1047 строки
34 KiB
C
1047 строки
34 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_KERNEL_H
|
|
#define _LINUX_KERNEL_H
|
|
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/types.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/typecheck.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/build_bug.h>
|
|
#include <asm/byteorder.h>
|
|
#include <uapi/linux/kernel.h>
|
|
|
|
#define USHRT_MAX ((u16)(~0U))
|
|
#define SHRT_MAX ((s16)(USHRT_MAX>>1))
|
|
#define SHRT_MIN ((s16)(-SHRT_MAX - 1))
|
|
#define INT_MAX ((int)(~0U>>1))
|
|
#define INT_MIN (-INT_MAX - 1)
|
|
#define UINT_MAX (~0U)
|
|
#define LONG_MAX ((long)(~0UL>>1))
|
|
#define LONG_MIN (-LONG_MAX - 1)
|
|
#define ULONG_MAX (~0UL)
|
|
#define LLONG_MAX ((long long)(~0ULL>>1))
|
|
#define LLONG_MIN (-LLONG_MAX - 1)
|
|
#define ULLONG_MAX (~0ULL)
|
|
#define SIZE_MAX (~(size_t)0)
|
|
#define PHYS_ADDR_MAX (~(phys_addr_t)0)
|
|
|
|
#define U8_MAX ((u8)~0U)
|
|
#define S8_MAX ((s8)(U8_MAX>>1))
|
|
#define S8_MIN ((s8)(-S8_MAX - 1))
|
|
#define U16_MAX ((u16)~0U)
|
|
#define S16_MAX ((s16)(U16_MAX>>1))
|
|
#define S16_MIN ((s16)(-S16_MAX - 1))
|
|
#define U32_MAX ((u32)~0U)
|
|
#define S32_MAX ((s32)(U32_MAX>>1))
|
|
#define S32_MIN ((s32)(-S32_MAX - 1))
|
|
#define U64_MAX ((u64)~0ULL)
|
|
#define S64_MAX ((s64)(U64_MAX>>1))
|
|
#define S64_MIN ((s64)(-S64_MAX - 1))
|
|
|
|
#define STACK_MAGIC 0xdeadbeef
|
|
|
|
/**
|
|
* REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
|
|
* @x: value to repeat
|
|
*
|
|
* NOTE: @x is not checked for > 0xff; larger values produce odd results.
|
|
*/
|
|
#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
|
|
|
|
/* @a is a power of 2 value */
|
|
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
|
|
#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
|
|
#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
|
|
#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
|
|
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
|
|
|
|
/* generic data direction definitions */
|
|
#define READ 0
|
|
#define WRITE 1
|
|
|
|
/**
|
|
* ARRAY_SIZE - get the number of elements in array @arr
|
|
* @arr: array to be sized
|
|
*/
|
|
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
|
|
|
|
#define u64_to_user_ptr(x) ( \
|
|
{ \
|
|
typecheck(u64, x); \
|
|
(void __user *)(uintptr_t)x; \
|
|
} \
|
|
)
|
|
|
|
/*
|
|
* This looks more complex than it should be. But we need to
|
|
* get the type for the ~ right in round_down (it needs to be
|
|
* as wide as the result!), and we want to evaluate the macro
|
|
* arguments just once each.
|
|
*/
|
|
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
|
|
/**
|
|
* round_up - round up to next specified power of 2
|
|
* @x: the value to round
|
|
* @y: multiple to round up to (must be a power of 2)
|
|
*
|
|
* Rounds @x up to next multiple of @y (which must be a power of 2).
|
|
* To perform arbitrary rounding up, use roundup() below.
|
|
*/
|
|
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
|
|
/**
|
|
* round_down - round down to next specified power of 2
|
|
* @x: the value to round
|
|
* @y: multiple to round down to (must be a power of 2)
|
|
*
|
|
* Rounds @x down to next multiple of @y (which must be a power of 2).
|
|
* To perform arbitrary rounding down, use rounddown() below.
|
|
*/
|
|
#define round_down(x, y) ((x) & ~__round_mask(x, y))
|
|
|
|
/**
|
|
* FIELD_SIZEOF - get the size of a struct's field
|
|
* @t: the target struct
|
|
* @f: the target struct's field
|
|
* Return: the size of @f in the struct definition without having a
|
|
* declared instance of @t.
|
|
*/
|
|
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
|
|
|
|
#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
|
|
|
|
#define DIV_ROUND_DOWN_ULL(ll, d) \
|
|
({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
|
|
|
|
#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
|
|
|
|
#if BITS_PER_LONG == 32
|
|
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
|
|
#else
|
|
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
|
|
#endif
|
|
|
|
/**
|
|
* roundup - round up to the next specified multiple
|
|
* @x: the value to up
|
|
* @y: multiple to round up to
|
|
*
|
|
* Rounds @x up to next multiple of @y. If @y will always be a power
|
|
* of 2, consider using the faster round_up().
|
|
*
|
|
* The `const' here prevents gcc-3.3 from calling __divdi3
|
|
*/
|
|
#define roundup(x, y) ( \
|
|
{ \
|
|
const typeof(y) __y = y; \
|
|
(((x) + (__y - 1)) / __y) * __y; \
|
|
} \
|
|
)
|
|
/**
|
|
* rounddown - round down to next specified multiple
|
|
* @x: the value to round
|
|
* @y: multiple to round down to
|
|
*
|
|
* Rounds @x down to next multiple of @y. If @y will always be a power
|
|
* of 2, consider using the faster round_down().
|
|
*/
|
|
#define rounddown(x, y) ( \
|
|
{ \
|
|
typeof(x) __x = (x); \
|
|
__x - (__x % (y)); \
|
|
} \
|
|
)
|
|
|
|
/*
|
|
* Divide positive or negative dividend by positive or negative divisor
|
|
* and round to closest integer. Result is undefined for negative
|
|
* divisors if the dividend variable type is unsigned and for negative
|
|
* dividends if the divisor variable type is unsigned.
|
|
*/
|
|
#define DIV_ROUND_CLOSEST(x, divisor)( \
|
|
{ \
|
|
typeof(x) __x = x; \
|
|
typeof(divisor) __d = divisor; \
|
|
(((typeof(x))-1) > 0 || \
|
|
((typeof(divisor))-1) > 0 || \
|
|
(((__x) > 0) == ((__d) > 0))) ? \
|
|
(((__x) + ((__d) / 2)) / (__d)) : \
|
|
(((__x) - ((__d) / 2)) / (__d)); \
|
|
} \
|
|
)
|
|
/*
|
|
* Same as above but for u64 dividends. divisor must be a 32-bit
|
|
* number.
|
|
*/
|
|
#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
|
|
{ \
|
|
typeof(divisor) __d = divisor; \
|
|
unsigned long long _tmp = (x) + (__d) / 2; \
|
|
do_div(_tmp, __d); \
|
|
_tmp; \
|
|
} \
|
|
)
|
|
|
|
/*
|
|
* Multiplies an integer by a fraction, while avoiding unnecessary
|
|
* overflow or loss of precision.
|
|
*/
|
|
#define mult_frac(x, numer, denom)( \
|
|
{ \
|
|
typeof(x) quot = (x) / (denom); \
|
|
typeof(x) rem = (x) % (denom); \
|
|
(quot * (numer)) + ((rem * (numer)) / (denom)); \
|
|
} \
|
|
)
|
|
|
|
|
|
#define _RET_IP_ (unsigned long)__builtin_return_address(0)
|
|
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
|
|
|
|
#ifdef CONFIG_LBDAF
|
|
# include <asm/div64.h>
|
|
# define sector_div(a, b) do_div(a, b)
|
|
#else
|
|
# define sector_div(n, b)( \
|
|
{ \
|
|
int _res; \
|
|
_res = (n) % (b); \
|
|
(n) /= (b); \
|
|
_res; \
|
|
} \
|
|
)
|
|
#endif
|
|
|
|
/**
|
|
* upper_32_bits - return bits 32-63 of a number
|
|
* @n: the number we're accessing
|
|
*
|
|
* A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
|
|
* the "right shift count >= width of type" warning when that quantity is
|
|
* 32-bits.
|
|
*/
|
|
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
|
|
|
|
/**
|
|
* lower_32_bits - return bits 0-31 of a number
|
|
* @n: the number we're accessing
|
|
*/
|
|
#define lower_32_bits(n) ((u32)(n))
|
|
|
|
struct completion;
|
|
struct pt_regs;
|
|
struct user;
|
|
|
|
#ifdef CONFIG_PREEMPT_VOLUNTARY
|
|
extern int _cond_resched(void);
|
|
# define might_resched() _cond_resched()
|
|
#else
|
|
# define might_resched() do { } while (0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
extern void ___might_sleep(const char *file, int line, int preempt_offset);
|
|
extern void __might_sleep(const char *file, int line, int preempt_offset);
|
|
extern void __cant_sleep(const char *file, int line, int preempt_offset);
|
|
|
|
/**
|
|
* might_sleep - annotation for functions that can sleep
|
|
*
|
|
* this macro will print a stack trace if it is executed in an atomic
|
|
* context (spinlock, irq-handler, ...).
|
|
*
|
|
* This is a useful debugging help to be able to catch problems early and not
|
|
* be bitten later when the calling function happens to sleep when it is not
|
|
* supposed to.
|
|
*/
|
|
# define might_sleep() \
|
|
do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
|
|
/**
|
|
* cant_sleep - annotation for functions that cannot sleep
|
|
*
|
|
* this macro will print a stack trace if it is executed with preemption enabled
|
|
*/
|
|
# define cant_sleep() \
|
|
do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
|
|
# define sched_annotate_sleep() (current->task_state_change = 0)
|
|
#else
|
|
static inline void ___might_sleep(const char *file, int line,
|
|
int preempt_offset) { }
|
|
static inline void __might_sleep(const char *file, int line,
|
|
int preempt_offset) { }
|
|
# define might_sleep() do { might_resched(); } while (0)
|
|
# define cant_sleep() do { } while (0)
|
|
# define sched_annotate_sleep() do { } while (0)
|
|
#endif
|
|
|
|
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
|
|
|
|
/**
|
|
* abs - return absolute value of an argument
|
|
* @x: the value. If it is unsigned type, it is converted to signed type first.
|
|
* char is treated as if it was signed (regardless of whether it really is)
|
|
* but the macro's return type is preserved as char.
|
|
*
|
|
* Return: an absolute value of x.
|
|
*/
|
|
#define abs(x) __abs_choose_expr(x, long long, \
|
|
__abs_choose_expr(x, long, \
|
|
__abs_choose_expr(x, int, \
|
|
__abs_choose_expr(x, short, \
|
|
__abs_choose_expr(x, char, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(x), char), \
|
|
(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
|
|
((void)0)))))))
|
|
|
|
#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(x), signed type) || \
|
|
__builtin_types_compatible_p(typeof(x), unsigned type), \
|
|
({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
|
|
|
|
/**
|
|
* reciprocal_scale - "scale" a value into range [0, ep_ro)
|
|
* @val: value
|
|
* @ep_ro: right open interval endpoint
|
|
*
|
|
* Perform a "reciprocal multiplication" in order to "scale" a value into
|
|
* range [0, @ep_ro), where the upper interval endpoint is right-open.
|
|
* This is useful, e.g. for accessing a index of an array containing
|
|
* @ep_ro elements, for example. Think of it as sort of modulus, only that
|
|
* the result isn't that of modulo. ;) Note that if initial input is a
|
|
* small value, then result will return 0.
|
|
*
|
|
* Return: a result based on @val in interval [0, @ep_ro).
|
|
*/
|
|
static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
|
|
{
|
|
return (u32)(((u64) val * ep_ro) >> 32);
|
|
}
|
|
|
|
#if defined(CONFIG_MMU) && \
|
|
(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
|
|
#define might_fault() __might_fault(__FILE__, __LINE__)
|
|
void __might_fault(const char *file, int line);
|
|
#else
|
|
static inline void might_fault(void) { }
|
|
#endif
|
|
|
|
extern struct atomic_notifier_head panic_notifier_list;
|
|
extern long (*panic_blink)(int state);
|
|
__printf(1, 2)
|
|
void panic(const char *fmt, ...) __noreturn __cold;
|
|
void nmi_panic(struct pt_regs *regs, const char *msg);
|
|
extern void oops_enter(void);
|
|
extern void oops_exit(void);
|
|
void print_oops_end_marker(void);
|
|
extern int oops_may_print(void);
|
|
void do_exit(long error_code) __noreturn;
|
|
void complete_and_exit(struct completion *, long) __noreturn;
|
|
|
|
#ifdef CONFIG_ARCH_HAS_REFCOUNT
|
|
void refcount_error_report(struct pt_regs *regs, const char *err);
|
|
#else
|
|
static inline void refcount_error_report(struct pt_regs *regs, const char *err)
|
|
{ }
|
|
#endif
|
|
|
|
/* Internal, do not use. */
|
|
int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
|
|
int __must_check _kstrtol(const char *s, unsigned int base, long *res);
|
|
|
|
int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
|
|
int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
|
|
|
|
/**
|
|
* kstrtoul - convert a string to an unsigned long
|
|
* @s: The start of the string. The string must be null-terminated, and may also
|
|
* include a single newline before its terminating null. The first character
|
|
* may also be a plus sign, but not a minus sign.
|
|
* @base: The number base to use. The maximum supported base is 16. If base is
|
|
* given as 0, then the base of the string is automatically detected with the
|
|
* conventional semantics - If it begins with 0x the number will be parsed as a
|
|
* hexadecimal (case insensitive), if it otherwise begins with 0, it will be
|
|
* parsed as an octal number. Otherwise it will be parsed as a decimal.
|
|
* @res: Where to write the result of the conversion on success.
|
|
*
|
|
* Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
|
|
* Used as a replacement for the obsolete simple_strtoull. Return code must
|
|
* be checked.
|
|
*/
|
|
static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
|
|
{
|
|
/*
|
|
* We want to shortcut function call, but
|
|
* __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
|
|
*/
|
|
if (sizeof(unsigned long) == sizeof(unsigned long long) &&
|
|
__alignof__(unsigned long) == __alignof__(unsigned long long))
|
|
return kstrtoull(s, base, (unsigned long long *)res);
|
|
else
|
|
return _kstrtoul(s, base, res);
|
|
}
|
|
|
|
/**
|
|
* kstrtol - convert a string to a long
|
|
* @s: The start of the string. The string must be null-terminated, and may also
|
|
* include a single newline before its terminating null. The first character
|
|
* may also be a plus sign or a minus sign.
|
|
* @base: The number base to use. The maximum supported base is 16. If base is
|
|
* given as 0, then the base of the string is automatically detected with the
|
|
* conventional semantics - If it begins with 0x the number will be parsed as a
|
|
* hexadecimal (case insensitive), if it otherwise begins with 0, it will be
|
|
* parsed as an octal number. Otherwise it will be parsed as a decimal.
|
|
* @res: Where to write the result of the conversion on success.
|
|
*
|
|
* Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
|
|
* Used as a replacement for the obsolete simple_strtoull. Return code must
|
|
* be checked.
|
|
*/
|
|
static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
|
|
{
|
|
/*
|
|
* We want to shortcut function call, but
|
|
* __builtin_types_compatible_p(long, long long) = 0.
|
|
*/
|
|
if (sizeof(long) == sizeof(long long) &&
|
|
__alignof__(long) == __alignof__(long long))
|
|
return kstrtoll(s, base, (long long *)res);
|
|
else
|
|
return _kstrtol(s, base, res);
|
|
}
|
|
|
|
int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
|
|
int __must_check kstrtoint(const char *s, unsigned int base, int *res);
|
|
|
|
static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
|
|
{
|
|
return kstrtoull(s, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
|
|
{
|
|
return kstrtoll(s, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
|
|
{
|
|
return kstrtouint(s, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
|
|
{
|
|
return kstrtoint(s, base, res);
|
|
}
|
|
|
|
int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
|
|
int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
|
|
int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
|
|
int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
|
|
int __must_check kstrtobool(const char *s, bool *res);
|
|
|
|
int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
|
|
int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
|
|
int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
|
|
int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
|
|
int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
|
|
int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
|
|
int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
|
|
int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
|
|
int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
|
|
int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
|
|
int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
|
|
|
|
static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
|
|
{
|
|
return kstrtoull_from_user(s, count, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
|
|
{
|
|
return kstrtoll_from_user(s, count, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
|
|
{
|
|
return kstrtouint_from_user(s, count, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
|
|
{
|
|
return kstrtoint_from_user(s, count, base, res);
|
|
}
|
|
|
|
/* Obsolete, do not use. Use kstrto<foo> instead */
|
|
|
|
extern unsigned long simple_strtoul(const char *,char **,unsigned int);
|
|
extern long simple_strtol(const char *,char **,unsigned int);
|
|
extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
|
|
extern long long simple_strtoll(const char *,char **,unsigned int);
|
|
|
|
extern int num_to_str(char *buf, int size,
|
|
unsigned long long num, unsigned int width);
|
|
|
|
/* lib/printf utilities */
|
|
|
|
extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
|
|
extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
|
|
extern __printf(3, 4)
|
|
int snprintf(char *buf, size_t size, const char *fmt, ...);
|
|
extern __printf(3, 0)
|
|
int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
|
|
extern __printf(3, 4)
|
|
int scnprintf(char *buf, size_t size, const char *fmt, ...);
|
|
extern __printf(3, 0)
|
|
int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
|
|
extern __printf(2, 3) __malloc
|
|
char *kasprintf(gfp_t gfp, const char *fmt, ...);
|
|
extern __printf(2, 0) __malloc
|
|
char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
|
|
extern __printf(2, 0)
|
|
const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
|
|
|
|
extern __scanf(2, 3)
|
|
int sscanf(const char *, const char *, ...);
|
|
extern __scanf(2, 0)
|
|
int vsscanf(const char *, const char *, va_list);
|
|
|
|
extern int get_option(char **str, int *pint);
|
|
extern char *get_options(const char *str, int nints, int *ints);
|
|
extern unsigned long long memparse(const char *ptr, char **retptr);
|
|
extern bool parse_option_str(const char *str, const char *option);
|
|
extern char *next_arg(char *args, char **param, char **val);
|
|
|
|
extern int core_kernel_text(unsigned long addr);
|
|
extern int init_kernel_text(unsigned long addr);
|
|
extern int core_kernel_data(unsigned long addr);
|
|
extern int __kernel_text_address(unsigned long addr);
|
|
extern int kernel_text_address(unsigned long addr);
|
|
extern int func_ptr_is_kernel_text(void *ptr);
|
|
|
|
unsigned long int_sqrt(unsigned long);
|
|
|
|
#if BITS_PER_LONG < 64
|
|
u32 int_sqrt64(u64 x);
|
|
#else
|
|
static inline u32 int_sqrt64(u64 x)
|
|
{
|
|
return (u32)int_sqrt(x);
|
|
}
|
|
#endif
|
|
|
|
extern void bust_spinlocks(int yes);
|
|
extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
|
|
extern int panic_timeout;
|
|
extern unsigned long panic_print;
|
|
extern int panic_on_oops;
|
|
extern int panic_on_unrecovered_nmi;
|
|
extern int panic_on_io_nmi;
|
|
extern int panic_on_warn;
|
|
extern int sysctl_panic_on_rcu_stall;
|
|
extern int sysctl_panic_on_stackoverflow;
|
|
|
|
extern bool crash_kexec_post_notifiers;
|
|
|
|
/*
|
|
* panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
|
|
* holds a CPU number which is executing panic() currently. A value of
|
|
* PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
|
|
*/
|
|
extern atomic_t panic_cpu;
|
|
#define PANIC_CPU_INVALID -1
|
|
|
|
/*
|
|
* Only to be used by arch init code. If the user over-wrote the default
|
|
* CONFIG_PANIC_TIMEOUT, honor it.
|
|
*/
|
|
static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
|
|
{
|
|
if (panic_timeout == arch_default_timeout)
|
|
panic_timeout = timeout;
|
|
}
|
|
extern const char *print_tainted(void);
|
|
enum lockdep_ok {
|
|
LOCKDEP_STILL_OK,
|
|
LOCKDEP_NOW_UNRELIABLE
|
|
};
|
|
extern void add_taint(unsigned flag, enum lockdep_ok);
|
|
extern int test_taint(unsigned flag);
|
|
extern unsigned long get_taint(void);
|
|
extern int root_mountflags;
|
|
|
|
extern bool early_boot_irqs_disabled;
|
|
|
|
/*
|
|
* Values used for system_state. Ordering of the states must not be changed
|
|
* as code checks for <, <=, >, >= STATE.
|
|
*/
|
|
extern enum system_states {
|
|
SYSTEM_BOOTING,
|
|
SYSTEM_SCHEDULING,
|
|
SYSTEM_RUNNING,
|
|
SYSTEM_HALT,
|
|
SYSTEM_POWER_OFF,
|
|
SYSTEM_RESTART,
|
|
SYSTEM_SUSPEND,
|
|
} system_state;
|
|
|
|
/* This cannot be an enum because some may be used in assembly source. */
|
|
#define TAINT_PROPRIETARY_MODULE 0
|
|
#define TAINT_FORCED_MODULE 1
|
|
#define TAINT_CPU_OUT_OF_SPEC 2
|
|
#define TAINT_FORCED_RMMOD 3
|
|
#define TAINT_MACHINE_CHECK 4
|
|
#define TAINT_BAD_PAGE 5
|
|
#define TAINT_USER 6
|
|
#define TAINT_DIE 7
|
|
#define TAINT_OVERRIDDEN_ACPI_TABLE 8
|
|
#define TAINT_WARN 9
|
|
#define TAINT_CRAP 10
|
|
#define TAINT_FIRMWARE_WORKAROUND 11
|
|
#define TAINT_OOT_MODULE 12
|
|
#define TAINT_UNSIGNED_MODULE 13
|
|
#define TAINT_SOFTLOCKUP 14
|
|
#define TAINT_LIVEPATCH 15
|
|
#define TAINT_AUX 16
|
|
#define TAINT_RANDSTRUCT 17
|
|
#define TAINT_FLAGS_COUNT 18
|
|
|
|
struct taint_flag {
|
|
char c_true; /* character printed when tainted */
|
|
char c_false; /* character printed when not tainted */
|
|
bool module; /* also show as a per-module taint flag */
|
|
};
|
|
|
|
extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
|
|
|
|
extern const char hex_asc[];
|
|
#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
|
|
#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
|
|
|
|
static inline char *hex_byte_pack(char *buf, u8 byte)
|
|
{
|
|
*buf++ = hex_asc_hi(byte);
|
|
*buf++ = hex_asc_lo(byte);
|
|
return buf;
|
|
}
|
|
|
|
extern const char hex_asc_upper[];
|
|
#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
|
|
#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
|
|
|
|
static inline char *hex_byte_pack_upper(char *buf, u8 byte)
|
|
{
|
|
*buf++ = hex_asc_upper_hi(byte);
|
|
*buf++ = hex_asc_upper_lo(byte);
|
|
return buf;
|
|
}
|
|
|
|
extern int hex_to_bin(char ch);
|
|
extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
|
|
extern char *bin2hex(char *dst, const void *src, size_t count);
|
|
|
|
bool mac_pton(const char *s, u8 *mac);
|
|
|
|
/*
|
|
* General tracing related utility functions - trace_printk(),
|
|
* tracing_on/tracing_off and tracing_start()/tracing_stop
|
|
*
|
|
* Use tracing_on/tracing_off when you want to quickly turn on or off
|
|
* tracing. It simply enables or disables the recording of the trace events.
|
|
* This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
|
|
* file, which gives a means for the kernel and userspace to interact.
|
|
* Place a tracing_off() in the kernel where you want tracing to end.
|
|
* From user space, examine the trace, and then echo 1 > tracing_on
|
|
* to continue tracing.
|
|
*
|
|
* tracing_stop/tracing_start has slightly more overhead. It is used
|
|
* by things like suspend to ram where disabling the recording of the
|
|
* trace is not enough, but tracing must actually stop because things
|
|
* like calling smp_processor_id() may crash the system.
|
|
*
|
|
* Most likely, you want to use tracing_on/tracing_off.
|
|
*/
|
|
|
|
enum ftrace_dump_mode {
|
|
DUMP_NONE,
|
|
DUMP_ALL,
|
|
DUMP_ORIG,
|
|
};
|
|
|
|
#ifdef CONFIG_TRACING
|
|
void tracing_on(void);
|
|
void tracing_off(void);
|
|
int tracing_is_on(void);
|
|
void tracing_snapshot(void);
|
|
void tracing_snapshot_alloc(void);
|
|
|
|
extern void tracing_start(void);
|
|
extern void tracing_stop(void);
|
|
|
|
static inline __printf(1, 2)
|
|
void ____trace_printk_check_format(const char *fmt, ...)
|
|
{
|
|
}
|
|
#define __trace_printk_check_format(fmt, args...) \
|
|
do { \
|
|
if (0) \
|
|
____trace_printk_check_format(fmt, ##args); \
|
|
} while (0)
|
|
|
|
/**
|
|
* trace_printk - printf formatting in the ftrace buffer
|
|
* @fmt: the printf format for printing
|
|
*
|
|
* Note: __trace_printk is an internal function for trace_printk() and
|
|
* the @ip is passed in via the trace_printk() macro.
|
|
*
|
|
* This function allows a kernel developer to debug fast path sections
|
|
* that printk is not appropriate for. By scattering in various
|
|
* printk like tracing in the code, a developer can quickly see
|
|
* where problems are occurring.
|
|
*
|
|
* This is intended as a debugging tool for the developer only.
|
|
* Please refrain from leaving trace_printks scattered around in
|
|
* your code. (Extra memory is used for special buffers that are
|
|
* allocated when trace_printk() is used.)
|
|
*
|
|
* A little optimization trick is done here. If there's only one
|
|
* argument, there's no need to scan the string for printf formats.
|
|
* The trace_puts() will suffice. But how can we take advantage of
|
|
* using trace_puts() when trace_printk() has only one argument?
|
|
* By stringifying the args and checking the size we can tell
|
|
* whether or not there are args. __stringify((__VA_ARGS__)) will
|
|
* turn into "()\0" with a size of 3 when there are no args, anything
|
|
* else will be bigger. All we need to do is define a string to this,
|
|
* and then take its size and compare to 3. If it's bigger, use
|
|
* do_trace_printk() otherwise, optimize it to trace_puts(). Then just
|
|
* let gcc optimize the rest.
|
|
*/
|
|
|
|
#define trace_printk(fmt, ...) \
|
|
do { \
|
|
char _______STR[] = __stringify((__VA_ARGS__)); \
|
|
if (sizeof(_______STR) > 3) \
|
|
do_trace_printk(fmt, ##__VA_ARGS__); \
|
|
else \
|
|
trace_puts(fmt); \
|
|
} while (0)
|
|
|
|
#define do_trace_printk(fmt, args...) \
|
|
do { \
|
|
static const char *trace_printk_fmt __used \
|
|
__attribute__((section("__trace_printk_fmt"))) = \
|
|
__builtin_constant_p(fmt) ? fmt : NULL; \
|
|
\
|
|
__trace_printk_check_format(fmt, ##args); \
|
|
\
|
|
if (__builtin_constant_p(fmt)) \
|
|
__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
|
|
else \
|
|
__trace_printk(_THIS_IP_, fmt, ##args); \
|
|
} while (0)
|
|
|
|
extern __printf(2, 3)
|
|
int __trace_bprintk(unsigned long ip, const char *fmt, ...);
|
|
|
|
extern __printf(2, 3)
|
|
int __trace_printk(unsigned long ip, const char *fmt, ...);
|
|
|
|
/**
|
|
* trace_puts - write a string into the ftrace buffer
|
|
* @str: the string to record
|
|
*
|
|
* Note: __trace_bputs is an internal function for trace_puts and
|
|
* the @ip is passed in via the trace_puts macro.
|
|
*
|
|
* This is similar to trace_printk() but is made for those really fast
|
|
* paths that a developer wants the least amount of "Heisenbug" effects,
|
|
* where the processing of the print format is still too much.
|
|
*
|
|
* This function allows a kernel developer to debug fast path sections
|
|
* that printk is not appropriate for. By scattering in various
|
|
* printk like tracing in the code, a developer can quickly see
|
|
* where problems are occurring.
|
|
*
|
|
* This is intended as a debugging tool for the developer only.
|
|
* Please refrain from leaving trace_puts scattered around in
|
|
* your code. (Extra memory is used for special buffers that are
|
|
* allocated when trace_puts() is used.)
|
|
*
|
|
* Returns: 0 if nothing was written, positive # if string was.
|
|
* (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
|
|
*/
|
|
|
|
#define trace_puts(str) ({ \
|
|
static const char *trace_printk_fmt __used \
|
|
__attribute__((section("__trace_printk_fmt"))) = \
|
|
__builtin_constant_p(str) ? str : NULL; \
|
|
\
|
|
if (__builtin_constant_p(str)) \
|
|
__trace_bputs(_THIS_IP_, trace_printk_fmt); \
|
|
else \
|
|
__trace_puts(_THIS_IP_, str, strlen(str)); \
|
|
})
|
|
extern int __trace_bputs(unsigned long ip, const char *str);
|
|
extern int __trace_puts(unsigned long ip, const char *str, int size);
|
|
|
|
extern void trace_dump_stack(int skip);
|
|
|
|
/*
|
|
* The double __builtin_constant_p is because gcc will give us an error
|
|
* if we try to allocate the static variable to fmt if it is not a
|
|
* constant. Even with the outer if statement.
|
|
*/
|
|
#define ftrace_vprintk(fmt, vargs) \
|
|
do { \
|
|
if (__builtin_constant_p(fmt)) { \
|
|
static const char *trace_printk_fmt __used \
|
|
__attribute__((section("__trace_printk_fmt"))) = \
|
|
__builtin_constant_p(fmt) ? fmt : NULL; \
|
|
\
|
|
__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
|
|
} else \
|
|
__ftrace_vprintk(_THIS_IP_, fmt, vargs); \
|
|
} while (0)
|
|
|
|
extern __printf(2, 0) int
|
|
__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
|
|
|
|
extern __printf(2, 0) int
|
|
__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
|
|
|
|
extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
|
|
#else
|
|
static inline void tracing_start(void) { }
|
|
static inline void tracing_stop(void) { }
|
|
static inline void trace_dump_stack(int skip) { }
|
|
|
|
static inline void tracing_on(void) { }
|
|
static inline void tracing_off(void) { }
|
|
static inline int tracing_is_on(void) { return 0; }
|
|
static inline void tracing_snapshot(void) { }
|
|
static inline void tracing_snapshot_alloc(void) { }
|
|
|
|
static inline __printf(1, 2)
|
|
int trace_printk(const char *fmt, ...)
|
|
{
|
|
return 0;
|
|
}
|
|
static __printf(1, 0) inline int
|
|
ftrace_vprintk(const char *fmt, va_list ap)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
/*
|
|
* min()/max()/clamp() macros must accomplish three things:
|
|
*
|
|
* - avoid multiple evaluations of the arguments (so side-effects like
|
|
* "x++" happen only once) when non-constant.
|
|
* - perform strict type-checking (to generate warnings instead of
|
|
* nasty runtime surprises). See the "unnecessary" pointer comparison
|
|
* in __typecheck().
|
|
* - retain result as a constant expressions when called with only
|
|
* constant expressions (to avoid tripping VLA warnings in stack
|
|
* allocation usage).
|
|
*/
|
|
#define __typecheck(x, y) \
|
|
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
|
|
|
|
/*
|
|
* This returns a constant expression while determining if an argument is
|
|
* a constant expression, most importantly without evaluating the argument.
|
|
* Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
|
|
*/
|
|
#define __is_constexpr(x) \
|
|
(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
|
|
|
|
#define __no_side_effects(x, y) \
|
|
(__is_constexpr(x) && __is_constexpr(y))
|
|
|
|
#define __safe_cmp(x, y) \
|
|
(__typecheck(x, y) && __no_side_effects(x, y))
|
|
|
|
#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
|
|
|
|
#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
|
|
typeof(x) unique_x = (x); \
|
|
typeof(y) unique_y = (y); \
|
|
__cmp(unique_x, unique_y, op); })
|
|
|
|
#define __careful_cmp(x, y, op) \
|
|
__builtin_choose_expr(__safe_cmp(x, y), \
|
|
__cmp(x, y, op), \
|
|
__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
|
|
|
|
/**
|
|
* min - return minimum of two values of the same or compatible types
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define min(x, y) __careful_cmp(x, y, <)
|
|
|
|
/**
|
|
* max - return maximum of two values of the same or compatible types
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define max(x, y) __careful_cmp(x, y, >)
|
|
|
|
/**
|
|
* min3 - return minimum of three values
|
|
* @x: first value
|
|
* @y: second value
|
|
* @z: third value
|
|
*/
|
|
#define min3(x, y, z) min((typeof(x))min(x, y), z)
|
|
|
|
/**
|
|
* max3 - return maximum of three values
|
|
* @x: first value
|
|
* @y: second value
|
|
* @z: third value
|
|
*/
|
|
#define max3(x, y, z) max((typeof(x))max(x, y), z)
|
|
|
|
/**
|
|
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
|
|
* @x: value1
|
|
* @y: value2
|
|
*/
|
|
#define min_not_zero(x, y) ({ \
|
|
typeof(x) __x = (x); \
|
|
typeof(y) __y = (y); \
|
|
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
|
|
|
|
/**
|
|
* clamp - return a value clamped to a given range with strict typechecking
|
|
* @val: current value
|
|
* @lo: lowest allowable value
|
|
* @hi: highest allowable value
|
|
*
|
|
* This macro does strict typechecking of @lo/@hi to make sure they are of the
|
|
* same type as @val. See the unnecessary pointer comparisons.
|
|
*/
|
|
#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
|
|
|
|
/*
|
|
* ..and if you can't take the strict
|
|
* types, you can specify one yourself.
|
|
*
|
|
* Or not use min/max/clamp at all, of course.
|
|
*/
|
|
|
|
/**
|
|
* min_t - return minimum of two values, using the specified type
|
|
* @type: data type to use
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
|
|
|
|
/**
|
|
* max_t - return maximum of two values, using the specified type
|
|
* @type: data type to use
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
|
|
|
|
/**
|
|
* clamp_t - return a value clamped to a given range using a given type
|
|
* @type: the type of variable to use
|
|
* @val: current value
|
|
* @lo: minimum allowable value
|
|
* @hi: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of type
|
|
* @type to make all the comparisons.
|
|
*/
|
|
#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
|
|
|
|
/**
|
|
* clamp_val - return a value clamped to a given range using val's type
|
|
* @val: current value
|
|
* @lo: minimum allowable value
|
|
* @hi: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of whatever
|
|
* type the input argument @val is. This is useful when @val is an unsigned
|
|
* type and @lo and @hi are literals that will otherwise be assigned a signed
|
|
* integer type.
|
|
*/
|
|
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
|
|
|
|
|
|
/**
|
|
* swap - swap values of @a and @b
|
|
* @a: first value
|
|
* @b: second value
|
|
*/
|
|
#define swap(a, b) \
|
|
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
|
|
|
|
/* This counts to 12. Any more, it will return 13th argument. */
|
|
#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
|
|
#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
|
|
|
|
#define __CONCAT(a, b) a ## b
|
|
#define CONCATENATE(a, b) __CONCAT(a, b)
|
|
|
|
/**
|
|
* container_of - cast a member of a structure out to the containing structure
|
|
* @ptr: the pointer to the member.
|
|
* @type: the type of the container struct this is embedded in.
|
|
* @member: the name of the member within the struct.
|
|
*
|
|
*/
|
|
#define container_of(ptr, type, member) ({ \
|
|
void *__mptr = (void *)(ptr); \
|
|
BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
|
|
!__same_type(*(ptr), void), \
|
|
"pointer type mismatch in container_of()"); \
|
|
((type *)(__mptr - offsetof(type, member))); })
|
|
|
|
/**
|
|
* container_of_safe - cast a member of a structure out to the containing structure
|
|
* @ptr: the pointer to the member.
|
|
* @type: the type of the container struct this is embedded in.
|
|
* @member: the name of the member within the struct.
|
|
*
|
|
* If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
|
|
*/
|
|
#define container_of_safe(ptr, type, member) ({ \
|
|
void *__mptr = (void *)(ptr); \
|
|
BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
|
|
!__same_type(*(ptr), void), \
|
|
"pointer type mismatch in container_of()"); \
|
|
IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
|
|
((type *)(__mptr - offsetof(type, member))); })
|
|
|
|
/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
|
|
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
|
|
# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
|
|
#endif
|
|
|
|
/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
|
|
#define VERIFY_OCTAL_PERMISSIONS(perms) \
|
|
(BUILD_BUG_ON_ZERO((perms) < 0) + \
|
|
BUILD_BUG_ON_ZERO((perms) > 0777) + \
|
|
/* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
|
|
BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
|
|
BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
|
|
/* USER_WRITABLE >= GROUP_WRITABLE */ \
|
|
BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
|
|
/* OTHER_WRITABLE? Generally considered a bad idea. */ \
|
|
BUILD_BUG_ON_ZERO((perms) & 2) + \
|
|
(perms))
|
|
#endif
|