1675 строки
46 KiB
C
1675 строки
46 KiB
C
/*
|
|
* Contains common pci routines for ALL ppc platform
|
|
* (based on pci_32.c and pci_64.c)
|
|
*
|
|
* Port for PPC64 David Engebretsen, IBM Corp.
|
|
* Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
|
|
*
|
|
* Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
* Rework, based on alpha PCI code.
|
|
*
|
|
* Common pmac/prep/chrp pci routines. -- Cort
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_pci.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/list.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vgaarb.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/eeh.h>
|
|
|
|
/* hose_spinlock protects accesses to the the phb_bitmap. */
|
|
static DEFINE_SPINLOCK(hose_spinlock);
|
|
LIST_HEAD(hose_list);
|
|
|
|
/* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
|
|
#define MAX_PHBS 0x10000
|
|
|
|
/*
|
|
* For dynamic PHB numbering: used/free PHBs tracking bitmap.
|
|
* Accesses to this bitmap should be protected by hose_spinlock.
|
|
*/
|
|
static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
|
|
|
|
/* ISA Memory physical address */
|
|
resource_size_t isa_mem_base;
|
|
EXPORT_SYMBOL(isa_mem_base);
|
|
|
|
|
|
static const struct dma_map_ops *pci_dma_ops = &dma_nommu_ops;
|
|
|
|
void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
|
|
{
|
|
pci_dma_ops = dma_ops;
|
|
}
|
|
|
|
const struct dma_map_ops *get_pci_dma_ops(void)
|
|
{
|
|
return pci_dma_ops;
|
|
}
|
|
EXPORT_SYMBOL(get_pci_dma_ops);
|
|
|
|
/*
|
|
* This function should run under locking protection, specifically
|
|
* hose_spinlock.
|
|
*/
|
|
static int get_phb_number(struct device_node *dn)
|
|
{
|
|
int ret, phb_id = -1;
|
|
u32 prop_32;
|
|
u64 prop;
|
|
|
|
/*
|
|
* Try fixed PHB numbering first, by checking archs and reading
|
|
* the respective device-tree properties. Firstly, try powernv by
|
|
* reading "ibm,opal-phbid", only present in OPAL environment.
|
|
*/
|
|
ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
|
|
if (ret) {
|
|
ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
|
|
prop = prop_32;
|
|
}
|
|
|
|
if (!ret)
|
|
phb_id = (int)(prop & (MAX_PHBS - 1));
|
|
|
|
/* We need to be sure to not use the same PHB number twice. */
|
|
if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
|
|
return phb_id;
|
|
|
|
/*
|
|
* If not pseries nor powernv, or if fixed PHB numbering tried to add
|
|
* the same PHB number twice, then fallback to dynamic PHB numbering.
|
|
*/
|
|
phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
|
|
BUG_ON(phb_id >= MAX_PHBS);
|
|
set_bit(phb_id, phb_bitmap);
|
|
|
|
return phb_id;
|
|
}
|
|
|
|
struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
|
|
{
|
|
struct pci_controller *phb;
|
|
|
|
phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
|
|
if (phb == NULL)
|
|
return NULL;
|
|
spin_lock(&hose_spinlock);
|
|
phb->global_number = get_phb_number(dev);
|
|
list_add_tail(&phb->list_node, &hose_list);
|
|
spin_unlock(&hose_spinlock);
|
|
phb->dn = dev;
|
|
phb->is_dynamic = slab_is_available();
|
|
#ifdef CONFIG_PPC64
|
|
if (dev) {
|
|
int nid = of_node_to_nid(dev);
|
|
|
|
if (nid < 0 || !node_online(nid))
|
|
nid = -1;
|
|
|
|
PHB_SET_NODE(phb, nid);
|
|
}
|
|
#endif
|
|
return phb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
|
|
|
|
void pcibios_free_controller(struct pci_controller *phb)
|
|
{
|
|
spin_lock(&hose_spinlock);
|
|
|
|
/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
|
|
if (phb->global_number < MAX_PHBS)
|
|
clear_bit(phb->global_number, phb_bitmap);
|
|
|
|
list_del(&phb->list_node);
|
|
spin_unlock(&hose_spinlock);
|
|
|
|
if (phb->is_dynamic)
|
|
kfree(phb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_free_controller);
|
|
|
|
/*
|
|
* This function is used to call pcibios_free_controller()
|
|
* in a deferred manner: a callback from the PCI subsystem.
|
|
*
|
|
* _*DO NOT*_ call pcibios_free_controller() explicitly if
|
|
* this is used (or it may access an invalid *phb pointer).
|
|
*
|
|
* The callback occurs when all references to the root bus
|
|
* are dropped (e.g., child buses/devices and their users).
|
|
*
|
|
* It's called as .release_fn() of 'struct pci_host_bridge'
|
|
* which is associated with the 'struct pci_controller.bus'
|
|
* (root bus) - it expects .release_data to hold a pointer
|
|
* to 'struct pci_controller'.
|
|
*
|
|
* In order to use it, register .release_fn()/release_data
|
|
* like this:
|
|
*
|
|
* pci_set_host_bridge_release(bridge,
|
|
* pcibios_free_controller_deferred
|
|
* (void *) phb);
|
|
*
|
|
* e.g. in the pcibios_root_bridge_prepare() callback from
|
|
* pci_create_root_bus().
|
|
*/
|
|
void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
|
|
{
|
|
struct pci_controller *phb = (struct pci_controller *)
|
|
bridge->release_data;
|
|
|
|
pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
|
|
|
|
pcibios_free_controller(phb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
|
|
|
|
/*
|
|
* The function is used to return the minimal alignment
|
|
* for memory or I/O windows of the associated P2P bridge.
|
|
* By default, 4KiB alignment for I/O windows and 1MiB for
|
|
* memory windows.
|
|
*/
|
|
resource_size_t pcibios_window_alignment(struct pci_bus *bus,
|
|
unsigned long type)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(bus);
|
|
|
|
if (phb->controller_ops.window_alignment)
|
|
return phb->controller_ops.window_alignment(bus, type);
|
|
|
|
/*
|
|
* PCI core will figure out the default
|
|
* alignment: 4KiB for I/O and 1MiB for
|
|
* memory window.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
|
|
if (hose->controller_ops.setup_bridge)
|
|
hose->controller_ops.setup_bridge(bus, type);
|
|
}
|
|
|
|
void pcibios_reset_secondary_bus(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(dev->bus);
|
|
|
|
if (phb->controller_ops.reset_secondary_bus) {
|
|
phb->controller_ops.reset_secondary_bus(dev);
|
|
return;
|
|
}
|
|
|
|
pci_reset_secondary_bus(dev);
|
|
}
|
|
|
|
resource_size_t pcibios_default_alignment(void)
|
|
{
|
|
if (ppc_md.pcibios_default_alignment)
|
|
return ppc_md.pcibios_default_alignment();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
|
|
{
|
|
if (ppc_md.pcibios_iov_resource_alignment)
|
|
return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
|
|
|
|
return pci_iov_resource_size(pdev, resno);
|
|
}
|
|
|
|
int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
|
|
{
|
|
if (ppc_md.pcibios_sriov_enable)
|
|
return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pcibios_sriov_disable(struct pci_dev *pdev)
|
|
{
|
|
if (ppc_md.pcibios_sriov_disable)
|
|
return ppc_md.pcibios_sriov_disable(pdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
void pcibios_bus_add_device(struct pci_dev *pdev)
|
|
{
|
|
if (ppc_md.pcibios_bus_add_device)
|
|
ppc_md.pcibios_bus_add_device(pdev);
|
|
}
|
|
|
|
static resource_size_t pcibios_io_size(const struct pci_controller *hose)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
return hose->pci_io_size;
|
|
#else
|
|
return resource_size(&hose->io_resource);
|
|
#endif
|
|
}
|
|
|
|
int pcibios_vaddr_is_ioport(void __iomem *address)
|
|
{
|
|
int ret = 0;
|
|
struct pci_controller *hose;
|
|
resource_size_t size;
|
|
|
|
spin_lock(&hose_spinlock);
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
size = pcibios_io_size(hose);
|
|
if (address >= hose->io_base_virt &&
|
|
address < (hose->io_base_virt + size)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&hose_spinlock);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long pci_address_to_pio(phys_addr_t address)
|
|
{
|
|
struct pci_controller *hose;
|
|
resource_size_t size;
|
|
unsigned long ret = ~0;
|
|
|
|
spin_lock(&hose_spinlock);
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
size = pcibios_io_size(hose);
|
|
if (address >= hose->io_base_phys &&
|
|
address < (hose->io_base_phys + size)) {
|
|
unsigned long base =
|
|
(unsigned long)hose->io_base_virt - _IO_BASE;
|
|
ret = base + (address - hose->io_base_phys);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&hose_spinlock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_address_to_pio);
|
|
|
|
/*
|
|
* Return the domain number for this bus.
|
|
*/
|
|
int pci_domain_nr(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
|
|
return hose->global_number;
|
|
}
|
|
EXPORT_SYMBOL(pci_domain_nr);
|
|
|
|
/* This routine is meant to be used early during boot, when the
|
|
* PCI bus numbers have not yet been assigned, and you need to
|
|
* issue PCI config cycles to an OF device.
|
|
* It could also be used to "fix" RTAS config cycles if you want
|
|
* to set pci_assign_all_buses to 1 and still use RTAS for PCI
|
|
* config cycles.
|
|
*/
|
|
struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
|
|
{
|
|
while(node) {
|
|
struct pci_controller *hose, *tmp;
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
|
|
if (hose->dn == node)
|
|
return hose;
|
|
node = node->parent;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Reads the interrupt pin to determine if interrupt is use by card.
|
|
* If the interrupt is used, then gets the interrupt line from the
|
|
* openfirmware and sets it in the pci_dev and pci_config line.
|
|
*/
|
|
static int pci_read_irq_line(struct pci_dev *pci_dev)
|
|
{
|
|
int virq;
|
|
|
|
pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
|
|
|
|
#ifdef DEBUG
|
|
memset(&oirq, 0xff, sizeof(oirq));
|
|
#endif
|
|
/* Try to get a mapping from the device-tree */
|
|
virq = of_irq_parse_and_map_pci(pci_dev, 0, 0);
|
|
if (virq <= 0) {
|
|
u8 line, pin;
|
|
|
|
/* If that fails, lets fallback to what is in the config
|
|
* space and map that through the default controller. We
|
|
* also set the type to level low since that's what PCI
|
|
* interrupts are. If your platform does differently, then
|
|
* either provide a proper interrupt tree or don't use this
|
|
* function.
|
|
*/
|
|
if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
|
|
return -1;
|
|
if (pin == 0)
|
|
return -1;
|
|
if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
|
|
line == 0xff || line == 0) {
|
|
return -1;
|
|
}
|
|
pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
|
|
line, pin);
|
|
|
|
virq = irq_create_mapping(NULL, line);
|
|
if (virq)
|
|
irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
|
|
}
|
|
|
|
if (!virq) {
|
|
pr_debug(" Failed to map !\n");
|
|
return -1;
|
|
}
|
|
|
|
pr_debug(" Mapped to linux irq %d\n", virq);
|
|
|
|
pci_dev->irq = virq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Platform support for /proc/bus/pci/X/Y mmap()s.
|
|
* -- paulus.
|
|
*/
|
|
int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
|
resource_size_t ioaddr = pci_resource_start(pdev, bar);
|
|
|
|
if (!hose)
|
|
return -EINVAL;
|
|
|
|
/* Convert to an offset within this PCI controller */
|
|
ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
|
|
vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This one is used by /dev/mem and fbdev who have no clue about the
|
|
* PCI device, it tries to find the PCI device first and calls the
|
|
* above routine
|
|
*/
|
|
pgprot_t pci_phys_mem_access_prot(struct file *file,
|
|
unsigned long pfn,
|
|
unsigned long size,
|
|
pgprot_t prot)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct resource *found = NULL;
|
|
resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
|
|
int i;
|
|
|
|
if (page_is_ram(pfn))
|
|
return prot;
|
|
|
|
prot = pgprot_noncached(prot);
|
|
for_each_pci_dev(pdev) {
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
|
|
struct resource *rp = &pdev->resource[i];
|
|
int flags = rp->flags;
|
|
|
|
/* Active and same type? */
|
|
if ((flags & IORESOURCE_MEM) == 0)
|
|
continue;
|
|
/* In the range of this resource? */
|
|
if (offset < (rp->start & PAGE_MASK) ||
|
|
offset > rp->end)
|
|
continue;
|
|
found = rp;
|
|
break;
|
|
}
|
|
if (found)
|
|
break;
|
|
}
|
|
if (found) {
|
|
if (found->flags & IORESOURCE_PREFETCH)
|
|
prot = pgprot_noncached_wc(prot);
|
|
pci_dev_put(pdev);
|
|
}
|
|
|
|
pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
|
|
(unsigned long long)offset, pgprot_val(prot));
|
|
|
|
return prot;
|
|
}
|
|
|
|
/* This provides legacy IO read access on a bus */
|
|
int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
|
|
{
|
|
unsigned long offset;
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct resource *rp = &hose->io_resource;
|
|
void __iomem *addr;
|
|
|
|
/* Check if port can be supported by that bus. We only check
|
|
* the ranges of the PHB though, not the bus itself as the rules
|
|
* for forwarding legacy cycles down bridges are not our problem
|
|
* here. So if the host bridge supports it, we do it.
|
|
*/
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
offset += port;
|
|
|
|
if (!(rp->flags & IORESOURCE_IO))
|
|
return -ENXIO;
|
|
if (offset < rp->start || (offset + size) > rp->end)
|
|
return -ENXIO;
|
|
addr = hose->io_base_virt + port;
|
|
|
|
switch(size) {
|
|
case 1:
|
|
*((u8 *)val) = in_8(addr);
|
|
return 1;
|
|
case 2:
|
|
if (port & 1)
|
|
return -EINVAL;
|
|
*((u16 *)val) = in_le16(addr);
|
|
return 2;
|
|
case 4:
|
|
if (port & 3)
|
|
return -EINVAL;
|
|
*((u32 *)val) = in_le32(addr);
|
|
return 4;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This provides legacy IO write access on a bus */
|
|
int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
|
|
{
|
|
unsigned long offset;
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct resource *rp = &hose->io_resource;
|
|
void __iomem *addr;
|
|
|
|
/* Check if port can be supported by that bus. We only check
|
|
* the ranges of the PHB though, not the bus itself as the rules
|
|
* for forwarding legacy cycles down bridges are not our problem
|
|
* here. So if the host bridge supports it, we do it.
|
|
*/
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
offset += port;
|
|
|
|
if (!(rp->flags & IORESOURCE_IO))
|
|
return -ENXIO;
|
|
if (offset < rp->start || (offset + size) > rp->end)
|
|
return -ENXIO;
|
|
addr = hose->io_base_virt + port;
|
|
|
|
/* WARNING: The generic code is idiotic. It gets passed a pointer
|
|
* to what can be a 1, 2 or 4 byte quantity and always reads that
|
|
* as a u32, which means that we have to correct the location of
|
|
* the data read within those 32 bits for size 1 and 2
|
|
*/
|
|
switch(size) {
|
|
case 1:
|
|
out_8(addr, val >> 24);
|
|
return 1;
|
|
case 2:
|
|
if (port & 1)
|
|
return -EINVAL;
|
|
out_le16(addr, val >> 16);
|
|
return 2;
|
|
case 4:
|
|
if (port & 3)
|
|
return -EINVAL;
|
|
out_le32(addr, val);
|
|
return 4;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This provides legacy IO or memory mmap access on a bus */
|
|
int pci_mmap_legacy_page_range(struct pci_bus *bus,
|
|
struct vm_area_struct *vma,
|
|
enum pci_mmap_state mmap_state)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
resource_size_t offset =
|
|
((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
|
|
resource_size_t size = vma->vm_end - vma->vm_start;
|
|
struct resource *rp;
|
|
|
|
pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
|
|
pci_domain_nr(bus), bus->number,
|
|
mmap_state == pci_mmap_mem ? "MEM" : "IO",
|
|
(unsigned long long)offset,
|
|
(unsigned long long)(offset + size - 1));
|
|
|
|
if (mmap_state == pci_mmap_mem) {
|
|
/* Hack alert !
|
|
*
|
|
* Because X is lame and can fail starting if it gets an error trying
|
|
* to mmap legacy_mem (instead of just moving on without legacy memory
|
|
* access) we fake it here by giving it anonymous memory, effectively
|
|
* behaving just like /dev/zero
|
|
*/
|
|
if ((offset + size) > hose->isa_mem_size) {
|
|
printk(KERN_DEBUG
|
|
"Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
|
|
current->comm, current->pid, pci_domain_nr(bus), bus->number);
|
|
if (vma->vm_flags & VM_SHARED)
|
|
return shmem_zero_setup(vma);
|
|
return 0;
|
|
}
|
|
offset += hose->isa_mem_phys;
|
|
} else {
|
|
unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
unsigned long roffset = offset + io_offset;
|
|
rp = &hose->io_resource;
|
|
if (!(rp->flags & IORESOURCE_IO))
|
|
return -ENXIO;
|
|
if (roffset < rp->start || (roffset + size) > rp->end)
|
|
return -ENXIO;
|
|
offset += hose->io_base_phys;
|
|
}
|
|
pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
|
|
|
|
vma->vm_pgoff = offset >> PAGE_SHIFT;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
void pci_resource_to_user(const struct pci_dev *dev, int bar,
|
|
const struct resource *rsrc,
|
|
resource_size_t *start, resource_size_t *end)
|
|
{
|
|
struct pci_bus_region region;
|
|
|
|
if (rsrc->flags & IORESOURCE_IO) {
|
|
pcibios_resource_to_bus(dev->bus, ®ion,
|
|
(struct resource *) rsrc);
|
|
*start = region.start;
|
|
*end = region.end;
|
|
return;
|
|
}
|
|
|
|
/* We pass a CPU physical address to userland for MMIO instead of a
|
|
* BAR value because X is lame and expects to be able to use that
|
|
* to pass to /dev/mem!
|
|
*
|
|
* That means we may have 64-bit values where some apps only expect
|
|
* 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
|
|
*/
|
|
*start = rsrc->start;
|
|
*end = rsrc->end;
|
|
}
|
|
|
|
/**
|
|
* pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
|
|
* @hose: newly allocated pci_controller to be setup
|
|
* @dev: device node of the host bridge
|
|
* @primary: set if primary bus (32 bits only, soon to be deprecated)
|
|
*
|
|
* This function will parse the "ranges" property of a PCI host bridge device
|
|
* node and setup the resource mapping of a pci controller based on its
|
|
* content.
|
|
*
|
|
* Life would be boring if it wasn't for a few issues that we have to deal
|
|
* with here:
|
|
*
|
|
* - We can only cope with one IO space range and up to 3 Memory space
|
|
* ranges. However, some machines (thanks Apple !) tend to split their
|
|
* space into lots of small contiguous ranges. So we have to coalesce.
|
|
*
|
|
* - Some busses have IO space not starting at 0, which causes trouble with
|
|
* the way we do our IO resource renumbering. The code somewhat deals with
|
|
* it for 64 bits but I would expect problems on 32 bits.
|
|
*
|
|
* - Some 32 bits platforms such as 4xx can have physical space larger than
|
|
* 32 bits so we need to use 64 bits values for the parsing
|
|
*/
|
|
void pci_process_bridge_OF_ranges(struct pci_controller *hose,
|
|
struct device_node *dev, int primary)
|
|
{
|
|
int memno = 0;
|
|
struct resource *res;
|
|
struct of_pci_range range;
|
|
struct of_pci_range_parser parser;
|
|
|
|
printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
|
|
dev, primary ? "(primary)" : "");
|
|
|
|
/* Check for ranges property */
|
|
if (of_pci_range_parser_init(&parser, dev))
|
|
return;
|
|
|
|
/* Parse it */
|
|
for_each_of_pci_range(&parser, &range) {
|
|
/* If we failed translation or got a zero-sized region
|
|
* (some FW try to feed us with non sensical zero sized regions
|
|
* such as power3 which look like some kind of attempt at exposing
|
|
* the VGA memory hole)
|
|
*/
|
|
if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
|
|
continue;
|
|
|
|
/* Act based on address space type */
|
|
res = NULL;
|
|
switch (range.flags & IORESOURCE_TYPE_BITS) {
|
|
case IORESOURCE_IO:
|
|
printk(KERN_INFO
|
|
" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
|
|
range.cpu_addr, range.cpu_addr + range.size - 1,
|
|
range.pci_addr);
|
|
|
|
/* We support only one IO range */
|
|
if (hose->pci_io_size) {
|
|
printk(KERN_INFO
|
|
" \\--> Skipped (too many) !\n");
|
|
continue;
|
|
}
|
|
#ifdef CONFIG_PPC32
|
|
/* On 32 bits, limit I/O space to 16MB */
|
|
if (range.size > 0x01000000)
|
|
range.size = 0x01000000;
|
|
|
|
/* 32 bits needs to map IOs here */
|
|
hose->io_base_virt = ioremap(range.cpu_addr,
|
|
range.size);
|
|
|
|
/* Expect trouble if pci_addr is not 0 */
|
|
if (primary)
|
|
isa_io_base =
|
|
(unsigned long)hose->io_base_virt;
|
|
#endif /* CONFIG_PPC32 */
|
|
/* pci_io_size and io_base_phys always represent IO
|
|
* space starting at 0 so we factor in pci_addr
|
|
*/
|
|
hose->pci_io_size = range.pci_addr + range.size;
|
|
hose->io_base_phys = range.cpu_addr - range.pci_addr;
|
|
|
|
/* Build resource */
|
|
res = &hose->io_resource;
|
|
range.cpu_addr = range.pci_addr;
|
|
break;
|
|
case IORESOURCE_MEM:
|
|
printk(KERN_INFO
|
|
" MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
|
|
range.cpu_addr, range.cpu_addr + range.size - 1,
|
|
range.pci_addr,
|
|
(range.pci_space & 0x40000000) ?
|
|
"Prefetch" : "");
|
|
|
|
/* We support only 3 memory ranges */
|
|
if (memno >= 3) {
|
|
printk(KERN_INFO
|
|
" \\--> Skipped (too many) !\n");
|
|
continue;
|
|
}
|
|
/* Handles ISA memory hole space here */
|
|
if (range.pci_addr == 0) {
|
|
if (primary || isa_mem_base == 0)
|
|
isa_mem_base = range.cpu_addr;
|
|
hose->isa_mem_phys = range.cpu_addr;
|
|
hose->isa_mem_size = range.size;
|
|
}
|
|
|
|
/* Build resource */
|
|
hose->mem_offset[memno] = range.cpu_addr -
|
|
range.pci_addr;
|
|
res = &hose->mem_resources[memno++];
|
|
break;
|
|
}
|
|
if (res != NULL) {
|
|
res->name = dev->full_name;
|
|
res->flags = range.flags;
|
|
res->start = range.cpu_addr;
|
|
res->end = range.cpu_addr + range.size - 1;
|
|
res->parent = res->child = res->sibling = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Decide whether to display the domain number in /proc */
|
|
int pci_proc_domain(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
|
|
if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
|
|
return 0;
|
|
if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
|
|
return hose->global_number != 0;
|
|
return 1;
|
|
}
|
|
|
|
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
|
|
{
|
|
if (ppc_md.pcibios_root_bridge_prepare)
|
|
return ppc_md.pcibios_root_bridge_prepare(bridge);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This header fixup will do the resource fixup for all devices as they are
|
|
* probed, but not for bridge ranges
|
|
*/
|
|
static void pcibios_fixup_resources(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
int i;
|
|
|
|
if (!hose) {
|
|
printk(KERN_ERR "No host bridge for PCI dev %s !\n",
|
|
pci_name(dev));
|
|
return;
|
|
}
|
|
|
|
if (dev->is_virtfn)
|
|
return;
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
struct resource *res = dev->resource + i;
|
|
struct pci_bus_region reg;
|
|
if (!res->flags)
|
|
continue;
|
|
|
|
/* If we're going to re-assign everything, we mark all resources
|
|
* as unset (and 0-base them). In addition, we mark BARs starting
|
|
* at 0 as unset as well, except if PCI_PROBE_ONLY is also set
|
|
* since in that case, we don't want to re-assign anything
|
|
*/
|
|
pcibios_resource_to_bus(dev->bus, ®, res);
|
|
if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
|
|
(reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
|
|
/* Only print message if not re-assigning */
|
|
if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
|
|
pr_debug("PCI:%s Resource %d %pR is unassigned\n",
|
|
pci_name(dev), i, res);
|
|
res->end -= res->start;
|
|
res->start = 0;
|
|
res->flags |= IORESOURCE_UNSET;
|
|
continue;
|
|
}
|
|
|
|
pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
|
|
}
|
|
|
|
/* Call machine specific resource fixup */
|
|
if (ppc_md.pcibios_fixup_resources)
|
|
ppc_md.pcibios_fixup_resources(dev);
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
|
|
|
|
/* This function tries to figure out if a bridge resource has been initialized
|
|
* by the firmware or not. It doesn't have to be absolutely bullet proof, but
|
|
* things go more smoothly when it gets it right. It should covers cases such
|
|
* as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
|
|
*/
|
|
static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
|
|
struct resource *res)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pci_dev *dev = bus->self;
|
|
resource_size_t offset;
|
|
struct pci_bus_region region;
|
|
u16 command;
|
|
int i;
|
|
|
|
/* We don't do anything if PCI_PROBE_ONLY is set */
|
|
if (pci_has_flag(PCI_PROBE_ONLY))
|
|
return 0;
|
|
|
|
/* Job is a bit different between memory and IO */
|
|
if (res->flags & IORESOURCE_MEM) {
|
|
pcibios_resource_to_bus(dev->bus, ®ion, res);
|
|
|
|
/* If the BAR is non-0 then it's probably been initialized */
|
|
if (region.start != 0)
|
|
return 0;
|
|
|
|
/* The BAR is 0, let's check if memory decoding is enabled on
|
|
* the bridge. If not, we consider it unassigned
|
|
*/
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
if ((command & PCI_COMMAND_MEMORY) == 0)
|
|
return 1;
|
|
|
|
/* Memory decoding is enabled and the BAR is 0. If any of the bridge
|
|
* resources covers that starting address (0 then it's good enough for
|
|
* us for memory space)
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
|
|
hose->mem_resources[i].start == hose->mem_offset[i])
|
|
return 0;
|
|
}
|
|
|
|
/* Well, it starts at 0 and we know it will collide so we may as
|
|
* well consider it as unassigned. That covers the Apple case.
|
|
*/
|
|
return 1;
|
|
} else {
|
|
/* If the BAR is non-0, then we consider it assigned */
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
if (((res->start - offset) & 0xfffffffful) != 0)
|
|
return 0;
|
|
|
|
/* Here, we are a bit different than memory as typically IO space
|
|
* starting at low addresses -is- valid. What we do instead if that
|
|
* we consider as unassigned anything that doesn't have IO enabled
|
|
* in the PCI command register, and that's it.
|
|
*/
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
if (command & PCI_COMMAND_IO)
|
|
return 0;
|
|
|
|
/* It's starting at 0 and IO is disabled in the bridge, consider
|
|
* it unassigned
|
|
*/
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Fixup resources of a PCI<->PCI bridge */
|
|
static void pcibios_fixup_bridge(struct pci_bus *bus)
|
|
{
|
|
struct resource *res;
|
|
int i;
|
|
|
|
struct pci_dev *dev = bus->self;
|
|
|
|
pci_bus_for_each_resource(bus, res, i) {
|
|
if (!res || !res->flags)
|
|
continue;
|
|
if (i >= 3 && bus->self->transparent)
|
|
continue;
|
|
|
|
/* If we're going to reassign everything, we can
|
|
* shrink the P2P resource to have size as being
|
|
* of 0 in order to save space.
|
|
*/
|
|
if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
|
|
res->flags |= IORESOURCE_UNSET;
|
|
res->start = 0;
|
|
res->end = -1;
|
|
continue;
|
|
}
|
|
|
|
pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
|
|
|
|
/* Try to detect uninitialized P2P bridge resources,
|
|
* and clear them out so they get re-assigned later
|
|
*/
|
|
if (pcibios_uninitialized_bridge_resource(bus, res)) {
|
|
res->flags = 0;
|
|
pr_debug("PCI:%s (unassigned)\n", pci_name(dev));
|
|
}
|
|
}
|
|
}
|
|
|
|
void pcibios_setup_bus_self(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *phb;
|
|
|
|
/* Fix up the bus resources for P2P bridges */
|
|
if (bus->self != NULL)
|
|
pcibios_fixup_bridge(bus);
|
|
|
|
/* Platform specific bus fixups. This is currently only used
|
|
* by fsl_pci and I'm hoping to get rid of it at some point
|
|
*/
|
|
if (ppc_md.pcibios_fixup_bus)
|
|
ppc_md.pcibios_fixup_bus(bus);
|
|
|
|
/* Setup bus DMA mappings */
|
|
phb = pci_bus_to_host(bus);
|
|
if (phb->controller_ops.dma_bus_setup)
|
|
phb->controller_ops.dma_bus_setup(bus);
|
|
}
|
|
|
|
static void pcibios_setup_device(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *phb;
|
|
/* Fixup NUMA node as it may not be setup yet by the generic
|
|
* code and is needed by the DMA init
|
|
*/
|
|
set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
|
|
|
|
/* Hook up default DMA ops */
|
|
set_dma_ops(&dev->dev, pci_dma_ops);
|
|
set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
|
|
|
|
/* Additional platform DMA/iommu setup */
|
|
phb = pci_bus_to_host(dev->bus);
|
|
if (phb->controller_ops.dma_dev_setup)
|
|
phb->controller_ops.dma_dev_setup(dev);
|
|
|
|
/* Read default IRQs and fixup if necessary */
|
|
pci_read_irq_line(dev);
|
|
if (ppc_md.pci_irq_fixup)
|
|
ppc_md.pci_irq_fixup(dev);
|
|
}
|
|
|
|
int pcibios_add_device(struct pci_dev *dev)
|
|
{
|
|
/*
|
|
* We can only call pcibios_setup_device() after bus setup is complete,
|
|
* since some of the platform specific DMA setup code depends on it.
|
|
*/
|
|
if (dev->bus->is_added)
|
|
pcibios_setup_device(dev);
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
if (ppc_md.pcibios_fixup_sriov)
|
|
ppc_md.pcibios_fixup_sriov(dev);
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pcibios_setup_bus_devices(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
pr_debug("PCI: Fixup bus devices %d (%s)\n",
|
|
bus->number, bus->self ? pci_name(bus->self) : "PHB");
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
/* Cardbus can call us to add new devices to a bus, so ignore
|
|
* those who are already fully discovered
|
|
*/
|
|
if (dev->is_added)
|
|
continue;
|
|
|
|
pcibios_setup_device(dev);
|
|
}
|
|
}
|
|
|
|
void pcibios_set_master(struct pci_dev *dev)
|
|
{
|
|
/* No special bus mastering setup handling */
|
|
}
|
|
|
|
void pcibios_fixup_bus(struct pci_bus *bus)
|
|
{
|
|
/* When called from the generic PCI probe, read PCI<->PCI bridge
|
|
* bases. This is -not- called when generating the PCI tree from
|
|
* the OF device-tree.
|
|
*/
|
|
pci_read_bridge_bases(bus);
|
|
|
|
/* Now fixup the bus bus */
|
|
pcibios_setup_bus_self(bus);
|
|
|
|
/* Now fixup devices on that bus */
|
|
pcibios_setup_bus_devices(bus);
|
|
}
|
|
EXPORT_SYMBOL(pcibios_fixup_bus);
|
|
|
|
void pci_fixup_cardbus(struct pci_bus *bus)
|
|
{
|
|
/* Now fixup devices on that bus */
|
|
pcibios_setup_bus_devices(bus);
|
|
}
|
|
|
|
|
|
static int skip_isa_ioresource_align(struct pci_dev *dev)
|
|
{
|
|
if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
|
|
!(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to avoid collisions with `mirrored' VGA ports
|
|
* and other strange ISA hardware, so we always want the
|
|
* addresses to be allocated in the 0x000-0x0ff region
|
|
* modulo 0x400.
|
|
*
|
|
* Why? Because some silly external IO cards only decode
|
|
* the low 10 bits of the IO address. The 0x00-0xff region
|
|
* is reserved for motherboard devices that decode all 16
|
|
* bits, so it's ok to allocate at, say, 0x2800-0x28ff,
|
|
* but we want to try to avoid allocating at 0x2900-0x2bff
|
|
* which might have be mirrored at 0x0100-0x03ff..
|
|
*/
|
|
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
|
|
resource_size_t size, resource_size_t align)
|
|
{
|
|
struct pci_dev *dev = data;
|
|
resource_size_t start = res->start;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
if (skip_isa_ioresource_align(dev))
|
|
return start;
|
|
if (start & 0x300)
|
|
start = (start + 0x3ff) & ~0x3ff;
|
|
}
|
|
|
|
return start;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_align_resource);
|
|
|
|
/*
|
|
* Reparent resource children of pr that conflict with res
|
|
* under res, and make res replace those children.
|
|
*/
|
|
static int reparent_resources(struct resource *parent,
|
|
struct resource *res)
|
|
{
|
|
struct resource *p, **pp;
|
|
struct resource **firstpp = NULL;
|
|
|
|
for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
|
|
if (p->end < res->start)
|
|
continue;
|
|
if (res->end < p->start)
|
|
break;
|
|
if (p->start < res->start || p->end > res->end)
|
|
return -1; /* not completely contained */
|
|
if (firstpp == NULL)
|
|
firstpp = pp;
|
|
}
|
|
if (firstpp == NULL)
|
|
return -1; /* didn't find any conflicting entries? */
|
|
res->parent = parent;
|
|
res->child = *firstpp;
|
|
res->sibling = *pp;
|
|
*firstpp = res;
|
|
*pp = NULL;
|
|
for (p = res->child; p != NULL; p = p->sibling) {
|
|
p->parent = res;
|
|
pr_debug("PCI: Reparented %s %pR under %s\n",
|
|
p->name, p, res->name);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle resources of PCI devices. If the world were perfect, we could
|
|
* just allocate all the resource regions and do nothing more. It isn't.
|
|
* On the other hand, we cannot just re-allocate all devices, as it would
|
|
* require us to know lots of host bridge internals. So we attempt to
|
|
* keep as much of the original configuration as possible, but tweak it
|
|
* when it's found to be wrong.
|
|
*
|
|
* Known BIOS problems we have to work around:
|
|
* - I/O or memory regions not configured
|
|
* - regions configured, but not enabled in the command register
|
|
* - bogus I/O addresses above 64K used
|
|
* - expansion ROMs left enabled (this may sound harmless, but given
|
|
* the fact the PCI specs explicitly allow address decoders to be
|
|
* shared between expansion ROMs and other resource regions, it's
|
|
* at least dangerous)
|
|
*
|
|
* Our solution:
|
|
* (1) Allocate resources for all buses behind PCI-to-PCI bridges.
|
|
* This gives us fixed barriers on where we can allocate.
|
|
* (2) Allocate resources for all enabled devices. If there is
|
|
* a collision, just mark the resource as unallocated. Also
|
|
* disable expansion ROMs during this step.
|
|
* (3) Try to allocate resources for disabled devices. If the
|
|
* resources were assigned correctly, everything goes well,
|
|
* if they weren't, they won't disturb allocation of other
|
|
* resources.
|
|
* (4) Assign new addresses to resources which were either
|
|
* not configured at all or misconfigured. If explicitly
|
|
* requested by the user, configure expansion ROM address
|
|
* as well.
|
|
*/
|
|
|
|
static void pcibios_allocate_bus_resources(struct pci_bus *bus)
|
|
{
|
|
struct pci_bus *b;
|
|
int i;
|
|
struct resource *res, *pr;
|
|
|
|
pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
|
|
pci_domain_nr(bus), bus->number);
|
|
|
|
pci_bus_for_each_resource(bus, res, i) {
|
|
if (!res || !res->flags || res->start > res->end || res->parent)
|
|
continue;
|
|
|
|
/* If the resource was left unset at this point, we clear it */
|
|
if (res->flags & IORESOURCE_UNSET)
|
|
goto clear_resource;
|
|
|
|
if (bus->parent == NULL)
|
|
pr = (res->flags & IORESOURCE_IO) ?
|
|
&ioport_resource : &iomem_resource;
|
|
else {
|
|
pr = pci_find_parent_resource(bus->self, res);
|
|
if (pr == res) {
|
|
/* this happens when the generic PCI
|
|
* code (wrongly) decides that this
|
|
* bridge is transparent -- paulus
|
|
*/
|
|
continue;
|
|
}
|
|
}
|
|
|
|
pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
|
|
bus->self ? pci_name(bus->self) : "PHB", bus->number,
|
|
i, res, pr, (pr && pr->name) ? pr->name : "nil");
|
|
|
|
if (pr && !(pr->flags & IORESOURCE_UNSET)) {
|
|
struct pci_dev *dev = bus->self;
|
|
|
|
if (request_resource(pr, res) == 0)
|
|
continue;
|
|
/*
|
|
* Must be a conflict with an existing entry.
|
|
* Move that entry (or entries) under the
|
|
* bridge resource and try again.
|
|
*/
|
|
if (reparent_resources(pr, res) == 0)
|
|
continue;
|
|
|
|
if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
|
|
pci_claim_bridge_resource(dev,
|
|
i + PCI_BRIDGE_RESOURCES) == 0)
|
|
continue;
|
|
}
|
|
pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
|
|
i, bus->number);
|
|
clear_resource:
|
|
/* The resource might be figured out when doing
|
|
* reassignment based on the resources required
|
|
* by the downstream PCI devices. Here we set
|
|
* the size of the resource to be 0 in order to
|
|
* save more space.
|
|
*/
|
|
res->start = 0;
|
|
res->end = -1;
|
|
res->flags = 0;
|
|
}
|
|
|
|
list_for_each_entry(b, &bus->children, node)
|
|
pcibios_allocate_bus_resources(b);
|
|
}
|
|
|
|
static inline void alloc_resource(struct pci_dev *dev, int idx)
|
|
{
|
|
struct resource *pr, *r = &dev->resource[idx];
|
|
|
|
pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
|
|
pci_name(dev), idx, r);
|
|
|
|
pr = pci_find_parent_resource(dev, r);
|
|
if (!pr || (pr->flags & IORESOURCE_UNSET) ||
|
|
request_resource(pr, r) < 0) {
|
|
printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
|
|
" of device %s, will remap\n", idx, pci_name(dev));
|
|
if (pr)
|
|
pr_debug("PCI: parent is %p: %pR\n", pr, pr);
|
|
/* We'll assign a new address later */
|
|
r->flags |= IORESOURCE_UNSET;
|
|
r->end -= r->start;
|
|
r->start = 0;
|
|
}
|
|
}
|
|
|
|
static void __init pcibios_allocate_resources(int pass)
|
|
{
|
|
struct pci_dev *dev = NULL;
|
|
int idx, disabled;
|
|
u16 command;
|
|
struct resource *r;
|
|
|
|
for_each_pci_dev(dev) {
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
|
|
r = &dev->resource[idx];
|
|
if (r->parent) /* Already allocated */
|
|
continue;
|
|
if (!r->flags || (r->flags & IORESOURCE_UNSET))
|
|
continue; /* Not assigned at all */
|
|
/* We only allocate ROMs on pass 1 just in case they
|
|
* have been screwed up by firmware
|
|
*/
|
|
if (idx == PCI_ROM_RESOURCE )
|
|
disabled = 1;
|
|
if (r->flags & IORESOURCE_IO)
|
|
disabled = !(command & PCI_COMMAND_IO);
|
|
else
|
|
disabled = !(command & PCI_COMMAND_MEMORY);
|
|
if (pass == disabled)
|
|
alloc_resource(dev, idx);
|
|
}
|
|
if (pass)
|
|
continue;
|
|
r = &dev->resource[PCI_ROM_RESOURCE];
|
|
if (r->flags) {
|
|
/* Turn the ROM off, leave the resource region,
|
|
* but keep it unregistered.
|
|
*/
|
|
u32 reg;
|
|
pci_read_config_dword(dev, dev->rom_base_reg, ®);
|
|
if (reg & PCI_ROM_ADDRESS_ENABLE) {
|
|
pr_debug("PCI: Switching off ROM of %s\n",
|
|
pci_name(dev));
|
|
r->flags &= ~IORESOURCE_ROM_ENABLE;
|
|
pci_write_config_dword(dev, dev->rom_base_reg,
|
|
reg & ~PCI_ROM_ADDRESS_ENABLE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
resource_size_t offset;
|
|
struct resource *res, *pres;
|
|
int i;
|
|
|
|
pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
|
|
|
|
/* Check for IO */
|
|
if (!(hose->io_resource.flags & IORESOURCE_IO))
|
|
goto no_io;
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
|
|
BUG_ON(res == NULL);
|
|
res->name = "Legacy IO";
|
|
res->flags = IORESOURCE_IO;
|
|
res->start = offset;
|
|
res->end = (offset + 0xfff) & 0xfffffffful;
|
|
pr_debug("Candidate legacy IO: %pR\n", res);
|
|
if (request_resource(&hose->io_resource, res)) {
|
|
printk(KERN_DEBUG
|
|
"PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
|
|
pci_domain_nr(bus), bus->number, res);
|
|
kfree(res);
|
|
}
|
|
|
|
no_io:
|
|
/* Check for memory */
|
|
for (i = 0; i < 3; i++) {
|
|
pres = &hose->mem_resources[i];
|
|
offset = hose->mem_offset[i];
|
|
if (!(pres->flags & IORESOURCE_MEM))
|
|
continue;
|
|
pr_debug("hose mem res: %pR\n", pres);
|
|
if ((pres->start - offset) <= 0xa0000 &&
|
|
(pres->end - offset) >= 0xbffff)
|
|
break;
|
|
}
|
|
if (i >= 3)
|
|
return;
|
|
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
|
|
BUG_ON(res == NULL);
|
|
res->name = "Legacy VGA memory";
|
|
res->flags = IORESOURCE_MEM;
|
|
res->start = 0xa0000 + offset;
|
|
res->end = 0xbffff + offset;
|
|
pr_debug("Candidate VGA memory: %pR\n", res);
|
|
if (request_resource(pres, res)) {
|
|
printk(KERN_DEBUG
|
|
"PCI %04x:%02x Cannot reserve VGA memory %pR\n",
|
|
pci_domain_nr(bus), bus->number, res);
|
|
kfree(res);
|
|
}
|
|
}
|
|
|
|
void __init pcibios_resource_survey(void)
|
|
{
|
|
struct pci_bus *b;
|
|
|
|
/* Allocate and assign resources */
|
|
list_for_each_entry(b, &pci_root_buses, node)
|
|
pcibios_allocate_bus_resources(b);
|
|
if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
|
|
pcibios_allocate_resources(0);
|
|
pcibios_allocate_resources(1);
|
|
}
|
|
|
|
/* Before we start assigning unassigned resource, we try to reserve
|
|
* the low IO area and the VGA memory area if they intersect the
|
|
* bus available resources to avoid allocating things on top of them
|
|
*/
|
|
if (!pci_has_flag(PCI_PROBE_ONLY)) {
|
|
list_for_each_entry(b, &pci_root_buses, node)
|
|
pcibios_reserve_legacy_regions(b);
|
|
}
|
|
|
|
/* Now, if the platform didn't decide to blindly trust the firmware,
|
|
* we proceed to assigning things that were left unassigned
|
|
*/
|
|
if (!pci_has_flag(PCI_PROBE_ONLY)) {
|
|
pr_debug("PCI: Assigning unassigned resources...\n");
|
|
pci_assign_unassigned_resources();
|
|
}
|
|
|
|
/* Call machine dependent fixup */
|
|
if (ppc_md.pcibios_fixup)
|
|
ppc_md.pcibios_fixup();
|
|
}
|
|
|
|
/* This is used by the PCI hotplug driver to allocate resource
|
|
* of newly plugged busses. We can try to consolidate with the
|
|
* rest of the code later, for now, keep it as-is as our main
|
|
* resource allocation function doesn't deal with sub-trees yet.
|
|
*/
|
|
void pcibios_claim_one_bus(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *child_bus;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
int i;
|
|
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
struct resource *r = &dev->resource[i];
|
|
|
|
if (r->parent || !r->start || !r->flags)
|
|
continue;
|
|
|
|
pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
|
|
pci_name(dev), i, r);
|
|
|
|
if (pci_claim_resource(dev, i) == 0)
|
|
continue;
|
|
|
|
pci_claim_bridge_resource(dev, i);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(child_bus, &bus->children, node)
|
|
pcibios_claim_one_bus(child_bus);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
|
|
|
|
|
|
/* pcibios_finish_adding_to_bus
|
|
*
|
|
* This is to be called by the hotplug code after devices have been
|
|
* added to a bus, this include calling it for a PHB that is just
|
|
* being added
|
|
*/
|
|
void pcibios_finish_adding_to_bus(struct pci_bus *bus)
|
|
{
|
|
pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
|
|
pci_domain_nr(bus), bus->number);
|
|
|
|
/* Allocate bus and devices resources */
|
|
pcibios_allocate_bus_resources(bus);
|
|
pcibios_claim_one_bus(bus);
|
|
if (!pci_has_flag(PCI_PROBE_ONLY)) {
|
|
if (bus->self)
|
|
pci_assign_unassigned_bridge_resources(bus->self);
|
|
else
|
|
pci_assign_unassigned_bus_resources(bus);
|
|
}
|
|
|
|
/* Fixup EEH */
|
|
eeh_add_device_tree_late(bus);
|
|
|
|
/* Add new devices to global lists. Register in proc, sysfs. */
|
|
pci_bus_add_devices(bus);
|
|
|
|
/* sysfs files should only be added after devices are added */
|
|
eeh_add_sysfs_files(bus);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
|
|
|
|
int pcibios_enable_device(struct pci_dev *dev, int mask)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(dev->bus);
|
|
|
|
if (phb->controller_ops.enable_device_hook)
|
|
if (!phb->controller_ops.enable_device_hook(dev))
|
|
return -EINVAL;
|
|
|
|
return pci_enable_resources(dev, mask);
|
|
}
|
|
|
|
void pcibios_disable_device(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(dev->bus);
|
|
|
|
if (phb->controller_ops.disable_device)
|
|
phb->controller_ops.disable_device(dev);
|
|
}
|
|
|
|
resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
|
|
{
|
|
return (unsigned long) hose->io_base_virt - _IO_BASE;
|
|
}
|
|
|
|
static void pcibios_setup_phb_resources(struct pci_controller *hose,
|
|
struct list_head *resources)
|
|
{
|
|
struct resource *res;
|
|
resource_size_t offset;
|
|
int i;
|
|
|
|
/* Hookup PHB IO resource */
|
|
res = &hose->io_resource;
|
|
|
|
if (!res->flags) {
|
|
pr_debug("PCI: I/O resource not set for host"
|
|
" bridge %pOF (domain %d)\n",
|
|
hose->dn, hose->global_number);
|
|
} else {
|
|
offset = pcibios_io_space_offset(hose);
|
|
|
|
pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n",
|
|
res, (unsigned long long)offset);
|
|
pci_add_resource_offset(resources, res, offset);
|
|
}
|
|
|
|
/* Hookup PHB Memory resources */
|
|
for (i = 0; i < 3; ++i) {
|
|
res = &hose->mem_resources[i];
|
|
if (!res->flags)
|
|
continue;
|
|
|
|
offset = hose->mem_offset[i];
|
|
pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
|
|
res, (unsigned long long)offset);
|
|
|
|
pci_add_resource_offset(resources, res, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Null PCI config access functions, for the case when we can't
|
|
* find a hose.
|
|
*/
|
|
#define NULL_PCI_OP(rw, size, type) \
|
|
static int \
|
|
null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \
|
|
{ \
|
|
return PCIBIOS_DEVICE_NOT_FOUND; \
|
|
}
|
|
|
|
static int
|
|
null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int len, u32 *val)
|
|
{
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
|
|
static int
|
|
null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int len, u32 val)
|
|
{
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
|
|
static struct pci_ops null_pci_ops =
|
|
{
|
|
.read = null_read_config,
|
|
.write = null_write_config,
|
|
};
|
|
|
|
/*
|
|
* These functions are used early on before PCI scanning is done
|
|
* and all of the pci_dev and pci_bus structures have been created.
|
|
*/
|
|
static struct pci_bus *
|
|
fake_pci_bus(struct pci_controller *hose, int busnr)
|
|
{
|
|
static struct pci_bus bus;
|
|
|
|
if (hose == NULL) {
|
|
printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
|
|
}
|
|
bus.number = busnr;
|
|
bus.sysdata = hose;
|
|
bus.ops = hose? hose->ops: &null_pci_ops;
|
|
return &bus;
|
|
}
|
|
|
|
#define EARLY_PCI_OP(rw, size, type) \
|
|
int early_##rw##_config_##size(struct pci_controller *hose, int bus, \
|
|
int devfn, int offset, type value) \
|
|
{ \
|
|
return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \
|
|
devfn, offset, value); \
|
|
}
|
|
|
|
EARLY_PCI_OP(read, byte, u8 *)
|
|
EARLY_PCI_OP(read, word, u16 *)
|
|
EARLY_PCI_OP(read, dword, u32 *)
|
|
EARLY_PCI_OP(write, byte, u8)
|
|
EARLY_PCI_OP(write, word, u16)
|
|
EARLY_PCI_OP(write, dword, u32)
|
|
|
|
int early_find_capability(struct pci_controller *hose, int bus, int devfn,
|
|
int cap)
|
|
{
|
|
return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
|
|
}
|
|
|
|
struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = bus->sysdata;
|
|
|
|
return of_node_get(hose->dn);
|
|
}
|
|
|
|
/**
|
|
* pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
|
|
* @hose: Pointer to the PCI host controller instance structure
|
|
*/
|
|
void pcibios_scan_phb(struct pci_controller *hose)
|
|
{
|
|
LIST_HEAD(resources);
|
|
struct pci_bus *bus;
|
|
struct device_node *node = hose->dn;
|
|
int mode;
|
|
|
|
pr_debug("PCI: Scanning PHB %pOF\n", node);
|
|
|
|
/* Get some IO space for the new PHB */
|
|
pcibios_setup_phb_io_space(hose);
|
|
|
|
/* Wire up PHB bus resources */
|
|
pcibios_setup_phb_resources(hose, &resources);
|
|
|
|
hose->busn.start = hose->first_busno;
|
|
hose->busn.end = hose->last_busno;
|
|
hose->busn.flags = IORESOURCE_BUS;
|
|
pci_add_resource(&resources, &hose->busn);
|
|
|
|
/* Create an empty bus for the toplevel */
|
|
bus = pci_create_root_bus(hose->parent, hose->first_busno,
|
|
hose->ops, hose, &resources);
|
|
if (bus == NULL) {
|
|
pr_err("Failed to create bus for PCI domain %04x\n",
|
|
hose->global_number);
|
|
pci_free_resource_list(&resources);
|
|
return;
|
|
}
|
|
hose->bus = bus;
|
|
|
|
/* Get probe mode and perform scan */
|
|
mode = PCI_PROBE_NORMAL;
|
|
if (node && hose->controller_ops.probe_mode)
|
|
mode = hose->controller_ops.probe_mode(bus);
|
|
pr_debug(" probe mode: %d\n", mode);
|
|
if (mode == PCI_PROBE_DEVTREE)
|
|
of_scan_bus(node, bus);
|
|
|
|
if (mode == PCI_PROBE_NORMAL) {
|
|
pci_bus_update_busn_res_end(bus, 255);
|
|
hose->last_busno = pci_scan_child_bus(bus);
|
|
pci_bus_update_busn_res_end(bus, hose->last_busno);
|
|
}
|
|
|
|
/* Platform gets a chance to do some global fixups before
|
|
* we proceed to resource allocation
|
|
*/
|
|
if (ppc_md.pcibios_fixup_phb)
|
|
ppc_md.pcibios_fixup_phb(hose);
|
|
|
|
/* Configure PCI Express settings */
|
|
if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
|
|
struct pci_bus *child;
|
|
list_for_each_entry(child, &bus->children, node)
|
|
pcie_bus_configure_settings(child);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_scan_phb);
|
|
|
|
static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
|
|
{
|
|
int i, class = dev->class >> 8;
|
|
/* When configured as agent, programing interface = 1 */
|
|
int prog_if = dev->class & 0xf;
|
|
|
|
if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
|
|
class == PCI_CLASS_BRIDGE_OTHER) &&
|
|
(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
|
|
(prog_if == 0) &&
|
|
(dev->bus->parent == NULL)) {
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
dev->resource[i].start = 0;
|
|
dev->resource[i].end = 0;
|
|
dev->resource[i].flags = 0;
|
|
}
|
|
}
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
|