
|
force_sig_info(SIGILL, &info, current);
|
|
}
|
|
|
|
|
|
/*
|
|
* entUna has a different register layout to be reasonably simple. It
|
|
* needs access to all the integer registers (the kernel doesn't use
|
|
* fp-regs), and it needs to have them in order for simpler access.
|
|
*
|
|
* Due to the non-standard register layout (and because we don't want
|
|
* to handle floating-point regs), user-mode unaligned accesses are
|
|
* handled separately by do_entUnaUser below.
|
|
*
|
|
* Oh, btw, we don't handle the "gp" register correctly, but if we fault
|
|
* on a gp-register unaligned load/store, something is _very_ wrong
|
|
* in the kernel anyway..
|
|
*/
|
|
struct allregs {
|
|
unsigned long regs[32];
|
|
unsigned long ps, pc, gp, a0, a1, a2;
|
|
};
|
|
|
|
struct unaligned_stat {
|
|
unsigned long count, va, pc;
|
|
} unaligned[2];
|
|
|
|
|
|
/* Macro for exception fixup code to access integer registers. */
|
|
#define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
|
|
|
|
|
|
asmlinkage void
|
|
do_entUna(void * va, unsigned long opcode, unsigned long reg,
|
|
struct allregs *regs)
|
|
{
|
|
long error, tmp1, tmp2, tmp3, tmp4;
|
|
unsigned long pc = regs->pc - 4;
|
|
unsigned long *_regs = regs->regs;
|
|
const struct exception_table_entry *fixup;
|
|
|
|
unaligned[0].count++;
|
|
unaligned[0].va = (unsigned long) va;
|
|
unaligned[0].pc = pc;
|
|
|
|
/* We don't want to use the generic get/put unaligned macros as
|
|
we want to trap exceptions. Only if we actually get an
|
|
exception will we decide whether we should have caught it. */
|
|
|
|
switch (opcode) {
|
|
case 0x0c: /* ldwu */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,1(%3)\n"
|
|
" extwl %1,%3,%1\n"
|
|
" extwh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto got_exception;
|
|
una_reg(reg) = tmp1|tmp2;
|
|
return;
|
|
|
|
case 0x28: /* ldl */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,3(%3)\n"
|
|
" extll %1,%3,%1\n"
|
|
" extlh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto got_exception;
|
|
una_reg(reg) = (int)(tmp1|tmp2);
|
|
return;
|
|
|
|
case 0x29: /* ldq */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,7(%3)\n"
|
|
" extql %1,%3,%1\n"
|
|
" extqh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto got_exception;
|
|
una_reg(reg) = tmp1|tmp2;
|
|
return;
|
|
|
|
/* Note that the store sequences do not indicate that they change
|
|
memory because it _should_ be affecting nothing in this context.
|
|
(Otherwise we have other, much larger, problems.) */
|
|
case 0x0d: /* stw */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %2,1(%5)\n"
|
|
"2: ldq_u %1,0(%5)\n"
|
|
" inswh %6,%5,%4\n"
|
|
" inswl %6,%5,%3\n"
|
|
" mskwh %2,%5,%2\n"
|
|
" mskwl %1,%5,%1\n"
|
|
" or %2,%4,%2\n"
|
|
" or %1,%3,%1\n"
|
|
"3: stq_u %2,1(%5)\n"
|
|
"4: stq_u %1,0(%5)\n"
|
|
"5:\n"
|
|
EXC(1b,5b,%2,%0)
|
|
EXC(2b,5b,%1,%0)
|
|
EXC(3b,5b,$31,%0)
|
|
EXC(4b,5b,$31,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
: "r"(va), "r"(una_reg(reg)), "0"(0));
|
|
if (error)
|
|
goto got_exception;
|
|
return;
|
|
|
|
case 0x2c: /* stl */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %2,3(%5)\n"
|
|
"2: ldq_u %1,0(%5)\n"
|
|
" inslh %6,%5,%4\n"
|
|
" insll %6,%5,%3\n"
|
|
" msklh %2,%5,%2\n"
|
|
" mskll %1,%5,%1\n"
|
|
" or %2,%4,%2\n"
|
|
" or %1,%3,%1\n"
|
|
"3: stq_u %2,3(%5)\n"
|
|
"4: stq_u %1,0(%5)\n"
|
|
"5:\n"
|
|
EXC(1b,5b,%2,%0)
|
|
EXC(2b,5b,%1,%0)
|
|
EXC(3b,5b,$31,%0)
|
|
EXC(4b,5b,$31,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
: "r"(va), "r"(una_reg(reg)), "0"(0));
|
|
if (error)
|
|
goto got_exception;
|
|
return;
|
|
|
|
case 0x2d: /* stq */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %2,7(%5)\n"
|
|
"2: ldq_u %1,0(%5)\n"
|
|
" insqh %6,%5,%4\n"
|
|
" insql %6,%5,%3\n"
|
|
" mskqh %2,%5,%2\n"
|
|
" mskql %1,%5,%1\n"
|
|
" or %2,%4,%2\n"
|
|
" or %1,%3,%1\n"
|
|
"3: stq_u %2,7(%5)\n"
|
|
"4: stq_u %1,0(%5)\n"
|
|
"5:\n"
|
|
EXC(1b,5b,%2,%0)
|
|
EXC(2b,5b,%1,%0)
|
|
EXC(3b,5b,$31,%0)
|
|
EXC(4b,5b,$31,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
: "r"(va), "r"(una_reg(reg)), "0"(0));
|
|
if (error)
|
|
goto got_exception;
|
|
return;
|
|
}
|
|
|
|
printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
|
|
pc, va, opcode, reg);
|
|
do_exit(SIGSEGV);
|
|
|
|
got_exception:
|
|
/* Ok, we caught the exception, but we don't want it. Is there
|
|
someone to pass it along to? */
|
|
if ((fixup = search_exception_tables(pc)) != 0) {
|
|
unsigned long newpc;
|
|
newpc = fixup_exception(una_reg, fixup, pc);
|
|
|
|
printk("Forwarding unaligned exception at %lx (%lx)\n",
|
|
pc, newpc);
|
|
|
|
regs->pc = newpc;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Yikes! No one to forward the exception to.
|
|
* Since the registers are in a weird format, dump them ourselves.
|
|
*/
|
|
|
|
printk("%s(%d): unhandled unaligned exception\n",
|
|
current->comm, task_pid_nr(current));
|
|
|
|
printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
|
|
pc, una_reg(26), regs->ps);
|
|
printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
|
|
una_reg(0), una_reg(1), una_reg(2));
|
|
printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
|
|
una_reg(3), una_reg(4), una_reg(5));
|
|
printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
|
|
una_reg(6), una_reg(7), una_reg(8));
|
|
printk("r9 = %016lx r10= %016lx r11= %016lx\n",
|
|
una_reg(9), una_reg(10), una_reg(11));
|
|
printk("r12= %016lx r13= %016lx r14= %016lx\n",
|
|
una_reg(12), una_reg(13), una_reg(14));
|
|
printk("r15= %016lx\n", una_reg(15));
|
|
printk("r16= %016lx r17= %016lx r18= %016lx\n",
|
|
una_reg(16), una_reg(17), una_reg(18));
|
|
printk("r19= %016lx r20= %016lx r21= %016lx\n",
|
|
una_reg(19), una_reg(20), una_reg(21));
|
|
printk("r22= %016lx r23= %016lx r24= %016lx\n",
|
|
una_reg(22), una_reg(23), una_reg(24));
|
|
printk("r25= %016lx r27= %016lx r28= %016lx\n",
|
|
una_reg(25), una_reg(27), una_reg(28));
|
|
printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
|
|
|
|
dik_show_code((unsigned int *)pc);
|
|
dik_show_trace((unsigned long *)(regs+1));
|
|
|
|
if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
|
|
printk("die_if_kernel recursion detected.\n");
|
|
local_irq_enable();
|
|
while (1);
|
|
}
|
|
do_exit(SIGSEGV);
|
|
}
|
|
|
|
/*
|
|
* Convert an s-floating point value in memory format to the
|
|
* corresponding value in register format. The exponent
|
|
* needs to be remapped to preserve non-finite values
|
|
* (infinities, not-a-numbers, denormals).
|
|
*/
|
|
static inline unsigned long
|
|
s_mem_to_reg (unsigned long s_mem)
|
|
{
|
|
unsigned long frac = (s_mem >> 0) & 0x7fffff;
|
|
unsigned long sign = (s_mem >> 31) & 0x1;
|
|
unsigned long exp_msb = (s_mem >> 30) & 0x1;
|
|
unsigned long exp_low = (s_mem >> 23) & 0x7f;
|
|
unsigned long exp;
|
|
|
|
exp = (exp_msb << 10) | exp_low; /* common case */
|
|
if (exp_msb) {
|
|
if (exp_low == 0x7f) {
|
|
exp = 0x7ff;
|
|
}
|
|
} else {
|
|
if (exp_low == 0x00) {
|
|
exp = 0x000;
|
|
} else {
|
|
exp |= (0x7 << 7);
|
|
}
|
|
}
|
|
return (sign << 63) | (exp << 52) | (frac << 29);
|
|
}
|
|
|
|
/*
|
|
* Convert an s-floating point value in register format to the
|
|
* corresponding value in memory format.
|
|
*/
|
|
static inline unsigned long
|
|
s_reg_to_mem (unsigned long s_reg)
|
|
{
|
|
return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
|
|
}
|
|
|
|
/*
|
|
* Handle user-level unaligned fault. Handling user-level unaligned
|
|
* faults is *extremely* slow and produces nasty messages. A user
|
|
* program *should* fix unaligned faults ASAP.
|
|
*
|
|
* Notice that we have (almost) the regular kernel stack layout here,
|
|
* so finding the appropriate registers is a little more difficult
|
|
* than in the kernel case.
|
|
*
|
|
* Finally, we handle regular integer load/stores only. In
|
|
* particular, load-linked/store-conditionally and floating point
|
|
* load/stores are not supported. The former make no sense with
|
|
* unaligned faults (they are guaranteed to fail) and I don't think
|
|
* the latter will occur in any decent program.
|
|
*
|
|
* Sigh. We *do* have to handle some FP operations, because GCC will
|
|
* uses them as temporary storage for integer memory to memory copies.
|
|
* However, we need to deal with stt/ldt and sts/lds only.
|
|
*/
|
|
|
|
#define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
|
|
| 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
|
|
| 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
|
|
| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
|
|
|
|
#define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
|
|
| 1L << 0x2c | 1L << 0x2d /* stl stq */ \
|
|
| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
|
|
|
|
#define R(x) ((size_t) &((struct pt_regs *)0)->x)
|
|
|
|
static int unauser_reg_offsets[32] = {
|
|
R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
|
|
/* r9 ... r15 are stored in front of regs. */
|
|
-56, -48, -40, -32, -24, -16, -8,
|
|
R(r16), R(r17), R(r18),
|
|
R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
|
|
R(r27), R(r28), R(gp),
|
|
0, 0
|
|
};
|
|
|
|
#undef R
|
|
|
|
asmlinkage void
|
|
do_entUnaUser(void __user * va, unsigned long opcode,
|
|
unsigned long reg, struct pt_regs *regs)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
|
|
|
|
unsigned long tmp1, tmp2, tmp3, tmp4;
|
|
unsigned long fake_reg, *reg_addr = &fake_reg;
|
|
siginfo_t info;
|
|
long error;
|
|
|
|
/* Check the UAC bits to decide what the user wants us to do
|
|
with the unaliged access. */
|
|
|
|
if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
|
|
if (__ratelimit(&ratelimit)) {
|
|
printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
|
|
current->comm, task_pid_nr(current),
|
|
regs->pc - 4, va, opcode, reg);
|
|
}
|
|
}
|
|
if ((current_thread_info()->status & TS_UAC_SIGBUS))
|
|
goto give_sigbus;
|
|
/* Not sure why you'd want to use this, but... */
|
|
if ((current_thread_info()->status & TS_UAC_NOFIX))
|
|
return;
|
|
|
|
/* Don't bother reading ds in the access check since we already
|
|
know that this came from the user. Also rely on the fact that
|
|
the page at TASK_SIZE is unmapped and so can't be touched anyway. */
|
|
if ((unsigned long)va >= TASK_SIZE)
|
|
goto give_sigsegv;
|
|
|
|
++unaligned[1].count;
|
|
unaligned[1].va = (unsigned long)va;
|
|
unaligned[1].pc = regs->pc - 4;
|
|
|
|
if ((1L << opcode) & OP_INT_MASK) {
|
|
/* it's an integer load/store */
|
|
if (reg < 30) {
|
|
reg_addr = (unsigned long *)
|
|
((char *)regs + unauser_reg_offsets[reg]);
|
|
} else if (reg == 30) {
|
|
/* usp in PAL regs */
|
|
fake_reg = rdusp();
|
|
} else {
|
|
/* zero "register" */
|
|
fake_reg = 0;
|
|
}
|
|
}
|
|
|
|
/* We don't want to use the generic get/put unaligned macros as
|
|
we want to trap exceptions. Only if we actually get an
|
|
exception will we decide whether we should have caught it. */
|
|
|
|
switch (opcode) {
|
|
case 0x0c: /* ldwu */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,1(%3)\n"
|
|
" extwl %1,%3,%1\n"
|
|
" extwh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
*reg_addr = tmp1|tmp2;
|
|
break;
|
|
|
|
case 0x22: /* lds */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,3(%3)\n"
|
|
" extll %1,%3,%1\n"
|
|
" extlh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
|
|
return;
|
|
|
|
case 0x23: /* ldt */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,7(%3)\n"
|
|
" extql %1,%3,%1\n"
|
|
" extqh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
alpha_write_fp_reg(reg, tmp1|tmp2);
|
|
return;
|
|
|
|
case 0x28: /* ldl */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,3(%3)\n"
|
|
" extll %1,%3,%1\n"
|
|
" extlh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
*reg_addr = (int)(tmp1|tmp2);
|
|
break;
|
|
|
|
case 0x29: /* ldq */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %1,0(%3)\n"
|
|
"2: ldq_u %2,7(%3)\n"
|
|
" extql %1,%3,%1\n"
|
|
" extqh %2,%3,%2\n"
|
|
"3:\n"
|
|
EXC(1b,3b,%1,%0)
|
|
EXC(2b,3b,%2,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
: "r"(va), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
*reg_addr = tmp1|tmp2;
|
|
break;
|
|
|
|
/* Note that the store sequences do not indicate that they change
|
|
memory because it _should_ be affecting nothing in this context.
|
|
(Otherwise we have other, much larger, problems.) */
|
|
case 0x0d: /* stw */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %2,1(%5)\n"
|
|
"2: ldq_u %1,0(%5)\n"
|
|
" inswh %6,%5,%4\n"
|
|
" inswl %6,%5,%3\n"
|
|
" mskwh %2,%5,%2\n"
|
|
" mskwl %1,%5,%1\n"
|
|
" or %2,%4,%2\n"
|
|
" or %1,%3,%1\n"
|
|
"3: stq_u %2,1(%5)\n"
|
|
"4: stq_u %1,0(%5)\n"
|
|
"5:\n"
|
|
EXC(1b,5b,%2,%0)
|
|
EXC(2b,5b,%1,%0)
|
|
EXC(3b,5b,$31,%0)
|
|
EXC(4b,5b,$31,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
: "r"(va), "r"(*reg_addr), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
return;
|
|
|
|
case 0x26: /* sts */
|
|
fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
|
|
/* FALLTHRU */
|
|
|
|
case 0x2c: /* stl */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %2,3(%5)\n"
|
|
"2: ldq_u %1,0(%5)\n"
|
|
" inslh %6,%5,%4\n"
|
|
" insll %6,%5,%3\n"
|
|
" msklh %2,%5,%2\n"
|
|
" mskll %1,%5,%1\n"
|
|
" or %2,%4,%2\n"
|
|
" or %1,%3,%1\n"
|
|
"3: stq_u %2,3(%5)\n"
|
|
"4: stq_u %1,0(%5)\n"
|
|
"5:\n"
|
|
EXC(1b,5b,%2,%0)
|
|
EXC(2b,5b,%1,%0)
|
|
EXC(3b,5b,$31,%0)
|
|
EXC(4b,5b,$31,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
: "r"(va), "r"(*reg_addr), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
return;
|
|
|
|
case 0x27: /* stt */
|
|
fake_reg = alpha_read_fp_reg(reg);
|
|
/* FALLTHRU */
|
|
|
|
case 0x2d: /* stq */
|
|
__asm__ __volatile__(
|
|
"1: ldq_u %2,7(%5)\n"
|
|
"2: ldq_u %1,0(%5)\n"
|
|
" insqh %6,%5,%4\n"
|
|
" insql %6,%5,%3\n"
|
|
" mskqh %2,%5,%2\n"
|
|
" mskql %1,%5,%1\n"
|
|
" or %2,%4,%2\n"
|
|
" or %1,%3,%1\n"
|
|
"3: stq_u %2,7(%5)\n"
|
|
"4: stq_u %1,0(%5)\n"
|
|
"5:\n"
|
|
EXC(1b,5b,%2,%0)
|
|
EXC(2b,5b,%1,%0)
|
|
EXC(3b,5b,$31,%0)
|
|
EXC(4b,5b,$31,%0)
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
: "r"(va), "r"(*reg_addr), "0"(0));
|
|
if (error)
|
|
goto give_sigsegv;
|
|
return;
|
|
|
|
default:
|
|
/* What instruction were you trying to use, exactly? */
|
|
goto give_sigbus;
|
|
}
|
|
|
|
/* Only integer loads should get here; everyone else returns early. */
|
|
if (reg == 30)
|
|
wrusp(fake_reg);
|
|
return;
|
|
|
|
give_sigsegv:
|
|
regs->pc -= 4; /* make pc point to faulting insn */
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
|
|
/* We need to replicate some of the logic in mm/fault.c,
|
|
since we don't have access to the fault code in the
|
|
exception handling return path. */
|
|
if ((unsigned long)va >= TASK_SIZE)
|
|
info.si_code = SEGV_ACCERR;
|
|
else {
|
|
struct mm_struct *mm = current->mm;
|
|
down_read(&mm->mmap_sem);
|
|
if (find_vma(mm, (unsigned long)va))
|
|
info.si_code = SEGV_ACCERR;
|
|
else
|
|
info.si_code = SEGV_MAPERR;
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
info.si_addr = va;
|
|
send_sig_info(SIGSEGV, &info, current);
|
|
return;
|
|
|
|
give_sigbus:
|
|
regs->pc -= 4;
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = va;
|
|
send_sig_info(SIGBUS, &info, current);
|
|
return;
|
|
}
|
|
|
|
void
|
|
trap_init(void)
|
|
{
|
|
/* Tell PAL-code what global pointer we want in the kernel. */
|
|
register unsigned long gptr __asm__("$29");
|
|
wrkgp(gptr);
|
|
|
|
/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
|
|
a bug in the handling of the opDEC fault. Fix it up if so. */
|
|
if (implver() == IMPLVER_EV4)
|
|
opDEC_check();
|
|
|
|
wrent(entArith, 1);
|
|
wrent(entMM, 2);
|
|
wrent(entIF, 3);
|
|
wrent(entUna, 4);
|
|
wrent(entSys, 5);
|
|
wrent(entDbg, 6);
|
|
}
|