WSL2-Linux-Kernel/drivers/net/phy/bcm7xxx.c

474 строки
13 KiB
C

/*
* Broadcom BCM7xxx internal transceivers support.
*
* Copyright (C) 2014, Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/brcmphy.h>
#include <linux/mdio.h>
/* Broadcom BCM7xxx internal PHY registers */
#define MII_BCM7XXX_CHANNEL_WIDTH 0x2000
/* 40nm only register definitions */
#define MII_BCM7XXX_100TX_AUX_CTL 0x10
#define MII_BCM7XXX_100TX_FALSE_CAR 0x13
#define MII_BCM7XXX_100TX_DISC 0x14
#define MII_BCM7XXX_AUX_MODE 0x1d
#define MII_BCM7XX_64CLK_MDIO BIT(12)
#define MII_BCM7XXX_CORE_BASE1E 0x1e
#define MII_BCM7XXX_TEST 0x1f
#define MII_BCM7XXX_SHD_MODE_2 BIT(2)
/* 28nm only register definitions */
#define MISC_ADDR(base, channel) base, channel
#define DSP_TAP10 MISC_ADDR(0x0a, 0)
#define PLL_PLLCTRL_1 MISC_ADDR(0x32, 1)
#define PLL_PLLCTRL_2 MISC_ADDR(0x32, 2)
#define PLL_PLLCTRL_4 MISC_ADDR(0x33, 0)
#define AFE_RXCONFIG_0 MISC_ADDR(0x38, 0)
#define AFE_RXCONFIG_1 MISC_ADDR(0x38, 1)
#define AFE_RXCONFIG_2 MISC_ADDR(0x38, 2)
#define AFE_RX_LP_COUNTER MISC_ADDR(0x38, 3)
#define AFE_TX_CONFIG MISC_ADDR(0x39, 0)
#define AFE_VDCA_ICTRL_0 MISC_ADDR(0x39, 1)
#define AFE_VDAC_OTHERS_0 MISC_ADDR(0x39, 3)
#define AFE_HPF_TRIM_OTHERS MISC_ADDR(0x3a, 0)
#define CORE_EXPB0 0xb0
static void phy_write_exp(struct phy_device *phydev,
u16 reg, u16 value)
{
phy_write(phydev, MII_BCM54XX_EXP_SEL, MII_BCM54XX_EXP_SEL_ER | reg);
phy_write(phydev, MII_BCM54XX_EXP_DATA, value);
}
static void phy_write_misc(struct phy_device *phydev,
u16 reg, u16 chl, u16 value)
{
int tmp;
phy_write(phydev, MII_BCM54XX_AUX_CTL, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
tmp = phy_read(phydev, MII_BCM54XX_AUX_CTL);
tmp |= MII_BCM54XX_AUXCTL_ACTL_SMDSP_ENA;
phy_write(phydev, MII_BCM54XX_AUX_CTL, tmp);
tmp = (chl * MII_BCM7XXX_CHANNEL_WIDTH) | reg;
phy_write(phydev, MII_BCM54XX_EXP_SEL, tmp);
phy_write(phydev, MII_BCM54XX_EXP_DATA, value);
}
static void r_rc_cal_reset(struct phy_device *phydev)
{
/* Reset R_CAL/RC_CAL Engine */
phy_write_exp(phydev, 0x00b0, 0x0010);
/* Disable Reset R_AL/RC_CAL Engine */
phy_write_exp(phydev, 0x00b0, 0x0000);
}
static int bcm7xxx_28nm_b0_afe_config_init(struct phy_device *phydev)
{
/* Increase VCO range to prevent unlocking problem of PLL at low
* temp
*/
phy_write_misc(phydev, PLL_PLLCTRL_1, 0x0048);
/* Change Ki to 011 */
phy_write_misc(phydev, PLL_PLLCTRL_2, 0x021b);
/* Disable loading of TVCO buffer to bandgap, set bandgap trim
* to 111
*/
phy_write_misc(phydev, PLL_PLLCTRL_4, 0x0e20);
/* Adjust bias current trim by -3 */
phy_write_misc(phydev, DSP_TAP10, 0x690b);
/* Switch to CORE_BASE1E */
phy_write(phydev, MII_BCM7XXX_CORE_BASE1E, 0xd);
r_rc_cal_reset(phydev);
/* write AFE_RXCONFIG_0 */
phy_write_misc(phydev, AFE_RXCONFIG_0, 0xeb19);
/* write AFE_RXCONFIG_1 */
phy_write_misc(phydev, AFE_RXCONFIG_1, 0x9a3f);
/* write AFE_RX_LP_COUNTER */
phy_write_misc(phydev, AFE_RX_LP_COUNTER, 0x7fc0);
/* write AFE_HPF_TRIM_OTHERS */
phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x000b);
/* write AFTE_TX_CONFIG */
phy_write_misc(phydev, AFE_TX_CONFIG, 0x0800);
return 0;
}
static int bcm7xxx_28nm_d0_afe_config_init(struct phy_device *phydev)
{
/* AFE_RXCONFIG_0 */
phy_write_misc(phydev, AFE_RXCONFIG_0, 0xeb15);
/* AFE_RXCONFIG_1 */
phy_write_misc(phydev, AFE_RXCONFIG_1, 0x9b2f);
/* AFE_RXCONFIG_2, set rCal offset for HT=0 code and LT=-2 code */
phy_write_misc(phydev, AFE_RXCONFIG_2, 0x2003);
/* AFE_RX_LP_COUNTER, set RX bandwidth to maximum */
phy_write_misc(phydev, AFE_RX_LP_COUNTER, 0x7fc0);
/* AFE_TX_CONFIG, set 1000BT Cfeed=110 for all ports */
phy_write_misc(phydev, AFE_TX_CONFIG, 0x0061);
/* AFE_VDCA_ICTRL_0, set Iq=1101 instead of 0111 for AB symmetry */
phy_write_misc(phydev, AFE_VDCA_ICTRL_0, 0xa7da);
/* AFE_VDAC_OTHERS_0, set 1000BT Cidac=010 for all ports */
phy_write_misc(phydev, AFE_VDAC_OTHERS_0, 0xa020);
/* AFE_HPF_TRIM_OTHERS, set 100Tx/10BT to -4.5% swing and set rCal
* offset for HT=0 code
*/
phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x00e3);
/* CORE_BASE1E, force trim to overwrite and set I_ext trim to 0000 */
phy_write(phydev, MII_BCM7XXX_CORE_BASE1E, 0x0010);
/* DSP_TAP10, adjust bias current trim (+0% swing, +0 tick) */
phy_write_misc(phydev, DSP_TAP10, 0x011b);
/* Reset R_CAL/RC_CAL engine */
r_rc_cal_reset(phydev);
return 0;
}
static int bcm7xxx_28nm_e0_plus_afe_config_init(struct phy_device *phydev)
{
/* AFE_RXCONFIG_1, provide more margin for INL/DNL measurement */
phy_write_misc(phydev, AFE_RXCONFIG_1, 0x9b2f);
/* AFE_VDCA_ICTRL_0, set Iq=1101 instead of 0111 for AB symmetry */
phy_write_misc(phydev, AFE_VDCA_ICTRL_0, 0xa7da);
/* AFE_HPF_TRIM_OTHERS, set 100Tx/10BT to -4.5% swing and set rCal
* offset for HT=0 code
*/
phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x00e3);
/* CORE_BASE1E, force trim to overwrite and set I_ext trim to 0000 */
phy_write(phydev, MII_BCM7XXX_CORE_BASE1E, 0x0010);
/* DSP_TAP10, adjust bias current trim (+0% swing, +0 tick) */
phy_write_misc(phydev, DSP_TAP10, 0x011b);
/* Reset R_CAL/RC_CAL engine */
r_rc_cal_reset(phydev);
return 0;
}
static int bcm7xxx_apd_enable(struct phy_device *phydev)
{
int val;
/* Enable powering down of the DLL during auto-power down */
val = bcm54xx_shadow_read(phydev, BCM54XX_SHD_SCR3);
if (val < 0)
return val;
val |= BCM54XX_SHD_SCR3_DLLAPD_DIS;
bcm54xx_shadow_write(phydev, BCM54XX_SHD_SCR3, val);
/* Enable auto-power down */
val = bcm54xx_shadow_read(phydev, BCM54XX_SHD_APD);
if (val < 0)
return val;
val |= BCM54XX_SHD_APD_EN;
return bcm54xx_shadow_write(phydev, BCM54XX_SHD_APD, val);
}
static int bcm7xxx_eee_enable(struct phy_device *phydev)
{
int val;
val = phy_read_mmd_indirect(phydev, BRCM_CL45VEN_EEE_CONTROL,
MDIO_MMD_AN, phydev->addr);
if (val < 0)
return val;
/* Enable general EEE feature at the PHY level */
val |= LPI_FEATURE_EN | LPI_FEATURE_EN_DIG1000X;
phy_write_mmd_indirect(phydev, BRCM_CL45VEN_EEE_CONTROL,
MDIO_MMD_AN, phydev->addr, val);
/* Advertise supported modes */
val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
MDIO_MMD_AN, phydev->addr);
val |= (MDIO_AN_EEE_ADV_100TX | MDIO_AN_EEE_ADV_1000T);
phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
MDIO_MMD_AN, phydev->addr, val);
return 0;
}
static int bcm7xxx_28nm_config_init(struct phy_device *phydev)
{
u8 rev = PHY_BRCM_7XXX_REV(phydev->dev_flags);
u8 patch = PHY_BRCM_7XXX_PATCH(phydev->dev_flags);
int ret = 0;
pr_info_once("%s: %s PHY revision: 0x%02x, patch: %d\n",
dev_name(&phydev->dev), phydev->drv->name, rev, patch);
switch (rev) {
case 0xb0:
ret = bcm7xxx_28nm_b0_afe_config_init(phydev);
break;
case 0xd0:
ret = bcm7xxx_28nm_d0_afe_config_init(phydev);
break;
case 0xe0:
case 0xf0:
/* Rev G0 introduces a roll over */
case 0x10:
ret = bcm7xxx_28nm_e0_plus_afe_config_init(phydev);
break;
default:
break;
}
if (ret)
return ret;
ret = bcm7xxx_eee_enable(phydev);
if (ret)
return ret;
return bcm7xxx_apd_enable(phydev);
}
static int bcm7xxx_28nm_resume(struct phy_device *phydev)
{
int ret;
/* Re-apply workarounds coming out suspend/resume */
ret = bcm7xxx_28nm_config_init(phydev);
if (ret)
return ret;
/* 28nm Gigabit PHYs come out of reset without any half-duplex
* or "hub" compliant advertised mode, fix that. This does not
* cause any problems with the PHY library since genphy_config_aneg()
* gracefully handles auto-negotiated and forced modes.
*/
return genphy_config_aneg(phydev);
}
static int phy_set_clr_bits(struct phy_device *dev, int location,
int set_mask, int clr_mask)
{
int v, ret;
v = phy_read(dev, location);
if (v < 0)
return v;
v &= ~clr_mask;
v |= set_mask;
ret = phy_write(dev, location, v);
if (ret < 0)
return ret;
return v;
}
static int bcm7xxx_config_init(struct phy_device *phydev)
{
int ret;
/* Enable 64 clock MDIO */
phy_write(phydev, MII_BCM7XXX_AUX_MODE, MII_BCM7XX_64CLK_MDIO);
phy_read(phydev, MII_BCM7XXX_AUX_MODE);
/* Workaround only required for 100Mbits/sec capable PHYs */
if (phydev->supported & PHY_GBIT_FEATURES)
return 0;
/* set shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST,
MII_BCM7XXX_SHD_MODE_2, MII_BCM7XXX_SHD_MODE_2);
if (ret < 0)
return ret;
/* set iddq_clkbias */
phy_write(phydev, MII_BCM7XXX_100TX_DISC, 0x0F00);
udelay(10);
/* reset iddq_clkbias */
phy_write(phydev, MII_BCM7XXX_100TX_DISC, 0x0C00);
phy_write(phydev, MII_BCM7XXX_100TX_FALSE_CAR, 0x7555);
/* reset shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST, MII_BCM7XXX_SHD_MODE_2, 0);
if (ret < 0)
return ret;
return 0;
}
/* Workaround for putting the PHY in IDDQ mode, required
* for all BCM7XXX 40nm and 65nm PHYs
*/
static int bcm7xxx_suspend(struct phy_device *phydev)
{
int ret;
const struct bcm7xxx_regs {
int reg;
u16 value;
} bcm7xxx_suspend_cfg[] = {
{ MII_BCM7XXX_TEST, 0x008b },
{ MII_BCM7XXX_100TX_AUX_CTL, 0x01c0 },
{ MII_BCM7XXX_100TX_DISC, 0x7000 },
{ MII_BCM7XXX_TEST, 0x000f },
{ MII_BCM7XXX_100TX_AUX_CTL, 0x20d0 },
{ MII_BCM7XXX_TEST, 0x000b },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(bcm7xxx_suspend_cfg); i++) {
ret = phy_write(phydev,
bcm7xxx_suspend_cfg[i].reg,
bcm7xxx_suspend_cfg[i].value);
if (ret)
return ret;
}
return 0;
}
static int bcm7xxx_dummy_config_init(struct phy_device *phydev)
{
return 0;
}
#define BCM7XXX_28NM_GPHY(_oui, _name) \
{ \
.phy_id = (_oui), \
.phy_id_mask = 0xfffffff0, \
.name = _name, \
.features = PHY_GBIT_FEATURES | \
SUPPORTED_Pause | SUPPORTED_Asym_Pause, \
.flags = PHY_IS_INTERNAL, \
.config_init = bcm7xxx_28nm_config_init, \
.config_aneg = genphy_config_aneg, \
.read_status = genphy_read_status, \
.resume = bcm7xxx_28nm_resume, \
.driver = { .owner = THIS_MODULE }, \
}
static struct phy_driver bcm7xxx_driver[] = {
BCM7XXX_28NM_GPHY(PHY_ID_BCM7250, "Broadcom BCM7250"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7364, "Broadcom BCM7364"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7366, "Broadcom BCM7366"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7439, "Broadcom BCM7439"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7445, "Broadcom BCM7445"),
{
.phy_id = PHY_ID_BCM7425,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM7425",
.features = PHY_GBIT_FEATURES |
SUPPORTED_Pause | SUPPORTED_Asym_Pause,
.flags = 0,
.config_init = bcm7xxx_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.suspend = bcm7xxx_suspend,
.resume = bcm7xxx_config_init,
.driver = { .owner = THIS_MODULE },
}, {
.phy_id = PHY_ID_BCM7429,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM7429",
.features = PHY_GBIT_FEATURES |
SUPPORTED_Pause | SUPPORTED_Asym_Pause,
.flags = PHY_IS_INTERNAL,
.config_init = bcm7xxx_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.suspend = bcm7xxx_suspend,
.resume = bcm7xxx_config_init,
.driver = { .owner = THIS_MODULE },
}, {
.phy_id = PHY_BCM_OUI_4,
.phy_id_mask = 0xffff0000,
.name = "Broadcom BCM7XXX 40nm",
.features = PHY_GBIT_FEATURES |
SUPPORTED_Pause | SUPPORTED_Asym_Pause,
.flags = PHY_IS_INTERNAL,
.config_init = bcm7xxx_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.suspend = bcm7xxx_suspend,
.resume = bcm7xxx_config_init,
.driver = { .owner = THIS_MODULE },
}, {
.phy_id = PHY_BCM_OUI_5,
.phy_id_mask = 0xffffff00,
.name = "Broadcom BCM7XXX 65nm",
.features = PHY_BASIC_FEATURES |
SUPPORTED_Pause | SUPPORTED_Asym_Pause,
.flags = PHY_IS_INTERNAL,
.config_init = bcm7xxx_dummy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.suspend = bcm7xxx_suspend,
.resume = bcm7xxx_config_init,
.driver = { .owner = THIS_MODULE },
} };
static struct mdio_device_id __maybe_unused bcm7xxx_tbl[] = {
{ PHY_ID_BCM7250, 0xfffffff0, },
{ PHY_ID_BCM7364, 0xfffffff0, },
{ PHY_ID_BCM7366, 0xfffffff0, },
{ PHY_ID_BCM7425, 0xfffffff0, },
{ PHY_ID_BCM7429, 0xfffffff0, },
{ PHY_ID_BCM7439, 0xfffffff0, },
{ PHY_ID_BCM7445, 0xfffffff0, },
{ PHY_BCM_OUI_4, 0xffff0000 },
{ PHY_BCM_OUI_5, 0xffffff00 },
{ }
};
module_phy_driver(bcm7xxx_driver);
MODULE_DEVICE_TABLE(mdio, bcm7xxx_tbl);
MODULE_DESCRIPTION("Broadcom BCM7xxx internal PHY driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Broadcom Corporation");