WSL2-Linux-Kernel/mm/nommu.c

1524 строки
36 KiB
C

/*
* linux/mm/nommu.c
*
* Replacement code for mm functions to support CPU's that don't
* have any form of memory management unit (thus no virtual memory).
*
* See Documentation/nommu-mmap.txt
*
* Copyright (c) 2004-2005 David Howells <dhowells@redhat.com>
* Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
* Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
* Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
* Copyright (c) 2007 Paul Mundt <lethal@linux-sh.org>
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/file.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/tracehook.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include "internal.h"
void *high_memory;
struct page *mem_map;
unsigned long max_mapnr;
unsigned long num_physpages;
unsigned long askedalloc, realalloc;
atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio = 50; /* default is 50% */
int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
int heap_stack_gap = 0;
EXPORT_SYMBOL(mem_map);
EXPORT_SYMBOL(num_physpages);
/* list of shareable VMAs */
struct rb_root nommu_vma_tree = RB_ROOT;
DECLARE_RWSEM(nommu_vma_sem);
struct vm_operations_struct generic_file_vm_ops = {
};
/*
* Handle all mappings that got truncated by a "truncate()"
* system call.
*
* NOTE! We have to be ready to update the memory sharing
* between the file and the memory map for a potential last
* incomplete page. Ugly, but necessary.
*/
int vmtruncate(struct inode *inode, loff_t offset)
{
struct address_space *mapping = inode->i_mapping;
unsigned long limit;
if (inode->i_size < offset)
goto do_expand;
i_size_write(inode, offset);
truncate_inode_pages(mapping, offset);
goto out_truncate;
do_expand:
limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
if (limit != RLIM_INFINITY && offset > limit)
goto out_sig;
if (offset > inode->i_sb->s_maxbytes)
goto out;
i_size_write(inode, offset);
out_truncate:
if (inode->i_op->truncate)
inode->i_op->truncate(inode);
return 0;
out_sig:
send_sig(SIGXFSZ, current, 0);
out:
return -EFBIG;
}
EXPORT_SYMBOL(vmtruncate);
/*
* Return the total memory allocated for this pointer, not
* just what the caller asked for.
*
* Doesn't have to be accurate, i.e. may have races.
*/
unsigned int kobjsize(const void *objp)
{
struct page *page;
/*
* If the object we have should not have ksize performed on it,
* return size of 0
*/
if (!objp || !virt_addr_valid(objp))
return 0;
page = virt_to_head_page(objp);
/*
* If the allocator sets PageSlab, we know the pointer came from
* kmalloc().
*/
if (PageSlab(page))
return ksize(objp);
/*
* The ksize() function is only guaranteed to work for pointers
* returned by kmalloc(). So handle arbitrary pointers here.
*/
return PAGE_SIZE << compound_order(page);
}
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, int flags,
struct page **pages, struct vm_area_struct **vmas)
{
struct vm_area_struct *vma;
unsigned long vm_flags;
int i;
int write = !!(flags & GUP_FLAGS_WRITE);
int force = !!(flags & GUP_FLAGS_FORCE);
int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
/* calculate required read or write permissions.
* - if 'force' is set, we only require the "MAY" flags.
*/
vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
for (i = 0; i < len; i++) {
vma = find_vma(mm, start);
if (!vma)
goto finish_or_fault;
/* protect what we can, including chardevs */
if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
(!ignore && !(vm_flags & vma->vm_flags)))
goto finish_or_fault;
if (pages) {
pages[i] = virt_to_page(start);
if (pages[i])
page_cache_get(pages[i]);
}
if (vmas)
vmas[i] = vma;
start += PAGE_SIZE;
}
return i;
finish_or_fault:
return i ? : -EFAULT;
}
/*
* get a list of pages in an address range belonging to the specified process
* and indicate the VMA that covers each page
* - this is potentially dodgy as we may end incrementing the page count of a
* slab page or a secondary page from a compound page
* - don't permit access to VMAs that don't support it, such as I/O mappings
*/
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
{
int flags = 0;
if (write)
flags |= GUP_FLAGS_WRITE;
if (force)
flags |= GUP_FLAGS_FORCE;
return __get_user_pages(tsk, mm,
start, len, flags,
pages, vmas);
}
EXPORT_SYMBOL(get_user_pages);
DEFINE_RWLOCK(vmlist_lock);
struct vm_struct *vmlist;
void vfree(const void *addr)
{
kfree(addr);
}
EXPORT_SYMBOL(vfree);
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
/*
* You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
* returns only a logical address.
*/
return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
}
EXPORT_SYMBOL(__vmalloc);
void *vmalloc_user(unsigned long size)
{
void *ret;
ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
PAGE_KERNEL);
if (ret) {
struct vm_area_struct *vma;
down_write(&current->mm->mmap_sem);
vma = find_vma(current->mm, (unsigned long)ret);
if (vma)
vma->vm_flags |= VM_USERMAP;
up_write(&current->mm->mmap_sem);
}
return ret;
}
EXPORT_SYMBOL(vmalloc_user);
struct page *vmalloc_to_page(const void *addr)
{
return virt_to_page(addr);
}
EXPORT_SYMBOL(vmalloc_to_page);
unsigned long vmalloc_to_pfn(const void *addr)
{
return page_to_pfn(virt_to_page(addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);
long vread(char *buf, char *addr, unsigned long count)
{
memcpy(buf, addr, count);
return count;
}
long vwrite(char *buf, char *addr, unsigned long count)
{
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
memcpy(addr, buf, count);
return(count);
}
/*
* vmalloc - allocate virtually continguos memory
*
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into continguos kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc);
void *vmalloc_node(unsigned long size, int node)
{
return vmalloc(size);
}
EXPORT_SYMBOL(vmalloc_node);
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif
/**
* vmalloc_exec - allocate virtually contiguous, executable memory
* @size: allocation size
*
* Kernel-internal function to allocate enough pages to cover @size
* the page level allocator and map them into contiguous and
* executable kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_exec(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
}
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
*
* Allocate enough 32bit PA addressable pages to cover @size from the
* page level allocator and map them into continguos kernel virtual space.
*/
void *vmalloc_32(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc_32);
/**
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
* @size: allocation size
*
* The resulting memory area is 32bit addressable and zeroed so it can be
* mapped to userspace without leaking data.
*
* VM_USERMAP is set on the corresponding VMA so that subsequent calls to
* remap_vmalloc_range() are permissible.
*/
void *vmalloc_32_user(unsigned long size)
{
/*
* We'll have to sort out the ZONE_DMA bits for 64-bit,
* but for now this can simply use vmalloc_user() directly.
*/
return vmalloc_user(size);
}
EXPORT_SYMBOL(vmalloc_32_user);
void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
{
BUG();
return NULL;
}
EXPORT_SYMBOL(vmap);
void vunmap(const void *addr)
{
BUG();
}
EXPORT_SYMBOL(vunmap);
/*
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
* have one.
*/
void __attribute__((weak)) vmalloc_sync_all(void)
{
}
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page)
{
return -EINVAL;
}
EXPORT_SYMBOL(vm_insert_page);
/*
* sys_brk() for the most part doesn't need the global kernel
* lock, except when an application is doing something nasty
* like trying to un-brk an area that has already been mapped
* to a regular file. in this case, the unmapping will need
* to invoke file system routines that need the global lock.
*/
asmlinkage unsigned long sys_brk(unsigned long brk)
{
struct mm_struct *mm = current->mm;
if (brk < mm->start_brk || brk > mm->context.end_brk)
return mm->brk;
if (mm->brk == brk)
return mm->brk;
/*
* Always allow shrinking brk
*/
if (brk <= mm->brk) {
mm->brk = brk;
return brk;
}
/*
* Ok, looks good - let it rip.
*/
return mm->brk = brk;
}
#ifdef DEBUG
static void show_process_blocks(void)
{
struct vm_list_struct *vml;
printk("Process blocks %d:", current->pid);
for (vml = &current->mm->context.vmlist; vml; vml = vml->next) {
printk(" %p: %p", vml, vml->vma);
if (vml->vma)
printk(" (%d @%lx #%d)",
kobjsize((void *) vml->vma->vm_start),
vml->vma->vm_start,
atomic_read(&vml->vma->vm_usage));
printk(vml->next ? " ->" : ".\n");
}
}
#endif /* DEBUG */
/*
* add a VMA into a process's mm_struct in the appropriate place in the list
* - should be called with mm->mmap_sem held writelocked
*/
static void add_vma_to_mm(struct mm_struct *mm, struct vm_list_struct *vml)
{
struct vm_list_struct **ppv;
for (ppv = &current->mm->context.vmlist; *ppv; ppv = &(*ppv)->next)
if ((*ppv)->vma->vm_start > vml->vma->vm_start)
break;
vml->next = *ppv;
*ppv = vml;
}
/*
* look up the first VMA in which addr resides, NULL if none
* - should be called with mm->mmap_sem at least held readlocked
*/
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_list_struct *loop, *vml;
/* search the vm_start ordered list */
vml = NULL;
for (loop = mm->context.vmlist; loop; loop = loop->next) {
if (loop->vma->vm_start > addr)
break;
vml = loop;
}
if (vml && vml->vma->vm_end > addr)
return vml->vma;
return NULL;
}
EXPORT_SYMBOL(find_vma);
/*
* find a VMA
* - we don't extend stack VMAs under NOMMU conditions
*/
struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
{
return find_vma(mm, addr);
}
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
return -ENOMEM;
}
/*
* look up the first VMA exactly that exactly matches addr
* - should be called with mm->mmap_sem at least held readlocked
*/
static inline struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
unsigned long addr)
{
struct vm_list_struct *vml;
/* search the vm_start ordered list */
for (vml = mm->context.vmlist; vml; vml = vml->next) {
if (vml->vma->vm_start == addr)
return vml->vma;
if (vml->vma->vm_start > addr)
break;
}
return NULL;
}
/*
* find a VMA in the global tree
*/
static inline struct vm_area_struct *find_nommu_vma(unsigned long start)
{
struct vm_area_struct *vma;
struct rb_node *n = nommu_vma_tree.rb_node;
while (n) {
vma = rb_entry(n, struct vm_area_struct, vm_rb);
if (start < vma->vm_start)
n = n->rb_left;
else if (start > vma->vm_start)
n = n->rb_right;
else
return vma;
}
return NULL;
}
/*
* add a VMA in the global tree
*/
static void add_nommu_vma(struct vm_area_struct *vma)
{
struct vm_area_struct *pvma;
struct address_space *mapping;
struct rb_node **p = &nommu_vma_tree.rb_node;
struct rb_node *parent = NULL;
/* add the VMA to the mapping */
if (vma->vm_file) {
mapping = vma->vm_file->f_mapping;
flush_dcache_mmap_lock(mapping);
vma_prio_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/* add the VMA to the master list */
while (*p) {
parent = *p;
pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
if (vma->vm_start < pvma->vm_start) {
p = &(*p)->rb_left;
}
else if (vma->vm_start > pvma->vm_start) {
p = &(*p)->rb_right;
}
else {
/* mappings are at the same address - this can only
* happen for shared-mem chardevs and shared file
* mappings backed by ramfs/tmpfs */
BUG_ON(!(pvma->vm_flags & VM_SHARED));
if (vma < pvma)
p = &(*p)->rb_left;
else if (vma > pvma)
p = &(*p)->rb_right;
else
BUG();
}
}
rb_link_node(&vma->vm_rb, parent, p);
rb_insert_color(&vma->vm_rb, &nommu_vma_tree);
}
/*
* delete a VMA from the global list
*/
static void delete_nommu_vma(struct vm_area_struct *vma)
{
struct address_space *mapping;
/* remove the VMA from the mapping */
if (vma->vm_file) {
mapping = vma->vm_file->f_mapping;
flush_dcache_mmap_lock(mapping);
vma_prio_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/* remove from the master list */
rb_erase(&vma->vm_rb, &nommu_vma_tree);
}
/*
* determine whether a mapping should be permitted and, if so, what sort of
* mapping we're capable of supporting
*/
static int validate_mmap_request(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long prot,
unsigned long flags,
unsigned long pgoff,
unsigned long *_capabilities)
{
unsigned long capabilities;
unsigned long reqprot = prot;
int ret;
/* do the simple checks first */
if (flags & MAP_FIXED || addr) {
printk(KERN_DEBUG
"%d: Can't do fixed-address/overlay mmap of RAM\n",
current->pid);
return -EINVAL;
}
if ((flags & MAP_TYPE) != MAP_PRIVATE &&
(flags & MAP_TYPE) != MAP_SHARED)
return -EINVAL;
if (!len)
return -EINVAL;
/* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len || len > TASK_SIZE)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
if (file) {
/* validate file mapping requests */
struct address_space *mapping;
/* files must support mmap */
if (!file->f_op || !file->f_op->mmap)
return -ENODEV;
/* work out if what we've got could possibly be shared
* - we support chardevs that provide their own "memory"
* - we support files/blockdevs that are memory backed
*/
mapping = file->f_mapping;
if (!mapping)
mapping = file->f_path.dentry->d_inode->i_mapping;
capabilities = 0;
if (mapping && mapping->backing_dev_info)
capabilities = mapping->backing_dev_info->capabilities;
if (!capabilities) {
/* no explicit capabilities set, so assume some
* defaults */
switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
case S_IFREG:
case S_IFBLK:
capabilities = BDI_CAP_MAP_COPY;
break;
case S_IFCHR:
capabilities =
BDI_CAP_MAP_DIRECT |
BDI_CAP_READ_MAP |
BDI_CAP_WRITE_MAP;
break;
default:
return -EINVAL;
}
}
/* eliminate any capabilities that we can't support on this
* device */
if (!file->f_op->get_unmapped_area)
capabilities &= ~BDI_CAP_MAP_DIRECT;
if (!file->f_op->read)
capabilities &= ~BDI_CAP_MAP_COPY;
if (flags & MAP_SHARED) {
/* do checks for writing, appending and locking */
if ((prot & PROT_WRITE) &&
!(file->f_mode & FMODE_WRITE))
return -EACCES;
if (IS_APPEND(file->f_path.dentry->d_inode) &&
(file->f_mode & FMODE_WRITE))
return -EACCES;
if (locks_verify_locked(file->f_path.dentry->d_inode))
return -EAGAIN;
if (!(capabilities & BDI_CAP_MAP_DIRECT))
return -ENODEV;
if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
) {
printk("MAP_SHARED not completely supported on !MMU\n");
return -EINVAL;
}
/* we mustn't privatise shared mappings */
capabilities &= ~BDI_CAP_MAP_COPY;
}
else {
/* we're going to read the file into private memory we
* allocate */
if (!(capabilities & BDI_CAP_MAP_COPY))
return -ENODEV;
/* we don't permit a private writable mapping to be
* shared with the backing device */
if (prot & PROT_WRITE)
capabilities &= ~BDI_CAP_MAP_DIRECT;
}
/* handle executable mappings and implied executable
* mappings */
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
if (prot & PROT_EXEC)
return -EPERM;
}
else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
/* handle implication of PROT_EXEC by PROT_READ */
if (current->personality & READ_IMPLIES_EXEC) {
if (capabilities & BDI_CAP_EXEC_MAP)
prot |= PROT_EXEC;
}
}
else if ((prot & PROT_READ) &&
(prot & PROT_EXEC) &&
!(capabilities & BDI_CAP_EXEC_MAP)
) {
/* backing file is not executable, try to copy */
capabilities &= ~BDI_CAP_MAP_DIRECT;
}
}
else {
/* anonymous mappings are always memory backed and can be
* privately mapped
*/
capabilities = BDI_CAP_MAP_COPY;
/* handle PROT_EXEC implication by PROT_READ */
if ((prot & PROT_READ) &&
(current->personality & READ_IMPLIES_EXEC))
prot |= PROT_EXEC;
}
/* allow the security API to have its say */
ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
if (ret < 0)
return ret;
/* looks okay */
*_capabilities = capabilities;
return 0;
}
/*
* we've determined that we can make the mapping, now translate what we
* now know into VMA flags
*/
static unsigned long determine_vm_flags(struct file *file,
unsigned long prot,
unsigned long flags,
unsigned long capabilities)
{
unsigned long vm_flags;
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
/* vm_flags |= mm->def_flags; */
if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
/* attempt to share read-only copies of mapped file chunks */
if (file && !(prot & PROT_WRITE))
vm_flags |= VM_MAYSHARE;
}
else {
/* overlay a shareable mapping on the backing device or inode
* if possible - used for chardevs, ramfs/tmpfs/shmfs and
* romfs/cramfs */
if (flags & MAP_SHARED)
vm_flags |= VM_MAYSHARE | VM_SHARED;
else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
vm_flags |= VM_MAYSHARE;
}
/* refuse to let anyone share private mappings with this process if
* it's being traced - otherwise breakpoints set in it may interfere
* with another untraced process
*/
if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
vm_flags &= ~VM_MAYSHARE;
return vm_flags;
}
/*
* set up a shared mapping on a file
*/
static int do_mmap_shared_file(struct vm_area_struct *vma, unsigned long len)
{
int ret;
ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
if (ret != -ENOSYS)
return ret;
/* getting an ENOSYS error indicates that direct mmap isn't
* possible (as opposed to tried but failed) so we'll fall
* through to making a private copy of the data and mapping
* that if we can */
return -ENODEV;
}
/*
* set up a private mapping or an anonymous shared mapping
*/
static int do_mmap_private(struct vm_area_struct *vma, unsigned long len)
{
void *base;
int ret;
/* invoke the file's mapping function so that it can keep track of
* shared mappings on devices or memory
* - VM_MAYSHARE will be set if it may attempt to share
*/
if (vma->vm_file) {
ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
if (ret != -ENOSYS) {
/* shouldn't return success if we're not sharing */
BUG_ON(ret == 0 && !(vma->vm_flags & VM_MAYSHARE));
return ret; /* success or a real error */
}
/* getting an ENOSYS error indicates that direct mmap isn't
* possible (as opposed to tried but failed) so we'll try to
* make a private copy of the data and map that instead */
}
/* allocate some memory to hold the mapping
* - note that this may not return a page-aligned address if the object
* we're allocating is smaller than a page
*/
base = kmalloc(len, GFP_KERNEL|__GFP_COMP);
if (!base)
goto enomem;
vma->vm_start = (unsigned long) base;
vma->vm_end = vma->vm_start + len;
vma->vm_flags |= VM_MAPPED_COPY;
#ifdef WARN_ON_SLACK
if (len + WARN_ON_SLACK <= kobjsize(result))
printk("Allocation of %lu bytes from process %d has %lu bytes of slack\n",
len, current->pid, kobjsize(result) - len);
#endif
if (vma->vm_file) {
/* read the contents of a file into the copy */
mm_segment_t old_fs;
loff_t fpos;
fpos = vma->vm_pgoff;
fpos <<= PAGE_SHIFT;
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
set_fs(old_fs);
if (ret < 0)
goto error_free;
/* clear the last little bit */
if (ret < len)
memset(base + ret, 0, len - ret);
} else {
/* if it's an anonymous mapping, then just clear it */
memset(base, 0, len);
}
return 0;
error_free:
kfree(base);
vma->vm_start = 0;
return ret;
enomem:
printk("Allocation of length %lu from process %d failed\n",
len, current->pid);
show_free_areas();
return -ENOMEM;
}
/*
* handle mapping creation for uClinux
*/
unsigned long do_mmap_pgoff(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long prot,
unsigned long flags,
unsigned long pgoff)
{
struct vm_list_struct *vml = NULL;
struct vm_area_struct *vma = NULL;
struct rb_node *rb;
unsigned long capabilities, vm_flags;
void *result;
int ret;
if (!(flags & MAP_FIXED))
addr = round_hint_to_min(addr);
/* decide whether we should attempt the mapping, and if so what sort of
* mapping */
ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
&capabilities);
if (ret < 0)
return ret;
/* we've determined that we can make the mapping, now translate what we
* now know into VMA flags */
vm_flags = determine_vm_flags(file, prot, flags, capabilities);
/* we're going to need to record the mapping if it works */
vml = kzalloc(sizeof(struct vm_list_struct), GFP_KERNEL);
if (!vml)
goto error_getting_vml;
down_write(&nommu_vma_sem);
/* if we want to share, we need to check for VMAs created by other
* mmap() calls that overlap with our proposed mapping
* - we can only share with an exact match on most regular files
* - shared mappings on character devices and memory backed files are
* permitted to overlap inexactly as far as we are concerned for in
* these cases, sharing is handled in the driver or filesystem rather
* than here
*/
if (vm_flags & VM_MAYSHARE) {
unsigned long pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long vmpglen;
/* suppress VMA sharing for shared regions */
if (vm_flags & VM_SHARED &&
capabilities & BDI_CAP_MAP_DIRECT)
goto dont_share_VMAs;
for (rb = rb_first(&nommu_vma_tree); rb; rb = rb_next(rb)) {
vma = rb_entry(rb, struct vm_area_struct, vm_rb);
if (!(vma->vm_flags & VM_MAYSHARE))
continue;
/* search for overlapping mappings on the same file */
if (vma->vm_file->f_path.dentry->d_inode != file->f_path.dentry->d_inode)
continue;
if (vma->vm_pgoff >= pgoff + pglen)
continue;
vmpglen = vma->vm_end - vma->vm_start + PAGE_SIZE - 1;
vmpglen >>= PAGE_SHIFT;
if (pgoff >= vma->vm_pgoff + vmpglen)
continue;
/* handle inexactly overlapping matches between mappings */
if (vma->vm_pgoff != pgoff || vmpglen != pglen) {
if (!(capabilities & BDI_CAP_MAP_DIRECT))
goto sharing_violation;
continue;
}
/* we've found a VMA we can share */
atomic_inc(&vma->vm_usage);
vml->vma = vma;
result = (void *) vma->vm_start;
goto shared;
}
dont_share_VMAs:
vma = NULL;
/* obtain the address at which to make a shared mapping
* - this is the hook for quasi-memory character devices to
* tell us the location of a shared mapping
*/
if (file && file->f_op->get_unmapped_area) {
addr = file->f_op->get_unmapped_area(file, addr, len,
pgoff, flags);
if (IS_ERR((void *) addr)) {
ret = addr;
if (ret != (unsigned long) -ENOSYS)
goto error;
/* the driver refused to tell us where to site
* the mapping so we'll have to attempt to copy
* it */
ret = (unsigned long) -ENODEV;
if (!(capabilities & BDI_CAP_MAP_COPY))
goto error;
capabilities &= ~BDI_CAP_MAP_DIRECT;
}
}
}
/* we're going to need a VMA struct as well */
vma = kzalloc(sizeof(struct vm_area_struct), GFP_KERNEL);
if (!vma)
goto error_getting_vma;
INIT_LIST_HEAD(&vma->anon_vma_node);
atomic_set(&vma->vm_usage, 1);
if (file) {
get_file(file);
if (vm_flags & VM_EXECUTABLE) {
added_exe_file_vma(current->mm);
vma->vm_mm = current->mm;
}
}
vma->vm_file = file;
vma->vm_flags = vm_flags;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_pgoff = pgoff;
vml->vma = vma;
/* set up the mapping */
if (file && vma->vm_flags & VM_SHARED)
ret = do_mmap_shared_file(vma, len);
else
ret = do_mmap_private(vma, len);
if (ret < 0)
goto error;
/* okay... we have a mapping; now we have to register it */
result = (void *) vma->vm_start;
if (vma->vm_flags & VM_MAPPED_COPY) {
realalloc += kobjsize(result);
askedalloc += len;
}
realalloc += kobjsize(vma);
askedalloc += sizeof(*vma);
current->mm->total_vm += len >> PAGE_SHIFT;
add_nommu_vma(vma);
shared:
realalloc += kobjsize(vml);
askedalloc += sizeof(*vml);
add_vma_to_mm(current->mm, vml);
up_write(&nommu_vma_sem);
if (prot & PROT_EXEC)
flush_icache_range((unsigned long) result,
(unsigned long) result + len);
#ifdef DEBUG
printk("do_mmap:\n");
show_process_blocks();
#endif
return (unsigned long) result;
error:
up_write(&nommu_vma_sem);
kfree(vml);
if (vma) {
if (vma->vm_file) {
fput(vma->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(vma->vm_mm);
}
kfree(vma);
}
return ret;
sharing_violation:
up_write(&nommu_vma_sem);
printk("Attempt to share mismatched mappings\n");
kfree(vml);
return -EINVAL;
error_getting_vma:
up_write(&nommu_vma_sem);
kfree(vml);
printk("Allocation of vma for %lu byte allocation from process %d failed\n",
len, current->pid);
show_free_areas();
return -ENOMEM;
error_getting_vml:
printk("Allocation of vml for %lu byte allocation from process %d failed\n",
len, current->pid);
show_free_areas();
return -ENOMEM;
}
EXPORT_SYMBOL(do_mmap_pgoff);
/*
* handle mapping disposal for uClinux
*/
static void put_vma(struct mm_struct *mm, struct vm_area_struct *vma)
{
if (vma) {
down_write(&nommu_vma_sem);
if (atomic_dec_and_test(&vma->vm_usage)) {
delete_nommu_vma(vma);
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
/* IO memory and memory shared directly out of the pagecache from
* ramfs/tmpfs mustn't be released here */
if (vma->vm_flags & VM_MAPPED_COPY) {
realalloc -= kobjsize((void *) vma->vm_start);
askedalloc -= vma->vm_end - vma->vm_start;
kfree((void *) vma->vm_start);
}
realalloc -= kobjsize(vma);
askedalloc -= sizeof(*vma);
if (vma->vm_file) {
fput(vma->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(mm);
}
kfree(vma);
}
up_write(&nommu_vma_sem);
}
}
/*
* release a mapping
* - under NOMMU conditions the parameters must match exactly to the mapping to
* be removed
*/
int do_munmap(struct mm_struct *mm, unsigned long addr, size_t len)
{
struct vm_list_struct *vml, **parent;
unsigned long end = addr + len;
#ifdef DEBUG
printk("do_munmap:\n");
#endif
for (parent = &mm->context.vmlist; *parent; parent = &(*parent)->next) {
if ((*parent)->vma->vm_start > addr)
break;
if ((*parent)->vma->vm_start == addr &&
((len == 0) || ((*parent)->vma->vm_end == end)))
goto found;
}
printk("munmap of non-mmaped memory by process %d (%s): %p\n",
current->pid, current->comm, (void *) addr);
return -EINVAL;
found:
vml = *parent;
put_vma(mm, vml->vma);
*parent = vml->next;
realalloc -= kobjsize(vml);
askedalloc -= sizeof(*vml);
kfree(vml);
update_hiwater_vm(mm);
mm->total_vm -= len >> PAGE_SHIFT;
#ifdef DEBUG
show_process_blocks();
#endif
return 0;
}
EXPORT_SYMBOL(do_munmap);
asmlinkage long sys_munmap(unsigned long addr, size_t len)
{
int ret;
struct mm_struct *mm = current->mm;
down_write(&mm->mmap_sem);
ret = do_munmap(mm, addr, len);
up_write(&mm->mmap_sem);
return ret;
}
/*
* Release all mappings
*/
void exit_mmap(struct mm_struct * mm)
{
struct vm_list_struct *tmp;
if (mm) {
#ifdef DEBUG
printk("Exit_mmap:\n");
#endif
mm->total_vm = 0;
while ((tmp = mm->context.vmlist)) {
mm->context.vmlist = tmp->next;
put_vma(mm, tmp->vma);
realalloc -= kobjsize(tmp);
askedalloc -= sizeof(*tmp);
kfree(tmp);
}
#ifdef DEBUG
show_process_blocks();
#endif
}
}
unsigned long do_brk(unsigned long addr, unsigned long len)
{
return -ENOMEM;
}
/*
* expand (or shrink) an existing mapping, potentially moving it at the same
* time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* under NOMMU conditions, we only permit changing a mapping's size, and only
* as long as it stays within the hole allocated by the kmalloc() call in
* do_mmap_pgoff() and the block is not shareable
*
* MREMAP_FIXED is not supported under NOMMU conditions
*/
unsigned long do_mremap(unsigned long addr,
unsigned long old_len, unsigned long new_len,
unsigned long flags, unsigned long new_addr)
{
struct vm_area_struct *vma;
/* insanity checks first */
if (new_len == 0)
return (unsigned long) -EINVAL;
if (flags & MREMAP_FIXED && new_addr != addr)
return (unsigned long) -EINVAL;
vma = find_vma_exact(current->mm, addr);
if (!vma)
return (unsigned long) -EINVAL;
if (vma->vm_end != vma->vm_start + old_len)
return (unsigned long) -EFAULT;
if (vma->vm_flags & VM_MAYSHARE)
return (unsigned long) -EPERM;
if (new_len > kobjsize((void *) addr))
return (unsigned long) -ENOMEM;
/* all checks complete - do it */
vma->vm_end = vma->vm_start + new_len;
askedalloc -= old_len;
askedalloc += new_len;
return vma->vm_start;
}
EXPORT_SYMBOL(do_mremap);
asmlinkage unsigned long sys_mremap(unsigned long addr,
unsigned long old_len, unsigned long new_len,
unsigned long flags, unsigned long new_addr)
{
unsigned long ret;
down_write(&current->mm->mmap_sem);
ret = do_mremap(addr, old_len, new_len, flags, new_addr);
up_write(&current->mm->mmap_sem);
return ret;
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
{
return NULL;
}
int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
unsigned long to, unsigned long size, pgprot_t prot)
{
vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
return 0;
}
EXPORT_SYMBOL(remap_pfn_range);
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
unsigned long pgoff)
{
unsigned int size = vma->vm_end - vma->vm_start;
if (!(vma->vm_flags & VM_USERMAP))
return -EINVAL;
vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
vma->vm_end = vma->vm_start + size;
return 0;
}
EXPORT_SYMBOL(remap_vmalloc_range);
void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
}
unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
return -ENOMEM;
}
void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
{
}
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen,
int even_cows)
{
}
EXPORT_SYMBOL(unmap_mapping_range);
/*
* ask for an unmapped area at which to create a mapping on a file
*/
unsigned long get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);
get_area = current->mm->get_unmapped_area;
if (file && file->f_op && file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
if (!get_area)
return -ENOSYS;
return get_area(file, addr, len, pgoff, flags);
}
EXPORT_SYMBOL(get_unmapped_area);
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
*
* We currently support three overcommit policies, which are set via the
* vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
*
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
* Additional code 2002 Jul 20 by Robert Love.
*
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
*
* Note this is a helper function intended to be used by LSMs which
* wish to use this logic.
*/
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
unsigned long free, allowed;
vm_acct_memory(pages);
/*
* Sometimes we want to use more memory than we have
*/
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
return 0;
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
unsigned long n;
free = global_page_state(NR_FILE_PAGES);
free += nr_swap_pages;
/*
* Any slabs which are created with the
* SLAB_RECLAIM_ACCOUNT flag claim to have contents
* which are reclaimable, under pressure. The dentry
* cache and most inode caches should fall into this
*/
free += global_page_state(NR_SLAB_RECLAIMABLE);
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
free -= free / 32;
if (free > pages)
return 0;
/*
* nr_free_pages() is very expensive on large systems,
* only call if we're about to fail.
*/
n = nr_free_pages();
/*
* Leave reserved pages. The pages are not for anonymous pages.
*/
if (n <= totalreserve_pages)
goto error;
else
n -= totalreserve_pages;
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
n -= n / 32;
free += n;
if (free > pages)
return 0;
goto error;
}
allowed = totalram_pages * sysctl_overcommit_ratio / 100;
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
allowed -= allowed / 32;
allowed += total_swap_pages;
/* Don't let a single process grow too big:
leave 3% of the size of this process for other processes */
if (mm)
allowed -= mm->total_vm / 32;
/*
* cast `allowed' as a signed long because vm_committed_space
* sometimes has a negative value
*/
if (atomic_long_read(&vm_committed_space) < (long)allowed)
return 0;
error:
vm_unacct_memory(pages);
return -ENOMEM;
}
int in_gate_area_no_task(unsigned long addr)
{
return 0;
}
int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
BUG();
return 0;
}
EXPORT_SYMBOL(filemap_fault);
/*
* Access another process' address space.
* - source/target buffer must be kernel space
*/
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
{
struct vm_area_struct *vma;
struct mm_struct *mm;
if (addr + len < addr)
return 0;
mm = get_task_mm(tsk);
if (!mm)
return 0;
down_read(&mm->mmap_sem);
/* the access must start within one of the target process's mappings */
vma = find_vma(mm, addr);
if (vma) {
/* don't overrun this mapping */
if (addr + len >= vma->vm_end)
len = vma->vm_end - addr;
/* only read or write mappings where it is permitted */
if (write && vma->vm_flags & VM_MAYWRITE)
len -= copy_to_user((void *) addr, buf, len);
else if (!write && vma->vm_flags & VM_MAYREAD)
len -= copy_from_user(buf, (void *) addr, len);
else
len = 0;
} else {
len = 0;
}
up_read(&mm->mmap_sem);
mmput(mm);
return len;
}