WSL2-Linux-Kernel/kernel/sched_clock.c

346 строки
7.7 KiB
C

/*
* sched_clock for unstable cpu clocks
*
* Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* Updates and enhancements:
* Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
*
* Based on code by:
* Ingo Molnar <mingo@redhat.com>
* Guillaume Chazarain <guichaz@gmail.com>
*
* Create a semi stable clock from a mixture of other events, including:
* - gtod
* - jiffies
* - sched_clock()
* - explicit idle events
*
* We use gtod as base and the unstable clock deltas. The deltas are filtered,
* making it monotonic and keeping it within an expected window. This window
* is set up using jiffies.
*
* Furthermore, explicit sleep and wakeup hooks allow us to account for time
* that is otherwise invisible (TSC gets stopped).
*
* The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
* consistent between cpus (never more than 1 jiffies difference).
*/
#include <linux/sched.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>
#include <linux/ktime.h>
#include <linux/module.h>
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
#define MULTI_SHIFT 15
/* Max is double, Min is 1/2 */
#define MAX_MULTI (2LL << MULTI_SHIFT)
#define MIN_MULTI (1LL << (MULTI_SHIFT-1))
struct sched_clock_data {
/*
* Raw spinlock - this is a special case: this might be called
* from within instrumentation code so we dont want to do any
* instrumentation ourselves.
*/
raw_spinlock_t lock;
unsigned long tick_jiffies;
u64 prev_raw;
u64 tick_raw;
u64 tick_gtod;
u64 clock;
s64 multi;
#ifdef CONFIG_NO_HZ
int check_max;
#endif
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
static inline struct sched_clock_data *this_scd(void)
{
return &__get_cpu_var(sched_clock_data);
}
static inline struct sched_clock_data *cpu_sdc(int cpu)
{
return &per_cpu(sched_clock_data, cpu);
}
static __read_mostly int sched_clock_running;
void sched_clock_init(void)
{
u64 ktime_now = ktime_to_ns(ktime_get());
unsigned long now_jiffies = jiffies;
int cpu;
for_each_possible_cpu(cpu) {
struct sched_clock_data *scd = cpu_sdc(cpu);
scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
scd->tick_jiffies = now_jiffies;
scd->prev_raw = 0;
scd->tick_raw = 0;
scd->tick_gtod = ktime_now;
scd->clock = ktime_now;
scd->multi = 1 << MULTI_SHIFT;
#ifdef CONFIG_NO_HZ
scd->check_max = 1;
#endif
}
sched_clock_running = 1;
}
#ifdef CONFIG_NO_HZ
/*
* The dynamic ticks makes the delta jiffies inaccurate. This
* prevents us from checking the maximum time update.
* Disable the maximum check during stopped ticks.
*/
void sched_clock_tick_stop(int cpu)
{
struct sched_clock_data *scd = cpu_sdc(cpu);
scd->check_max = 0;
}
void sched_clock_tick_start(int cpu)
{
struct sched_clock_data *scd = cpu_sdc(cpu);
scd->check_max = 1;
}
static int check_max(struct sched_clock_data *scd)
{
return scd->check_max;
}
#else
static int check_max(struct sched_clock_data *scd)
{
return 1;
}
#endif /* CONFIG_NO_HZ */
/*
* update the percpu scd from the raw @now value
*
* - filter out backward motion
* - use jiffies to generate a min,max window to clip the raw values
*/
static void __update_sched_clock(struct sched_clock_data *scd, u64 now, u64 *time)
{
unsigned long now_jiffies = jiffies;
long delta_jiffies = now_jiffies - scd->tick_jiffies;
u64 clock = scd->clock;
u64 min_clock, max_clock;
s64 delta = now - scd->prev_raw;
WARN_ON_ONCE(!irqs_disabled());
/*
* At schedule tick the clock can be just under the gtod. We don't
* want to push it too prematurely.
*/
min_clock = scd->tick_gtod + (delta_jiffies * TICK_NSEC);
if (min_clock > TICK_NSEC)
min_clock -= TICK_NSEC / 2;
if (unlikely(delta < 0)) {
clock++;
goto out;
}
/*
* The clock must stay within a jiffie of the gtod.
* But since we may be at the start of a jiffy or the end of one
* we add another jiffy buffer.
*/
max_clock = scd->tick_gtod + (2 + delta_jiffies) * TICK_NSEC;
delta *= scd->multi;
delta >>= MULTI_SHIFT;
if (unlikely(clock + delta > max_clock) && check_max(scd)) {
if (clock < max_clock)
clock = max_clock;
else
clock++;
} else {
clock += delta;
}
out:
if (unlikely(clock < min_clock))
clock = min_clock;
if (time)
*time = clock;
else {
scd->prev_raw = now;
scd->clock = clock;
}
}
static void lock_double_clock(struct sched_clock_data *data1,
struct sched_clock_data *data2)
{
if (data1 < data2) {
__raw_spin_lock(&data1->lock);
__raw_spin_lock(&data2->lock);
} else {
__raw_spin_lock(&data2->lock);
__raw_spin_lock(&data1->lock);
}
}
u64 sched_clock_cpu(int cpu)
{
struct sched_clock_data *scd = cpu_sdc(cpu);
u64 now, clock;
if (unlikely(!sched_clock_running))
return 0ull;
WARN_ON_ONCE(!irqs_disabled());
now = sched_clock();
if (cpu != raw_smp_processor_id()) {
/*
* in order to update a remote cpu's clock based on our
* unstable raw time rebase it against:
* tick_raw (offset between raw counters)
* tick_gotd (tick offset between cpus)
*/
struct sched_clock_data *my_scd = this_scd();
lock_double_clock(scd, my_scd);
now -= my_scd->tick_raw;
now += scd->tick_raw;
now += my_scd->tick_gtod;
now -= scd->tick_gtod;
__raw_spin_unlock(&my_scd->lock);
__update_sched_clock(scd, now, &clock);
__raw_spin_unlock(&scd->lock);
} else {
__raw_spin_lock(&scd->lock);
__update_sched_clock(scd, now, NULL);
clock = scd->clock;
__raw_spin_unlock(&scd->lock);
}
return clock;
}
void sched_clock_tick(void)
{
struct sched_clock_data *scd = this_scd();
unsigned long now_jiffies = jiffies;
s64 mult, delta_gtod, delta_raw;
u64 now, now_gtod;
if (unlikely(!sched_clock_running))
return;
WARN_ON_ONCE(!irqs_disabled());
now_gtod = ktime_to_ns(ktime_get());
now = sched_clock();
__raw_spin_lock(&scd->lock);
__update_sched_clock(scd, now, NULL);
/*
* update tick_gtod after __update_sched_clock() because that will
* already observe 1 new jiffy; adding a new tick_gtod to that would
* increase the clock 2 jiffies.
*/
delta_gtod = now_gtod - scd->tick_gtod;
delta_raw = now - scd->tick_raw;
if ((long)delta_raw > 0) {
mult = delta_gtod << MULTI_SHIFT;
do_div(mult, delta_raw);
scd->multi = mult;
if (scd->multi > MAX_MULTI)
scd->multi = MAX_MULTI;
else if (scd->multi < MIN_MULTI)
scd->multi = MIN_MULTI;
} else
scd->multi = 1 << MULTI_SHIFT;
scd->tick_raw = now;
scd->tick_gtod = now_gtod;
scd->tick_jiffies = now_jiffies;
__raw_spin_unlock(&scd->lock);
}
/*
* We are going deep-idle (irqs are disabled):
*/
void sched_clock_idle_sleep_event(void)
{
sched_clock_cpu(smp_processor_id());
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
/*
* We just idled delta nanoseconds (called with irqs disabled):
*/
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
struct sched_clock_data *scd = this_scd();
u64 now = sched_clock();
/*
* Override the previous timestamp and ignore all
* sched_clock() deltas that occured while we idled,
* and use the PM-provided delta_ns to advance the
* rq clock:
*/
__raw_spin_lock(&scd->lock);
scd->prev_raw = now;
scd->clock += delta_ns;
scd->multi = 1 << MULTI_SHIFT;
__raw_spin_unlock(&scd->lock);
touch_softlockup_watchdog();
}
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
#endif
/*
* Scheduler clock - returns current time in nanosec units.
* This is default implementation.
* Architectures and sub-architectures can override this.
*/
unsigned long long __attribute__((weak)) sched_clock(void)
{
return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
}
unsigned long long cpu_clock(int cpu)
{
unsigned long long clock;
unsigned long flags;
local_irq_save(flags);
clock = sched_clock_cpu(cpu);
local_irq_restore(flags);
return clock;
}
EXPORT_SYMBOL_GPL(cpu_clock);