965 строки
29 KiB
C
965 строки
29 KiB
C
/*
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* rpc_rdma.c
|
|
*
|
|
* This file contains the guts of the RPC RDMA protocol, and
|
|
* does marshaling/unmarshaling, etc. It is also where interfacing
|
|
* to the Linux RPC framework lives.
|
|
*/
|
|
|
|
#include "xprt_rdma.h"
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
enum rpcrdma_chunktype {
|
|
rpcrdma_noch = 0,
|
|
rpcrdma_readch,
|
|
rpcrdma_areadch,
|
|
rpcrdma_writech,
|
|
rpcrdma_replych
|
|
};
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
static const char transfertypes[][12] = {
|
|
"pure inline", /* no chunks */
|
|
" read chunk", /* some argument via rdma read */
|
|
"*read chunk", /* entire request via rdma read */
|
|
"write chunk", /* some result via rdma write */
|
|
"reply chunk" /* entire reply via rdma write */
|
|
};
|
|
#endif
|
|
|
|
/* The client can send a request inline as long as the RPCRDMA header
|
|
* plus the RPC call fit under the transport's inline limit. If the
|
|
* combined call message size exceeds that limit, the client must use
|
|
* the read chunk list for this operation.
|
|
*/
|
|
static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
|
|
{
|
|
unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
|
|
|
|
return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
|
|
}
|
|
|
|
/* The client can't know how large the actual reply will be. Thus it
|
|
* plans for the largest possible reply for that particular ULP
|
|
* operation. If the maximum combined reply message size exceeds that
|
|
* limit, the client must provide a write list or a reply chunk for
|
|
* this request.
|
|
*/
|
|
static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
|
|
{
|
|
unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
|
|
|
|
return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
|
|
}
|
|
|
|
static int
|
|
rpcrdma_tail_pullup(struct xdr_buf *buf)
|
|
{
|
|
size_t tlen = buf->tail[0].iov_len;
|
|
size_t skip = tlen & 3;
|
|
|
|
/* Do not include the tail if it is only an XDR pad */
|
|
if (tlen < 4)
|
|
return 0;
|
|
|
|
/* xdr_write_pages() adds a pad at the beginning of the tail
|
|
* if the content in "buf->pages" is unaligned. Force the
|
|
* tail's actual content to land at the next XDR position
|
|
* after the head instead.
|
|
*/
|
|
if (skip) {
|
|
unsigned char *src, *dst;
|
|
unsigned int count;
|
|
|
|
src = buf->tail[0].iov_base;
|
|
dst = buf->head[0].iov_base;
|
|
dst += buf->head[0].iov_len;
|
|
|
|
src += skip;
|
|
tlen -= skip;
|
|
|
|
dprintk("RPC: %s: skip=%zu, memmove(%p, %p, %zu)\n",
|
|
__func__, skip, dst, src, tlen);
|
|
|
|
for (count = tlen; count; count--)
|
|
*dst++ = *src++;
|
|
}
|
|
|
|
return tlen;
|
|
}
|
|
|
|
/*
|
|
* Chunk assembly from upper layer xdr_buf.
|
|
*
|
|
* Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
|
|
* elements. Segments are then coalesced when registered, if possible
|
|
* within the selected memreg mode.
|
|
*
|
|
* Returns positive number of segments converted, or a negative errno.
|
|
*/
|
|
|
|
static int
|
|
rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
|
|
enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
|
|
{
|
|
int len, n = 0, p;
|
|
int page_base;
|
|
struct page **ppages;
|
|
|
|
if (pos == 0 && xdrbuf->head[0].iov_len) {
|
|
seg[n].mr_page = NULL;
|
|
seg[n].mr_offset = xdrbuf->head[0].iov_base;
|
|
seg[n].mr_len = xdrbuf->head[0].iov_len;
|
|
++n;
|
|
}
|
|
|
|
len = xdrbuf->page_len;
|
|
ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
|
|
page_base = xdrbuf->page_base & ~PAGE_MASK;
|
|
p = 0;
|
|
while (len && n < nsegs) {
|
|
if (!ppages[p]) {
|
|
/* alloc the pagelist for receiving buffer */
|
|
ppages[p] = alloc_page(GFP_ATOMIC);
|
|
if (!ppages[p])
|
|
return -ENOMEM;
|
|
}
|
|
seg[n].mr_page = ppages[p];
|
|
seg[n].mr_offset = (void *)(unsigned long) page_base;
|
|
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
|
|
if (seg[n].mr_len > PAGE_SIZE)
|
|
return -EIO;
|
|
len -= seg[n].mr_len;
|
|
++n;
|
|
++p;
|
|
page_base = 0; /* page offset only applies to first page */
|
|
}
|
|
|
|
/* Message overflows the seg array */
|
|
if (len && n == nsegs)
|
|
return -EIO;
|
|
|
|
/* When encoding the read list, the tail is always sent inline */
|
|
if (type == rpcrdma_readch)
|
|
return n;
|
|
|
|
if (xdrbuf->tail[0].iov_len) {
|
|
/* the rpcrdma protocol allows us to omit any trailing
|
|
* xdr pad bytes, saving the server an RDMA operation. */
|
|
if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
|
|
return n;
|
|
if (n == nsegs)
|
|
/* Tail remains, but we're out of segments */
|
|
return -EIO;
|
|
seg[n].mr_page = NULL;
|
|
seg[n].mr_offset = xdrbuf->tail[0].iov_base;
|
|
seg[n].mr_len = xdrbuf->tail[0].iov_len;
|
|
++n;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Create read/write chunk lists, and reply chunks, for RDMA
|
|
*
|
|
* Assume check against THRESHOLD has been done, and chunks are required.
|
|
* Assume only encoding one list entry for read|write chunks. The NFSv3
|
|
* protocol is simple enough to allow this as it only has a single "bulk
|
|
* result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
|
|
* RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
|
|
*
|
|
* When used for a single reply chunk (which is a special write
|
|
* chunk used for the entire reply, rather than just the data), it
|
|
* is used primarily for READDIR and READLINK which would otherwise
|
|
* be severely size-limited by a small rdma inline read max. The server
|
|
* response will come back as an RDMA Write, followed by a message
|
|
* of type RDMA_NOMSG carrying the xid and length. As a result, reply
|
|
* chunks do not provide data alignment, however they do not require
|
|
* "fixup" (moving the response to the upper layer buffer) either.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Read chunklist (a linked list):
|
|
* N elements, position P (same P for all chunks of same arg!):
|
|
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
|
|
*
|
|
* Write chunklist (a list of (one) counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO - 0
|
|
*
|
|
* Reply chunk (a counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO
|
|
*
|
|
* Returns positive RPC/RDMA header size, or negative errno.
|
|
*/
|
|
|
|
static ssize_t
|
|
rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
|
|
struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
|
|
{
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
|
|
int n, nsegs, nchunks = 0;
|
|
unsigned int pos;
|
|
struct rpcrdma_mr_seg *seg = req->rl_segments;
|
|
struct rpcrdma_read_chunk *cur_rchunk = NULL;
|
|
struct rpcrdma_write_array *warray = NULL;
|
|
struct rpcrdma_write_chunk *cur_wchunk = NULL;
|
|
__be32 *iptr = headerp->rm_body.rm_chunks;
|
|
int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
|
|
|
|
if (type == rpcrdma_readch || type == rpcrdma_areadch) {
|
|
/* a read chunk - server will RDMA Read our memory */
|
|
cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
|
|
} else {
|
|
/* a write or reply chunk - server will RDMA Write our memory */
|
|
*iptr++ = xdr_zero; /* encode a NULL read chunk list */
|
|
if (type == rpcrdma_replych)
|
|
*iptr++ = xdr_zero; /* a NULL write chunk list */
|
|
warray = (struct rpcrdma_write_array *) iptr;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
|
|
}
|
|
|
|
if (type == rpcrdma_replych || type == rpcrdma_areadch)
|
|
pos = 0;
|
|
else
|
|
pos = target->head[0].iov_len;
|
|
|
|
nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
|
|
if (nsegs < 0)
|
|
return nsegs;
|
|
|
|
map = r_xprt->rx_ia.ri_ops->ro_map;
|
|
do {
|
|
n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
|
|
if (n <= 0)
|
|
goto out;
|
|
if (cur_rchunk) { /* read */
|
|
cur_rchunk->rc_discrim = xdr_one;
|
|
/* all read chunks have the same "position" */
|
|
cur_rchunk->rc_position = cpu_to_be32(pos);
|
|
cur_rchunk->rc_target.rs_handle =
|
|
cpu_to_be32(seg->mr_rkey);
|
|
cur_rchunk->rc_target.rs_length =
|
|
cpu_to_be32(seg->mr_len);
|
|
xdr_encode_hyper(
|
|
(__be32 *)&cur_rchunk->rc_target.rs_offset,
|
|
seg->mr_base);
|
|
dprintk("RPC: %s: read chunk "
|
|
"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, pos, n < nsegs ? "more" : "last");
|
|
cur_rchunk++;
|
|
r_xprt->rx_stats.read_chunk_count++;
|
|
} else { /* write/reply */
|
|
cur_wchunk->wc_target.rs_handle =
|
|
cpu_to_be32(seg->mr_rkey);
|
|
cur_wchunk->wc_target.rs_length =
|
|
cpu_to_be32(seg->mr_len);
|
|
xdr_encode_hyper(
|
|
(__be32 *)&cur_wchunk->wc_target.rs_offset,
|
|
seg->mr_base);
|
|
dprintk("RPC: %s: %s chunk "
|
|
"elem %d@0x%llx:0x%x (%s)\n", __func__,
|
|
(type == rpcrdma_replych) ? "reply" : "write",
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, n < nsegs ? "more" : "last");
|
|
cur_wchunk++;
|
|
if (type == rpcrdma_replych)
|
|
r_xprt->rx_stats.reply_chunk_count++;
|
|
else
|
|
r_xprt->rx_stats.write_chunk_count++;
|
|
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
|
|
}
|
|
nchunks++;
|
|
seg += n;
|
|
nsegs -= n;
|
|
} while (nsegs);
|
|
|
|
/* success. all failures return above */
|
|
req->rl_nchunks = nchunks;
|
|
|
|
/*
|
|
* finish off header. If write, marshal discrim and nchunks.
|
|
*/
|
|
if (cur_rchunk) {
|
|
iptr = (__be32 *) cur_rchunk;
|
|
*iptr++ = xdr_zero; /* finish the read chunk list */
|
|
*iptr++ = xdr_zero; /* encode a NULL write chunk list */
|
|
*iptr++ = xdr_zero; /* encode a NULL reply chunk */
|
|
} else {
|
|
warray->wc_discrim = xdr_one;
|
|
warray->wc_nchunks = cpu_to_be32(nchunks);
|
|
iptr = (__be32 *) cur_wchunk;
|
|
if (type == rpcrdma_writech) {
|
|
*iptr++ = xdr_zero; /* finish the write chunk list */
|
|
*iptr++ = xdr_zero; /* encode a NULL reply chunk */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return header size.
|
|
*/
|
|
return (unsigned char *)iptr - (unsigned char *)headerp;
|
|
|
|
out:
|
|
for (pos = 0; nchunks--;)
|
|
pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
|
|
&req->rl_segments[pos]);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Copy write data inline.
|
|
* This function is used for "small" requests. Data which is passed
|
|
* to RPC via iovecs (or page list) is copied directly into the
|
|
* pre-registered memory buffer for this request. For small amounts
|
|
* of data, this is efficient. The cutoff value is tunable.
|
|
*/
|
|
static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
|
|
{
|
|
int i, npages, curlen;
|
|
int copy_len;
|
|
unsigned char *srcp, *destp;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
|
|
int page_base;
|
|
struct page **ppages;
|
|
|
|
destp = rqst->rq_svec[0].iov_base;
|
|
curlen = rqst->rq_svec[0].iov_len;
|
|
destp += curlen;
|
|
|
|
dprintk("RPC: %s: destp 0x%p len %d hdrlen %d\n",
|
|
__func__, destp, rqst->rq_slen, curlen);
|
|
|
|
copy_len = rqst->rq_snd_buf.page_len;
|
|
|
|
if (rqst->rq_snd_buf.tail[0].iov_len) {
|
|
curlen = rqst->rq_snd_buf.tail[0].iov_len;
|
|
if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
|
|
memmove(destp + copy_len,
|
|
rqst->rq_snd_buf.tail[0].iov_base, curlen);
|
|
r_xprt->rx_stats.pullup_copy_count += curlen;
|
|
}
|
|
dprintk("RPC: %s: tail destp 0x%p len %d\n",
|
|
__func__, destp + copy_len, curlen);
|
|
rqst->rq_svec[0].iov_len += curlen;
|
|
}
|
|
r_xprt->rx_stats.pullup_copy_count += copy_len;
|
|
|
|
page_base = rqst->rq_snd_buf.page_base;
|
|
ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
|
|
page_base &= ~PAGE_MASK;
|
|
npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
|
|
for (i = 0; copy_len && i < npages; i++) {
|
|
curlen = PAGE_SIZE - page_base;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
|
|
__func__, i, destp, copy_len, curlen);
|
|
srcp = kmap_atomic(ppages[i]);
|
|
memcpy(destp, srcp+page_base, curlen);
|
|
kunmap_atomic(srcp);
|
|
rqst->rq_svec[0].iov_len += curlen;
|
|
destp += curlen;
|
|
copy_len -= curlen;
|
|
page_base = 0;
|
|
}
|
|
/* header now contains entire send message */
|
|
}
|
|
|
|
/*
|
|
* Marshal a request: the primary job of this routine is to choose
|
|
* the transfer modes. See comments below.
|
|
*
|
|
* Uses multiple RDMA IOVs for a request:
|
|
* [0] -- RPC RDMA header, which uses memory from the *start* of the
|
|
* preregistered buffer that already holds the RPC data in
|
|
* its middle.
|
|
* [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
|
|
* [2] -- optional padding.
|
|
* [3] -- if padded, header only in [1] and data here.
|
|
*
|
|
* Returns zero on success, otherwise a negative errno.
|
|
*/
|
|
|
|
int
|
|
rpcrdma_marshal_req(struct rpc_rqst *rqst)
|
|
{
|
|
struct rpc_xprt *xprt = rqst->rq_xprt;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
char *base;
|
|
size_t rpclen;
|
|
ssize_t hdrlen;
|
|
enum rpcrdma_chunktype rtype, wtype;
|
|
struct rpcrdma_msg *headerp;
|
|
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
|
|
return rpcrdma_bc_marshal_reply(rqst);
|
|
#endif
|
|
|
|
/*
|
|
* rpclen gets amount of data in first buffer, which is the
|
|
* pre-registered buffer.
|
|
*/
|
|
base = rqst->rq_svec[0].iov_base;
|
|
rpclen = rqst->rq_svec[0].iov_len;
|
|
|
|
headerp = rdmab_to_msg(req->rl_rdmabuf);
|
|
/* don't byte-swap XID, it's already done in request */
|
|
headerp->rm_xid = rqst->rq_xid;
|
|
headerp->rm_vers = rpcrdma_version;
|
|
headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
|
|
headerp->rm_type = rdma_msg;
|
|
|
|
/*
|
|
* Chunks needed for results?
|
|
*
|
|
* o Read ops return data as write chunk(s), header as inline.
|
|
* o If the expected result is under the inline threshold, all ops
|
|
* return as inline.
|
|
* o Large non-read ops return as a single reply chunk.
|
|
*/
|
|
if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
|
|
wtype = rpcrdma_writech;
|
|
else if (rpcrdma_results_inline(rqst))
|
|
wtype = rpcrdma_noch;
|
|
else
|
|
wtype = rpcrdma_replych;
|
|
|
|
/*
|
|
* Chunks needed for arguments?
|
|
*
|
|
* o If the total request is under the inline threshold, all ops
|
|
* are sent as inline.
|
|
* o Large write ops transmit data as read chunk(s), header as
|
|
* inline.
|
|
* o Large non-write ops are sent with the entire message as a
|
|
* single read chunk (protocol 0-position special case).
|
|
*
|
|
* This assumes that the upper layer does not present a request
|
|
* that both has a data payload, and whose non-data arguments
|
|
* by themselves are larger than the inline threshold.
|
|
*/
|
|
if (rpcrdma_args_inline(rqst)) {
|
|
rtype = rpcrdma_noch;
|
|
} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
|
|
rtype = rpcrdma_readch;
|
|
} else {
|
|
r_xprt->rx_stats.nomsg_call_count++;
|
|
headerp->rm_type = htonl(RDMA_NOMSG);
|
|
rtype = rpcrdma_areadch;
|
|
rpclen = 0;
|
|
}
|
|
|
|
/* The following simplification is not true forever */
|
|
if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
|
|
wtype = rpcrdma_noch;
|
|
if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
|
|
dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
|
|
__func__);
|
|
return -EIO;
|
|
}
|
|
|
|
hdrlen = RPCRDMA_HDRLEN_MIN;
|
|
|
|
/*
|
|
* Pull up any extra send data into the preregistered buffer.
|
|
* When padding is in use and applies to the transfer, insert
|
|
* it and change the message type.
|
|
*/
|
|
if (rtype == rpcrdma_noch) {
|
|
|
|
rpcrdma_inline_pullup(rqst);
|
|
|
|
headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
|
|
headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
|
|
headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
|
|
/* new length after pullup */
|
|
rpclen = rqst->rq_svec[0].iov_len;
|
|
} else if (rtype == rpcrdma_readch)
|
|
rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
|
|
if (rtype != rpcrdma_noch) {
|
|
hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
|
|
headerp, rtype);
|
|
wtype = rtype; /* simplify dprintk */
|
|
|
|
} else if (wtype != rpcrdma_noch) {
|
|
hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
|
|
headerp, wtype);
|
|
}
|
|
if (hdrlen < 0)
|
|
return hdrlen;
|
|
|
|
dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd"
|
|
" headerp 0x%p base 0x%p lkey 0x%x\n",
|
|
__func__, transfertypes[wtype], hdrlen, rpclen,
|
|
headerp, base, rdmab_lkey(req->rl_rdmabuf));
|
|
|
|
/*
|
|
* initialize send_iov's - normally only two: rdma chunk header and
|
|
* single preregistered RPC header buffer, but if padding is present,
|
|
* then use a preregistered (and zeroed) pad buffer between the RPC
|
|
* header and any write data. In all non-rdma cases, any following
|
|
* data has been copied into the RPC header buffer.
|
|
*/
|
|
req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
|
|
req->rl_send_iov[0].length = hdrlen;
|
|
req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
|
|
|
|
req->rl_niovs = 1;
|
|
if (rtype == rpcrdma_areadch)
|
|
return 0;
|
|
|
|
req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
|
|
req->rl_send_iov[1].length = rpclen;
|
|
req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
|
|
|
|
req->rl_niovs = 2;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Chase down a received write or reply chunklist to get length
|
|
* RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
|
|
*/
|
|
static int
|
|
rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
|
|
{
|
|
unsigned int i, total_len;
|
|
struct rpcrdma_write_chunk *cur_wchunk;
|
|
char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
|
|
|
|
i = be32_to_cpu(**iptrp);
|
|
if (i > max)
|
|
return -1;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
|
|
total_len = 0;
|
|
while (i--) {
|
|
struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
|
|
ifdebug(FACILITY) {
|
|
u64 off;
|
|
xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
|
|
dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
|
|
__func__,
|
|
be32_to_cpu(seg->rs_length),
|
|
(unsigned long long)off,
|
|
be32_to_cpu(seg->rs_handle));
|
|
}
|
|
total_len += be32_to_cpu(seg->rs_length);
|
|
++cur_wchunk;
|
|
}
|
|
/* check and adjust for properly terminated write chunk */
|
|
if (wrchunk) {
|
|
__be32 *w = (__be32 *) cur_wchunk;
|
|
if (*w++ != xdr_zero)
|
|
return -1;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) w;
|
|
}
|
|
if ((char *)cur_wchunk > base + rep->rr_len)
|
|
return -1;
|
|
|
|
*iptrp = (__be32 *) cur_wchunk;
|
|
return total_len;
|
|
}
|
|
|
|
/*
|
|
* Scatter inline received data back into provided iov's.
|
|
*/
|
|
static void
|
|
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
|
|
{
|
|
int i, npages, curlen, olen;
|
|
char *destp;
|
|
struct page **ppages;
|
|
int page_base;
|
|
|
|
curlen = rqst->rq_rcv_buf.head[0].iov_len;
|
|
if (curlen > copy_len) { /* write chunk header fixup */
|
|
curlen = copy_len;
|
|
rqst->rq_rcv_buf.head[0].iov_len = curlen;
|
|
}
|
|
|
|
dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
|
|
__func__, srcp, copy_len, curlen);
|
|
|
|
/* Shift pointer for first receive segment only */
|
|
rqst->rq_rcv_buf.head[0].iov_base = srcp;
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
|
|
olen = copy_len;
|
|
i = 0;
|
|
rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
|
|
page_base = rqst->rq_rcv_buf.page_base;
|
|
ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
|
|
page_base &= ~PAGE_MASK;
|
|
|
|
if (copy_len && rqst->rq_rcv_buf.page_len) {
|
|
npages = PAGE_ALIGN(page_base +
|
|
rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
|
|
for (; i < npages; i++) {
|
|
curlen = PAGE_SIZE - page_base;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
dprintk("RPC: %s: page %d"
|
|
" srcp 0x%p len %d curlen %d\n",
|
|
__func__, i, srcp, copy_len, curlen);
|
|
destp = kmap_atomic(ppages[i]);
|
|
memcpy(destp + page_base, srcp, curlen);
|
|
flush_dcache_page(ppages[i]);
|
|
kunmap_atomic(destp);
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
if (copy_len == 0)
|
|
break;
|
|
page_base = 0;
|
|
}
|
|
}
|
|
|
|
if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
|
|
curlen = copy_len;
|
|
if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
|
|
curlen = rqst->rq_rcv_buf.tail[0].iov_len;
|
|
if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
|
|
memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
|
|
dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
|
|
__func__, srcp, copy_len, curlen);
|
|
rqst->rq_rcv_buf.tail[0].iov_len = curlen;
|
|
copy_len -= curlen; ++i;
|
|
} else
|
|
rqst->rq_rcv_buf.tail[0].iov_len = 0;
|
|
|
|
if (pad) {
|
|
/* implicit padding on terminal chunk */
|
|
unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
|
|
while (pad--)
|
|
p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
|
|
}
|
|
|
|
if (copy_len)
|
|
dprintk("RPC: %s: %d bytes in"
|
|
" %d extra segments (%d lost)\n",
|
|
__func__, olen, i, copy_len);
|
|
|
|
/* TBD avoid a warning from call_decode() */
|
|
rqst->rq_private_buf = rqst->rq_rcv_buf;
|
|
}
|
|
|
|
void
|
|
rpcrdma_connect_worker(struct work_struct *work)
|
|
{
|
|
struct rpcrdma_ep *ep =
|
|
container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
|
|
struct rpcrdma_xprt *r_xprt =
|
|
container_of(ep, struct rpcrdma_xprt, rx_ep);
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
if (++xprt->connect_cookie == 0) /* maintain a reserved value */
|
|
++xprt->connect_cookie;
|
|
if (ep->rep_connected > 0) {
|
|
if (!xprt_test_and_set_connected(xprt))
|
|
xprt_wake_pending_tasks(xprt, 0);
|
|
} else {
|
|
if (xprt_test_and_clear_connected(xprt))
|
|
xprt_wake_pending_tasks(xprt, -ENOTCONN);
|
|
}
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
}
|
|
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
/* By convention, backchannel calls arrive via rdma_msg type
|
|
* messages, and never populate the chunk lists. This makes
|
|
* the RPC/RDMA header small and fixed in size, so it is
|
|
* straightforward to check the RPC header's direction field.
|
|
*/
|
|
static bool
|
|
rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
|
|
{
|
|
__be32 *p = (__be32 *)headerp;
|
|
|
|
if (headerp->rm_type != rdma_msg)
|
|
return false;
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero)
|
|
return false;
|
|
if (headerp->rm_body.rm_chunks[1] != xdr_zero)
|
|
return false;
|
|
if (headerp->rm_body.rm_chunks[2] != xdr_zero)
|
|
return false;
|
|
|
|
/* sanity */
|
|
if (p[7] != headerp->rm_xid)
|
|
return false;
|
|
/* call direction */
|
|
if (p[8] != cpu_to_be32(RPC_CALL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
|
|
|
|
/*
|
|
* This function is called when an async event is posted to
|
|
* the connection which changes the connection state. All it
|
|
* does at this point is mark the connection up/down, the rpc
|
|
* timers do the rest.
|
|
*/
|
|
void
|
|
rpcrdma_conn_func(struct rpcrdma_ep *ep)
|
|
{
|
|
schedule_delayed_work(&ep->rep_connect_worker, 0);
|
|
}
|
|
|
|
/* Process received RPC/RDMA messages.
|
|
*
|
|
* Errors must result in the RPC task either being awakened, or
|
|
* allowed to timeout, to discover the errors at that time.
|
|
*/
|
|
void
|
|
rpcrdma_reply_handler(struct rpcrdma_rep *rep)
|
|
{
|
|
struct rpcrdma_msg *headerp;
|
|
struct rpcrdma_req *req;
|
|
struct rpc_rqst *rqst;
|
|
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
__be32 *iptr;
|
|
int rdmalen, status;
|
|
unsigned long cwnd;
|
|
u32 credits;
|
|
|
|
dprintk("RPC: %s: incoming rep %p\n", __func__, rep);
|
|
|
|
if (rep->rr_len == RPCRDMA_BAD_LEN)
|
|
goto out_badstatus;
|
|
if (rep->rr_len < RPCRDMA_HDRLEN_MIN)
|
|
goto out_shortreply;
|
|
|
|
headerp = rdmab_to_msg(rep->rr_rdmabuf);
|
|
if (headerp->rm_vers != rpcrdma_version)
|
|
goto out_badversion;
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
if (rpcrdma_is_bcall(headerp))
|
|
goto out_bcall;
|
|
#endif
|
|
|
|
/* Match incoming rpcrdma_rep to an rpcrdma_req to
|
|
* get context for handling any incoming chunks.
|
|
*/
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
|
|
if (!rqst)
|
|
goto out_nomatch;
|
|
|
|
req = rpcr_to_rdmar(rqst);
|
|
if (req->rl_reply)
|
|
goto out_duplicate;
|
|
|
|
/* Sanity checking has passed. We are now committed
|
|
* to complete this transaction.
|
|
*/
|
|
list_del_init(&rqst->rq_list);
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
|
|
" RPC request 0x%p xid 0x%08x\n",
|
|
__func__, rep, req, rqst,
|
|
be32_to_cpu(headerp->rm_xid));
|
|
|
|
/* from here on, the reply is no longer an orphan */
|
|
req->rl_reply = rep;
|
|
xprt->reestablish_timeout = 0;
|
|
|
|
/* check for expected message types */
|
|
/* The order of some of these tests is important. */
|
|
switch (headerp->rm_type) {
|
|
case rdma_msg:
|
|
/* never expect read chunks */
|
|
/* never expect reply chunks (two ways to check) */
|
|
/* never expect write chunks without having offered RDMA */
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
|
|
(headerp->rm_body.rm_chunks[1] == xdr_zero &&
|
|
headerp->rm_body.rm_chunks[2] != xdr_zero) ||
|
|
(headerp->rm_body.rm_chunks[1] != xdr_zero &&
|
|
req->rl_nchunks == 0))
|
|
goto badheader;
|
|
if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
|
|
/* count any expected write chunks in read reply */
|
|
/* start at write chunk array count */
|
|
iptr = &headerp->rm_body.rm_chunks[2];
|
|
rdmalen = rpcrdma_count_chunks(rep,
|
|
req->rl_nchunks, 1, &iptr);
|
|
/* check for validity, and no reply chunk after */
|
|
if (rdmalen < 0 || *iptr++ != xdr_zero)
|
|
goto badheader;
|
|
rep->rr_len -=
|
|
((unsigned char *)iptr - (unsigned char *)headerp);
|
|
status = rep->rr_len + rdmalen;
|
|
r_xprt->rx_stats.total_rdma_reply += rdmalen;
|
|
/* special case - last chunk may omit padding */
|
|
if (rdmalen &= 3) {
|
|
rdmalen = 4 - rdmalen;
|
|
status += rdmalen;
|
|
}
|
|
} else {
|
|
/* else ordinary inline */
|
|
rdmalen = 0;
|
|
iptr = (__be32 *)((unsigned char *)headerp +
|
|
RPCRDMA_HDRLEN_MIN);
|
|
rep->rr_len -= RPCRDMA_HDRLEN_MIN;
|
|
status = rep->rr_len;
|
|
}
|
|
/* Fix up the rpc results for upper layer */
|
|
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
|
|
break;
|
|
|
|
case rdma_nomsg:
|
|
/* never expect read or write chunks, always reply chunks */
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
|
|
headerp->rm_body.rm_chunks[1] != xdr_zero ||
|
|
headerp->rm_body.rm_chunks[2] != xdr_one ||
|
|
req->rl_nchunks == 0)
|
|
goto badheader;
|
|
iptr = (__be32 *)((unsigned char *)headerp +
|
|
RPCRDMA_HDRLEN_MIN);
|
|
rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
|
|
if (rdmalen < 0)
|
|
goto badheader;
|
|
r_xprt->rx_stats.total_rdma_reply += rdmalen;
|
|
/* Reply chunk buffer already is the reply vector - no fixup. */
|
|
status = rdmalen;
|
|
break;
|
|
|
|
badheader:
|
|
default:
|
|
dprintk("%s: invalid rpcrdma reply header (type %d):"
|
|
" chunks[012] == %d %d %d"
|
|
" expected chunks <= %d\n",
|
|
__func__, be32_to_cpu(headerp->rm_type),
|
|
headerp->rm_body.rm_chunks[0],
|
|
headerp->rm_body.rm_chunks[1],
|
|
headerp->rm_body.rm_chunks[2],
|
|
req->rl_nchunks);
|
|
status = -EIO;
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
break;
|
|
}
|
|
|
|
/* Invalidate and flush the data payloads before waking the
|
|
* waiting application. This guarantees the memory region is
|
|
* properly fenced from the server before the application
|
|
* accesses the data. It also ensures proper send flow
|
|
* control: waking the next RPC waits until this RPC has
|
|
* relinquished all its Send Queue entries.
|
|
*/
|
|
if (req->rl_nchunks)
|
|
r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
|
|
|
|
credits = be32_to_cpu(headerp->rm_credit);
|
|
if (credits == 0)
|
|
credits = 1; /* don't deadlock */
|
|
else if (credits > r_xprt->rx_buf.rb_max_requests)
|
|
credits = r_xprt->rx_buf.rb_max_requests;
|
|
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
cwnd = xprt->cwnd;
|
|
xprt->cwnd = credits << RPC_CWNDSHIFT;
|
|
if (xprt->cwnd > cwnd)
|
|
xprt_release_rqst_cong(rqst->rq_task);
|
|
|
|
xprt_complete_rqst(rqst->rq_task, status);
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
|
|
__func__, xprt, rqst, status);
|
|
return;
|
|
|
|
out_badstatus:
|
|
rpcrdma_recv_buffer_put(rep);
|
|
if (r_xprt->rx_ep.rep_connected == 1) {
|
|
r_xprt->rx_ep.rep_connected = -EIO;
|
|
rpcrdma_conn_func(&r_xprt->rx_ep);
|
|
}
|
|
return;
|
|
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
out_bcall:
|
|
rpcrdma_bc_receive_call(r_xprt, rep);
|
|
return;
|
|
#endif
|
|
|
|
out_shortreply:
|
|
dprintk("RPC: %s: short/invalid reply\n", __func__);
|
|
goto repost;
|
|
|
|
out_badversion:
|
|
dprintk("RPC: %s: invalid version %d\n",
|
|
__func__, be32_to_cpu(headerp->rm_vers));
|
|
goto repost;
|
|
|
|
out_nomatch:
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n",
|
|
__func__, be32_to_cpu(headerp->rm_xid),
|
|
rep->rr_len);
|
|
goto repost;
|
|
|
|
out_duplicate:
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: "
|
|
"duplicate reply %p to RPC request %p: xid 0x%08x\n",
|
|
__func__, rep, req, be32_to_cpu(headerp->rm_xid));
|
|
|
|
repost:
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
|
|
rpcrdma_recv_buffer_put(rep);
|
|
}
|