455 строки
11 KiB
C
455 строки
11 KiB
C
#define DEBUG
|
|
|
|
#include <linux/wait.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <asm/spu.h>
|
|
#include <asm/spu_priv1.h>
|
|
#include <asm/io.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#include "spufs.h"
|
|
|
|
/* interrupt-level stop callback function. */
|
|
void spufs_stop_callback(struct spu *spu, int irq)
|
|
{
|
|
struct spu_context *ctx = spu->ctx;
|
|
|
|
/*
|
|
* It should be impossible to preempt a context while an exception
|
|
* is being processed, since the context switch code is specially
|
|
* coded to deal with interrupts ... But, just in case, sanity check
|
|
* the context pointer. It is OK to return doing nothing since
|
|
* the exception will be regenerated when the context is resumed.
|
|
*/
|
|
if (ctx) {
|
|
/* Copy exception arguments into module specific structure */
|
|
switch(irq) {
|
|
case 0 :
|
|
ctx->csa.class_0_pending = spu->class_0_pending;
|
|
ctx->csa.class_0_dar = spu->class_0_dar;
|
|
break;
|
|
case 1 :
|
|
ctx->csa.class_1_dsisr = spu->class_1_dsisr;
|
|
ctx->csa.class_1_dar = spu->class_1_dar;
|
|
break;
|
|
case 2 :
|
|
break;
|
|
}
|
|
|
|
/* ensure that the exception status has hit memory before a
|
|
* thread waiting on the context's stop queue is woken */
|
|
smp_wmb();
|
|
|
|
wake_up_all(&ctx->stop_wq);
|
|
}
|
|
}
|
|
|
|
int spu_stopped(struct spu_context *ctx, u32 *stat)
|
|
{
|
|
u64 dsisr;
|
|
u32 stopped;
|
|
|
|
stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
|
|
SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
|
|
|
|
top:
|
|
*stat = ctx->ops->status_read(ctx);
|
|
if (*stat & stopped) {
|
|
/*
|
|
* If the spu hasn't finished stopping, we need to
|
|
* re-read the register to get the stopped value.
|
|
*/
|
|
if (*stat & SPU_STATUS_RUNNING)
|
|
goto top;
|
|
return 1;
|
|
}
|
|
|
|
if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
|
|
return 1;
|
|
|
|
dsisr = ctx->csa.class_1_dsisr;
|
|
if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
|
|
return 1;
|
|
|
|
if (ctx->csa.class_0_pending)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spu_setup_isolated(struct spu_context *ctx)
|
|
{
|
|
int ret;
|
|
u64 __iomem *mfc_cntl;
|
|
u64 sr1;
|
|
u32 status;
|
|
unsigned long timeout;
|
|
const u32 status_loading = SPU_STATUS_RUNNING
|
|
| SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
|
|
|
|
ret = -ENODEV;
|
|
if (!isolated_loader)
|
|
goto out;
|
|
|
|
/*
|
|
* We need to exclude userspace access to the context.
|
|
*
|
|
* To protect against memory access we invalidate all ptes
|
|
* and make sure the pagefault handlers block on the mutex.
|
|
*/
|
|
spu_unmap_mappings(ctx);
|
|
|
|
mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
|
|
|
|
/* purge the MFC DMA queue to ensure no spurious accesses before we
|
|
* enter kernel mode */
|
|
timeout = jiffies + HZ;
|
|
out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
|
|
while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
|
|
!= MFC_CNTL_PURGE_DMA_COMPLETE) {
|
|
if (time_after(jiffies, timeout)) {
|
|
printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
|
|
__func__);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
/* clear purge status */
|
|
out_be64(mfc_cntl, 0);
|
|
|
|
/* put the SPE in kernel mode to allow access to the loader */
|
|
sr1 = spu_mfc_sr1_get(ctx->spu);
|
|
sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
|
|
spu_mfc_sr1_set(ctx->spu, sr1);
|
|
|
|
/* start the loader */
|
|
ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
|
|
ctx->ops->signal2_write(ctx,
|
|
(unsigned long)isolated_loader & 0xffffffff);
|
|
|
|
ctx->ops->runcntl_write(ctx,
|
|
SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
|
|
|
|
ret = 0;
|
|
timeout = jiffies + HZ;
|
|
while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
|
|
status_loading) {
|
|
if (time_after(jiffies, timeout)) {
|
|
printk(KERN_ERR "%s: timeout waiting for loader\n",
|
|
__func__);
|
|
ret = -EIO;
|
|
goto out_drop_priv;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
if (!(status & SPU_STATUS_RUNNING)) {
|
|
/* If isolated LOAD has failed: run SPU, we will get a stop-and
|
|
* signal later. */
|
|
pr_debug("%s: isolated LOAD failed\n", __func__);
|
|
ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
|
|
ret = -EACCES;
|
|
goto out_drop_priv;
|
|
}
|
|
|
|
if (!(status & SPU_STATUS_ISOLATED_STATE)) {
|
|
/* This isn't allowed by the CBEA, but check anyway */
|
|
pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
|
|
ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
|
|
ret = -EINVAL;
|
|
goto out_drop_priv;
|
|
}
|
|
|
|
out_drop_priv:
|
|
/* Finished accessing the loader. Drop kernel mode */
|
|
sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
|
|
spu_mfc_sr1_set(ctx->spu, sr1);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int spu_run_init(struct spu_context *ctx, u32 *npc)
|
|
{
|
|
unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
|
|
int ret;
|
|
|
|
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
|
|
|
|
/*
|
|
* NOSCHED is synchronous scheduling with respect to the caller.
|
|
* The caller waits for the context to be loaded.
|
|
*/
|
|
if (ctx->flags & SPU_CREATE_NOSCHED) {
|
|
if (ctx->state == SPU_STATE_SAVED) {
|
|
ret = spu_activate(ctx, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Apply special setup as required.
|
|
*/
|
|
if (ctx->flags & SPU_CREATE_ISOLATE) {
|
|
if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
|
|
ret = spu_setup_isolated(ctx);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If userspace has set the runcntrl register (eg, to
|
|
* issue an isolated exit), we need to re-set it here
|
|
*/
|
|
runcntl = ctx->ops->runcntl_read(ctx) &
|
|
(SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
|
|
if (runcntl == 0)
|
|
runcntl = SPU_RUNCNTL_RUNNABLE;
|
|
} else {
|
|
unsigned long privcntl;
|
|
|
|
if (test_thread_flag(TIF_SINGLESTEP))
|
|
privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
|
|
else
|
|
privcntl = SPU_PRIVCNTL_MODE_NORMAL;
|
|
|
|
ctx->ops->privcntl_write(ctx, privcntl);
|
|
ctx->ops->npc_write(ctx, *npc);
|
|
}
|
|
|
|
ctx->ops->runcntl_write(ctx, runcntl);
|
|
|
|
if (ctx->flags & SPU_CREATE_NOSCHED) {
|
|
spuctx_switch_state(ctx, SPU_UTIL_USER);
|
|
} else {
|
|
|
|
if (ctx->state == SPU_STATE_SAVED) {
|
|
ret = spu_activate(ctx, 0);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
spuctx_switch_state(ctx, SPU_UTIL_USER);
|
|
}
|
|
}
|
|
|
|
set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
|
|
return 0;
|
|
}
|
|
|
|
static int spu_run_fini(struct spu_context *ctx, u32 *npc,
|
|
u32 *status)
|
|
{
|
|
int ret = 0;
|
|
|
|
spu_del_from_rq(ctx);
|
|
|
|
*status = ctx->ops->status_read(ctx);
|
|
*npc = ctx->ops->npc_read(ctx);
|
|
|
|
spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
|
|
clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
|
|
spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, *status);
|
|
spu_release(ctx);
|
|
|
|
if (signal_pending(current))
|
|
ret = -ERESTARTSYS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* SPU syscall restarting is tricky because we violate the basic
|
|
* assumption that the signal handler is running on the interrupted
|
|
* thread. Here instead, the handler runs on PowerPC user space code,
|
|
* while the syscall was called from the SPU.
|
|
* This means we can only do a very rough approximation of POSIX
|
|
* signal semantics.
|
|
*/
|
|
static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
|
|
unsigned int *npc)
|
|
{
|
|
int ret;
|
|
|
|
switch (*spu_ret) {
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
/*
|
|
* Enter the regular syscall restarting for
|
|
* sys_spu_run, then restart the SPU syscall
|
|
* callback.
|
|
*/
|
|
*npc -= 8;
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTART_RESTARTBLOCK:
|
|
/*
|
|
* Restart block is too hard for now, just return -EINTR
|
|
* to the SPU.
|
|
* ERESTARTNOHAND comes from sys_pause, we also return
|
|
* -EINTR from there.
|
|
* Assume that we need to be restarted ourselves though.
|
|
*/
|
|
*spu_ret = -EINTR;
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "%s: unexpected return code %ld\n",
|
|
__func__, *spu_ret);
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int spu_process_callback(struct spu_context *ctx)
|
|
{
|
|
struct spu_syscall_block s;
|
|
u32 ls_pointer, npc;
|
|
void __iomem *ls;
|
|
long spu_ret;
|
|
int ret;
|
|
|
|
/* get syscall block from local store */
|
|
npc = ctx->ops->npc_read(ctx) & ~3;
|
|
ls = (void __iomem *)ctx->ops->get_ls(ctx);
|
|
ls_pointer = in_be32(ls + npc);
|
|
if (ls_pointer > (LS_SIZE - sizeof(s)))
|
|
return -EFAULT;
|
|
memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
|
|
|
|
/* do actual syscall without pinning the spu */
|
|
ret = 0;
|
|
spu_ret = -ENOSYS;
|
|
npc += 4;
|
|
|
|
if (s.nr_ret < __NR_syscalls) {
|
|
spu_release(ctx);
|
|
/* do actual system call from here */
|
|
spu_ret = spu_sys_callback(&s);
|
|
if (spu_ret <= -ERESTARTSYS) {
|
|
ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
|
|
}
|
|
mutex_lock(&ctx->state_mutex);
|
|
if (ret == -ERESTARTSYS)
|
|
return ret;
|
|
}
|
|
|
|
/* need to re-get the ls, as it may have changed when we released the
|
|
* spu */
|
|
ls = (void __iomem *)ctx->ops->get_ls(ctx);
|
|
|
|
/* write result, jump over indirect pointer */
|
|
memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
|
|
ctx->ops->npc_write(ctx, npc);
|
|
ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
|
|
return ret;
|
|
}
|
|
|
|
long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
|
|
{
|
|
int ret;
|
|
struct spu *spu;
|
|
u32 status;
|
|
|
|
if (mutex_lock_interruptible(&ctx->run_mutex))
|
|
return -ERESTARTSYS;
|
|
|
|
ctx->event_return = 0;
|
|
|
|
ret = spu_acquire(ctx);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
spu_enable_spu(ctx);
|
|
|
|
spu_update_sched_info(ctx);
|
|
|
|
ret = spu_run_init(ctx, npc);
|
|
if (ret) {
|
|
spu_release(ctx);
|
|
goto out;
|
|
}
|
|
|
|
do {
|
|
ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* This is nasty: we need the state_mutex for all the
|
|
* bookkeeping even if the syscall was interrupted by
|
|
* a signal. ewww.
|
|
*/
|
|
mutex_lock(&ctx->state_mutex);
|
|
break;
|
|
}
|
|
spu = ctx->spu;
|
|
if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
|
|
&ctx->sched_flags))) {
|
|
if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
|
|
spu_switch_notify(spu, ctx);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
|
|
|
|
if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
|
|
(status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
|
|
ret = spu_process_callback(ctx);
|
|
if (ret)
|
|
break;
|
|
status &= ~SPU_STATUS_STOPPED_BY_STOP;
|
|
}
|
|
ret = spufs_handle_class1(ctx);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = spufs_handle_class0(ctx);
|
|
if (ret)
|
|
break;
|
|
|
|
if (signal_pending(current))
|
|
ret = -ERESTARTSYS;
|
|
} while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
|
|
SPU_STATUS_STOPPED_BY_HALT |
|
|
SPU_STATUS_SINGLE_STEP)));
|
|
|
|
spu_disable_spu(ctx);
|
|
ret = spu_run_fini(ctx, npc, &status);
|
|
spu_yield(ctx);
|
|
|
|
if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
|
|
(((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
|
|
ctx->stats.libassist++;
|
|
|
|
if ((ret == 0) ||
|
|
((ret == -ERESTARTSYS) &&
|
|
((status & SPU_STATUS_STOPPED_BY_HALT) ||
|
|
(status & SPU_STATUS_SINGLE_STEP) ||
|
|
((status & SPU_STATUS_STOPPED_BY_STOP) &&
|
|
(status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
|
|
ret = status;
|
|
|
|
/* Note: we don't need to force_sig SIGTRAP on single-step
|
|
* since we have TIF_SINGLESTEP set, thus the kernel will do
|
|
* it upon return from the syscall anyawy
|
|
*/
|
|
if (unlikely(status & SPU_STATUS_SINGLE_STEP))
|
|
ret = -ERESTARTSYS;
|
|
|
|
else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
|
|
&& (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
|
|
force_sig(SIGTRAP, current);
|
|
ret = -ERESTARTSYS;
|
|
}
|
|
|
|
out:
|
|
*event = ctx->event_return;
|
|
out_unlock:
|
|
mutex_unlock(&ctx->run_mutex);
|
|
return ret;
|
|
}
|