WSL2-Linux-Kernel/kernel/sched_rt.c

259 строки
5.8 KiB
C

/*
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
* policies)
*/
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
u64 delta_exec;
if (!task_has_rt_policy(curr))
return;
delta_exec = rq->clock - curr->se.exec_start;
if (unlikely((s64)delta_exec < 0))
delta_exec = 0;
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec;
curr->se.exec_start = rq->clock;
cpuacct_charge(curr, delta_exec);
}
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
struct rt_prio_array *array = &rq->rt.active;
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
}
/*
* Adding/removing a task to/from a priority array:
*/
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
{
struct rt_prio_array *array = &rq->rt.active;
update_curr_rt(rq);
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
}
/*
* Put task to the end of the run list without the overhead of dequeue
* followed by enqueue.
*/
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
struct rt_prio_array *array = &rq->rt.active;
list_move_tail(&p->run_list, array->queue + p->prio);
}
static void
yield_task_rt(struct rq *rq)
{
requeue_task_rt(rq, rq->curr);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
if (p->prio < rq->curr->prio)
resched_task(rq->curr);
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
struct list_head *queue;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
queue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);
next->se.exec_start = rq->clock;
return next;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
p->se.exec_start = 0;
}
#ifdef CONFIG_SMP
/*
* Load-balancing iterator. Note: while the runqueue stays locked
* during the whole iteration, the current task might be
* dequeued so the iterator has to be dequeue-safe. Here we
* achieve that by always pre-iterating before returning
* the current task:
*/
static struct task_struct *load_balance_start_rt(void *arg)
{
struct rq *rq = arg;
struct rt_prio_array *array = &rq->rt.active;
struct list_head *head, *curr;
struct task_struct *p;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
head = array->queue + idx;
curr = head->prev;
p = list_entry(curr, struct task_struct, run_list);
curr = curr->prev;
rq->rt.rt_load_balance_idx = idx;
rq->rt.rt_load_balance_head = head;
rq->rt.rt_load_balance_curr = curr;
return p;
}
static struct task_struct *load_balance_next_rt(void *arg)
{
struct rq *rq = arg;
struct rt_prio_array *array = &rq->rt.active;
struct list_head *head, *curr;
struct task_struct *p;
int idx;
idx = rq->rt.rt_load_balance_idx;
head = rq->rt.rt_load_balance_head;
curr = rq->rt.rt_load_balance_curr;
/*
* If we arrived back to the head again then
* iterate to the next queue (if any):
*/
if (unlikely(head == curr)) {
int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
if (next_idx >= MAX_RT_PRIO)
return NULL;
idx = next_idx;
head = array->queue + idx;
curr = head->prev;
rq->rt.rt_load_balance_idx = idx;
rq->rt.rt_load_balance_head = head;
}
p = list_entry(curr, struct task_struct, run_list);
curr = curr->prev;
rq->rt.rt_load_balance_curr = curr;
return p;
}
static unsigned long
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio)
{
struct rq_iterator rt_rq_iterator;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
/* pass 'busiest' rq argument into
* load_balance_[start|next]_rt iterators
*/
rt_rq_iterator.arg = busiest;
return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
idle, all_pinned, this_best_prio, &rt_rq_iterator);
}
static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{
struct rq_iterator rt_rq_iterator;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
rt_rq_iterator.arg = busiest;
return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
&rt_rq_iterator);
}
#endif
static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;
if (--p->time_slice)
return;
p->time_slice = DEF_TIMESLICE;
/*
* Requeue to the end of queue if we are not the only element
* on the queue:
*/
if (p->run_list.prev != p->run_list.next) {
requeue_task_rt(rq, p);
set_tsk_need_resched(p);
}
}
static void set_curr_task_rt(struct rq *rq)
{
struct task_struct *p = rq->curr;
p->se.exec_start = rq->clock;
}
const struct sched_class rt_sched_class = {
.next = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
#ifdef CONFIG_SMP
.load_balance = load_balance_rt,
.move_one_task = move_one_task_rt,
#endif
.set_curr_task = set_curr_task_rt,
.task_tick = task_tick_rt,
};