5028 строки
139 KiB
C
5028 строки
139 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
|
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
|
|
* Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
|
|
* Copyright 2013-2014 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
|
|
* Copyright (C) 2018-2021 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kcov.h>
|
|
#include <linux/bitops.h>
|
|
#include <net/mac80211.h>
|
|
#include <net/ieee80211_radiotap.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "ieee80211_i.h"
|
|
#include "driver-ops.h"
|
|
#include "led.h"
|
|
#include "mesh.h"
|
|
#include "wep.h"
|
|
#include "wpa.h"
|
|
#include "tkip.h"
|
|
#include "wme.h"
|
|
#include "rate.h"
|
|
|
|
/*
|
|
* monitor mode reception
|
|
*
|
|
* This function cleans up the SKB, i.e. it removes all the stuff
|
|
* only useful for monitoring.
|
|
*/
|
|
static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
|
|
unsigned int present_fcs_len,
|
|
unsigned int rtap_space)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
unsigned int hdrlen;
|
|
__le16 fc;
|
|
|
|
if (present_fcs_len)
|
|
__pskb_trim(skb, skb->len - present_fcs_len);
|
|
__pskb_pull(skb, rtap_space);
|
|
|
|
hdr = (void *)skb->data;
|
|
fc = hdr->frame_control;
|
|
|
|
/*
|
|
* Remove the HT-Control field (if present) on management
|
|
* frames after we've sent the frame to monitoring. We
|
|
* (currently) don't need it, and don't properly parse
|
|
* frames with it present, due to the assumption of a
|
|
* fixed management header length.
|
|
*/
|
|
if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
|
|
return skb;
|
|
|
|
hdrlen = ieee80211_hdrlen(fc);
|
|
hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
|
|
|
|
if (!pskb_may_pull(skb, hdrlen)) {
|
|
dev_kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
|
|
hdrlen - IEEE80211_HT_CTL_LEN);
|
|
__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
|
|
unsigned int rtap_space)
|
|
{
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr;
|
|
|
|
hdr = (void *)(skb->data + rtap_space);
|
|
|
|
if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
|
|
RX_FLAG_FAILED_PLCP_CRC |
|
|
RX_FLAG_ONLY_MONITOR |
|
|
RX_FLAG_NO_PSDU))
|
|
return true;
|
|
|
|
if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
|
|
return true;
|
|
|
|
if (ieee80211_is_ctl(hdr->frame_control) &&
|
|
!ieee80211_is_pspoll(hdr->frame_control) &&
|
|
!ieee80211_is_back_req(hdr->frame_control))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int
|
|
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
|
|
struct ieee80211_rx_status *status,
|
|
struct sk_buff *skb)
|
|
{
|
|
int len;
|
|
|
|
/* always present fields */
|
|
len = sizeof(struct ieee80211_radiotap_header) + 8;
|
|
|
|
/* allocate extra bitmaps */
|
|
if (status->chains)
|
|
len += 4 * hweight8(status->chains);
|
|
/* vendor presence bitmap */
|
|
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
|
|
len += 4;
|
|
|
|
if (ieee80211_have_rx_timestamp(status)) {
|
|
len = ALIGN(len, 8);
|
|
len += 8;
|
|
}
|
|
if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
|
|
len += 1;
|
|
|
|
/* antenna field, if we don't have per-chain info */
|
|
if (!status->chains)
|
|
len += 1;
|
|
|
|
/* padding for RX_FLAGS if necessary */
|
|
len = ALIGN(len, 2);
|
|
|
|
if (status->encoding == RX_ENC_HT) /* HT info */
|
|
len += 3;
|
|
|
|
if (status->flag & RX_FLAG_AMPDU_DETAILS) {
|
|
len = ALIGN(len, 4);
|
|
len += 8;
|
|
}
|
|
|
|
if (status->encoding == RX_ENC_VHT) {
|
|
len = ALIGN(len, 2);
|
|
len += 12;
|
|
}
|
|
|
|
if (local->hw.radiotap_timestamp.units_pos >= 0) {
|
|
len = ALIGN(len, 8);
|
|
len += 12;
|
|
}
|
|
|
|
if (status->encoding == RX_ENC_HE &&
|
|
status->flag & RX_FLAG_RADIOTAP_HE) {
|
|
len = ALIGN(len, 2);
|
|
len += 12;
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
|
|
}
|
|
|
|
if (status->encoding == RX_ENC_HE &&
|
|
status->flag & RX_FLAG_RADIOTAP_HE_MU) {
|
|
len = ALIGN(len, 2);
|
|
len += 12;
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_NO_PSDU)
|
|
len += 1;
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
|
|
len = ALIGN(len, 2);
|
|
len += 4;
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
|
|
}
|
|
|
|
if (status->chains) {
|
|
/* antenna and antenna signal fields */
|
|
len += 2 * hweight8(status->chains);
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
|
|
struct ieee80211_vendor_radiotap *rtap;
|
|
int vendor_data_offset = 0;
|
|
|
|
/*
|
|
* The position to look at depends on the existence (or non-
|
|
* existence) of other elements, so take that into account...
|
|
*/
|
|
if (status->flag & RX_FLAG_RADIOTAP_HE)
|
|
vendor_data_offset +=
|
|
sizeof(struct ieee80211_radiotap_he);
|
|
if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
|
|
vendor_data_offset +=
|
|
sizeof(struct ieee80211_radiotap_he_mu);
|
|
if (status->flag & RX_FLAG_RADIOTAP_LSIG)
|
|
vendor_data_offset +=
|
|
sizeof(struct ieee80211_radiotap_lsig);
|
|
|
|
rtap = (void *)&skb->data[vendor_data_offset];
|
|
|
|
/* alignment for fixed 6-byte vendor data header */
|
|
len = ALIGN(len, 2);
|
|
/* vendor data header */
|
|
len += 6;
|
|
if (WARN_ON(rtap->align == 0))
|
|
rtap->align = 1;
|
|
len = ALIGN(len, rtap->align);
|
|
len += rtap->len + rtap->pad;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
|
|
struct sta_info *sta,
|
|
struct sk_buff *skb)
|
|
{
|
|
skb_queue_tail(&sdata->skb_queue, skb);
|
|
ieee80211_queue_work(&sdata->local->hw, &sdata->work);
|
|
if (sta)
|
|
sta->rx_stats.packets++;
|
|
}
|
|
|
|
static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
|
|
struct sta_info *sta,
|
|
struct sk_buff *skb)
|
|
{
|
|
skb->protocol = 0;
|
|
__ieee80211_queue_skb_to_iface(sdata, sta, skb);
|
|
}
|
|
|
|
static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
|
|
struct sk_buff *skb,
|
|
int rtap_space)
|
|
{
|
|
struct {
|
|
struct ieee80211_hdr_3addr hdr;
|
|
u8 category;
|
|
u8 action_code;
|
|
} __packed __aligned(2) action;
|
|
|
|
if (!sdata)
|
|
return;
|
|
|
|
BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
|
|
|
|
if (skb->len < rtap_space + sizeof(action) +
|
|
VHT_MUMIMO_GROUPS_DATA_LEN)
|
|
return;
|
|
|
|
if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
|
|
return;
|
|
|
|
skb_copy_bits(skb, rtap_space, &action, sizeof(action));
|
|
|
|
if (!ieee80211_is_action(action.hdr.frame_control))
|
|
return;
|
|
|
|
if (action.category != WLAN_CATEGORY_VHT)
|
|
return;
|
|
|
|
if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
|
|
return;
|
|
|
|
if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
|
|
return;
|
|
|
|
skb = skb_copy(skb, GFP_ATOMIC);
|
|
if (!skb)
|
|
return;
|
|
|
|
ieee80211_queue_skb_to_iface(sdata, NULL, skb);
|
|
}
|
|
|
|
/*
|
|
* ieee80211_add_rx_radiotap_header - add radiotap header
|
|
*
|
|
* add a radiotap header containing all the fields which the hardware provided.
|
|
*/
|
|
static void
|
|
ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
|
|
struct sk_buff *skb,
|
|
struct ieee80211_rate *rate,
|
|
int rtap_len, bool has_fcs)
|
|
{
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_header *rthdr;
|
|
unsigned char *pos;
|
|
__le32 *it_present;
|
|
u32 it_present_val;
|
|
u16 rx_flags = 0;
|
|
u16 channel_flags = 0;
|
|
int mpdulen, chain;
|
|
unsigned long chains = status->chains;
|
|
struct ieee80211_vendor_radiotap rtap = {};
|
|
struct ieee80211_radiotap_he he = {};
|
|
struct ieee80211_radiotap_he_mu he_mu = {};
|
|
struct ieee80211_radiotap_lsig lsig = {};
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_HE) {
|
|
he = *(struct ieee80211_radiotap_he *)skb->data;
|
|
skb_pull(skb, sizeof(he));
|
|
WARN_ON_ONCE(status->encoding != RX_ENC_HE);
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
|
|
he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
|
|
skb_pull(skb, sizeof(he_mu));
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
|
|
lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
|
|
skb_pull(skb, sizeof(lsig));
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
|
|
rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
|
|
/* rtap.len and rtap.pad are undone immediately */
|
|
skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
|
|
}
|
|
|
|
mpdulen = skb->len;
|
|
if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
|
|
mpdulen += FCS_LEN;
|
|
|
|
rthdr = skb_push(skb, rtap_len);
|
|
memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
|
|
it_present = &rthdr->it_present;
|
|
|
|
/* radiotap header, set always present flags */
|
|
rthdr->it_len = cpu_to_le16(rtap_len);
|
|
it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
|
|
BIT(IEEE80211_RADIOTAP_CHANNEL) |
|
|
BIT(IEEE80211_RADIOTAP_RX_FLAGS);
|
|
|
|
if (!status->chains)
|
|
it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
|
|
|
|
for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
|
|
it_present_val |=
|
|
BIT(IEEE80211_RADIOTAP_EXT) |
|
|
BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
|
|
put_unaligned_le32(it_present_val, it_present);
|
|
it_present++;
|
|
it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
|
|
BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
|
|
it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
|
|
BIT(IEEE80211_RADIOTAP_EXT);
|
|
put_unaligned_le32(it_present_val, it_present);
|
|
it_present++;
|
|
it_present_val = rtap.present;
|
|
}
|
|
|
|
put_unaligned_le32(it_present_val, it_present);
|
|
|
|
/* This references through an offset into it_optional[] rather
|
|
* than via it_present otherwise later uses of pos will cause
|
|
* the compiler to think we have walked past the end of the
|
|
* struct member.
|
|
*/
|
|
pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
|
|
|
|
/* the order of the following fields is important */
|
|
|
|
/* IEEE80211_RADIOTAP_TSFT */
|
|
if (ieee80211_have_rx_timestamp(status)) {
|
|
/* padding */
|
|
while ((pos - (u8 *)rthdr) & 7)
|
|
*pos++ = 0;
|
|
put_unaligned_le64(
|
|
ieee80211_calculate_rx_timestamp(local, status,
|
|
mpdulen, 0),
|
|
pos);
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
|
|
pos += 8;
|
|
}
|
|
|
|
/* IEEE80211_RADIOTAP_FLAGS */
|
|
if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
|
|
*pos |= IEEE80211_RADIOTAP_F_FCS;
|
|
if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
|
|
*pos |= IEEE80211_RADIOTAP_F_BADFCS;
|
|
if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
|
|
*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
pos++;
|
|
|
|
/* IEEE80211_RADIOTAP_RATE */
|
|
if (!rate || status->encoding != RX_ENC_LEGACY) {
|
|
/*
|
|
* Without rate information don't add it. If we have,
|
|
* MCS information is a separate field in radiotap,
|
|
* added below. The byte here is needed as padding
|
|
* for the channel though, so initialise it to 0.
|
|
*/
|
|
*pos = 0;
|
|
} else {
|
|
int shift = 0;
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
|
|
if (status->bw == RATE_INFO_BW_10)
|
|
shift = 1;
|
|
else if (status->bw == RATE_INFO_BW_5)
|
|
shift = 2;
|
|
*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
|
|
}
|
|
pos++;
|
|
|
|
/* IEEE80211_RADIOTAP_CHANNEL */
|
|
/* TODO: frequency offset in KHz */
|
|
put_unaligned_le16(status->freq, pos);
|
|
pos += 2;
|
|
if (status->bw == RATE_INFO_BW_10)
|
|
channel_flags |= IEEE80211_CHAN_HALF;
|
|
else if (status->bw == RATE_INFO_BW_5)
|
|
channel_flags |= IEEE80211_CHAN_QUARTER;
|
|
|
|
if (status->band == NL80211_BAND_5GHZ ||
|
|
status->band == NL80211_BAND_6GHZ)
|
|
channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
|
|
else if (status->encoding != RX_ENC_LEGACY)
|
|
channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
|
|
else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
|
|
channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
|
|
else if (rate)
|
|
channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
|
|
else
|
|
channel_flags |= IEEE80211_CHAN_2GHZ;
|
|
put_unaligned_le16(channel_flags, pos);
|
|
pos += 2;
|
|
|
|
/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
|
|
if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
|
|
!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
|
|
*pos = status->signal;
|
|
rthdr->it_present |=
|
|
cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
|
|
pos++;
|
|
}
|
|
|
|
/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
|
|
|
|
if (!status->chains) {
|
|
/* IEEE80211_RADIOTAP_ANTENNA */
|
|
*pos = status->antenna;
|
|
pos++;
|
|
}
|
|
|
|
/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
|
|
|
|
/* IEEE80211_RADIOTAP_RX_FLAGS */
|
|
/* ensure 2 byte alignment for the 2 byte field as required */
|
|
if ((pos - (u8 *)rthdr) & 1)
|
|
*pos++ = 0;
|
|
if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
|
|
rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
|
|
put_unaligned_le16(rx_flags, pos);
|
|
pos += 2;
|
|
|
|
if (status->encoding == RX_ENC_HT) {
|
|
unsigned int stbc;
|
|
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
|
|
*pos = local->hw.radiotap_mcs_details;
|
|
if (status->enc_flags & RX_ENC_FLAG_HT_GF)
|
|
*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
|
|
if (status->enc_flags & RX_ENC_FLAG_LDPC)
|
|
*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
|
|
pos++;
|
|
*pos = 0;
|
|
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
|
|
*pos |= IEEE80211_RADIOTAP_MCS_SGI;
|
|
if (status->bw == RATE_INFO_BW_40)
|
|
*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
|
|
if (status->enc_flags & RX_ENC_FLAG_HT_GF)
|
|
*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
|
|
if (status->enc_flags & RX_ENC_FLAG_LDPC)
|
|
*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
|
|
stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
|
|
*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
|
|
pos++;
|
|
*pos++ = status->rate_idx;
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_AMPDU_DETAILS) {
|
|
u16 flags = 0;
|
|
|
|
/* ensure 4 byte alignment */
|
|
while ((pos - (u8 *)rthdr) & 3)
|
|
pos++;
|
|
rthdr->it_present |=
|
|
cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
|
|
put_unaligned_le32(status->ampdu_reference, pos);
|
|
pos += 4;
|
|
if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
|
|
flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
|
|
if (status->flag & RX_FLAG_AMPDU_IS_LAST)
|
|
flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
|
|
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
|
|
flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
|
|
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
|
|
flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
|
|
if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
|
|
flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
|
|
if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
|
|
flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
|
|
put_unaligned_le16(flags, pos);
|
|
pos += 2;
|
|
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
|
|
*pos++ = status->ampdu_delimiter_crc;
|
|
else
|
|
*pos++ = 0;
|
|
*pos++ = 0;
|
|
}
|
|
|
|
if (status->encoding == RX_ENC_VHT) {
|
|
u16 known = local->hw.radiotap_vht_details;
|
|
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
|
|
put_unaligned_le16(known, pos);
|
|
pos += 2;
|
|
/* flags */
|
|
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
|
|
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
|
|
/* in VHT, STBC is binary */
|
|
if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
|
|
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
|
|
if (status->enc_flags & RX_ENC_FLAG_BF)
|
|
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
|
|
pos++;
|
|
/* bandwidth */
|
|
switch (status->bw) {
|
|
case RATE_INFO_BW_80:
|
|
*pos++ = 4;
|
|
break;
|
|
case RATE_INFO_BW_160:
|
|
*pos++ = 11;
|
|
break;
|
|
case RATE_INFO_BW_40:
|
|
*pos++ = 1;
|
|
break;
|
|
default:
|
|
*pos++ = 0;
|
|
}
|
|
/* MCS/NSS */
|
|
*pos = (status->rate_idx << 4) | status->nss;
|
|
pos += 4;
|
|
/* coding field */
|
|
if (status->enc_flags & RX_ENC_FLAG_LDPC)
|
|
*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
|
|
pos++;
|
|
/* group ID */
|
|
pos++;
|
|
/* partial_aid */
|
|
pos += 2;
|
|
}
|
|
|
|
if (local->hw.radiotap_timestamp.units_pos >= 0) {
|
|
u16 accuracy = 0;
|
|
u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
|
|
|
|
rthdr->it_present |=
|
|
cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
|
|
|
|
/* ensure 8 byte alignment */
|
|
while ((pos - (u8 *)rthdr) & 7)
|
|
pos++;
|
|
|
|
put_unaligned_le64(status->device_timestamp, pos);
|
|
pos += sizeof(u64);
|
|
|
|
if (local->hw.radiotap_timestamp.accuracy >= 0) {
|
|
accuracy = local->hw.radiotap_timestamp.accuracy;
|
|
flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
|
|
}
|
|
put_unaligned_le16(accuracy, pos);
|
|
pos += sizeof(u16);
|
|
|
|
*pos++ = local->hw.radiotap_timestamp.units_pos;
|
|
*pos++ = flags;
|
|
}
|
|
|
|
if (status->encoding == RX_ENC_HE &&
|
|
status->flag & RX_FLAG_RADIOTAP_HE) {
|
|
#define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
|
|
|
|
if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
|
|
he.data6 |= HE_PREP(DATA6_NSTS,
|
|
FIELD_GET(RX_ENC_FLAG_STBC_MASK,
|
|
status->enc_flags));
|
|
he.data3 |= HE_PREP(DATA3_STBC, 1);
|
|
} else {
|
|
he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
|
|
}
|
|
|
|
#define CHECK_GI(s) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
|
|
(int)NL80211_RATE_INFO_HE_GI_##s)
|
|
|
|
CHECK_GI(0_8);
|
|
CHECK_GI(1_6);
|
|
CHECK_GI(3_2);
|
|
|
|
he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
|
|
he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
|
|
he.data3 |= HE_PREP(DATA3_CODING,
|
|
!!(status->enc_flags & RX_ENC_FLAG_LDPC));
|
|
|
|
he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
|
|
|
|
switch (status->bw) {
|
|
case RATE_INFO_BW_20:
|
|
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
|
|
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
|
|
break;
|
|
case RATE_INFO_BW_40:
|
|
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
|
|
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
|
|
break;
|
|
case RATE_INFO_BW_80:
|
|
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
|
|
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
|
|
break;
|
|
case RATE_INFO_BW_160:
|
|
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
|
|
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
|
|
break;
|
|
case RATE_INFO_BW_HE_RU:
|
|
#define CHECK_RU_ALLOC(s) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
|
|
NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
|
|
|
|
CHECK_RU_ALLOC(26);
|
|
CHECK_RU_ALLOC(52);
|
|
CHECK_RU_ALLOC(106);
|
|
CHECK_RU_ALLOC(242);
|
|
CHECK_RU_ALLOC(484);
|
|
CHECK_RU_ALLOC(996);
|
|
CHECK_RU_ALLOC(2x996);
|
|
|
|
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
|
|
status->he_ru + 4);
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
|
|
}
|
|
|
|
/* ensure 2 byte alignment */
|
|
while ((pos - (u8 *)rthdr) & 1)
|
|
pos++;
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
|
|
memcpy(pos, &he, sizeof(he));
|
|
pos += sizeof(he);
|
|
}
|
|
|
|
if (status->encoding == RX_ENC_HE &&
|
|
status->flag & RX_FLAG_RADIOTAP_HE_MU) {
|
|
/* ensure 2 byte alignment */
|
|
while ((pos - (u8 *)rthdr) & 1)
|
|
pos++;
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
|
|
memcpy(pos, &he_mu, sizeof(he_mu));
|
|
pos += sizeof(he_mu);
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_NO_PSDU) {
|
|
rthdr->it_present |=
|
|
cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
|
|
*pos++ = status->zero_length_psdu_type;
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
|
|
/* ensure 2 byte alignment */
|
|
while ((pos - (u8 *)rthdr) & 1)
|
|
pos++;
|
|
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
|
|
memcpy(pos, &lsig, sizeof(lsig));
|
|
pos += sizeof(lsig);
|
|
}
|
|
|
|
for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
|
|
*pos++ = status->chain_signal[chain];
|
|
*pos++ = chain;
|
|
}
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
|
|
/* ensure 2 byte alignment for the vendor field as required */
|
|
if ((pos - (u8 *)rthdr) & 1)
|
|
*pos++ = 0;
|
|
*pos++ = rtap.oui[0];
|
|
*pos++ = rtap.oui[1];
|
|
*pos++ = rtap.oui[2];
|
|
*pos++ = rtap.subns;
|
|
put_unaligned_le16(rtap.len, pos);
|
|
pos += 2;
|
|
/* align the actual payload as requested */
|
|
while ((pos - (u8 *)rthdr) & (rtap.align - 1))
|
|
*pos++ = 0;
|
|
/* data (and possible padding) already follows */
|
|
}
|
|
}
|
|
|
|
static struct sk_buff *
|
|
ieee80211_make_monitor_skb(struct ieee80211_local *local,
|
|
struct sk_buff **origskb,
|
|
struct ieee80211_rate *rate,
|
|
int rtap_space, bool use_origskb)
|
|
{
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
|
|
int rt_hdrlen, needed_headroom;
|
|
struct sk_buff *skb;
|
|
|
|
/* room for the radiotap header based on driver features */
|
|
rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
|
|
needed_headroom = rt_hdrlen - rtap_space;
|
|
|
|
if (use_origskb) {
|
|
/* only need to expand headroom if necessary */
|
|
skb = *origskb;
|
|
*origskb = NULL;
|
|
|
|
/*
|
|
* This shouldn't trigger often because most devices have an
|
|
* RX header they pull before we get here, and that should
|
|
* be big enough for our radiotap information. We should
|
|
* probably export the length to drivers so that we can have
|
|
* them allocate enough headroom to start with.
|
|
*/
|
|
if (skb_headroom(skb) < needed_headroom &&
|
|
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
|
|
dev_kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
/*
|
|
* Need to make a copy and possibly remove radiotap header
|
|
* and FCS from the original.
|
|
*/
|
|
skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
|
|
0, GFP_ATOMIC);
|
|
|
|
if (!skb)
|
|
return NULL;
|
|
}
|
|
|
|
/* prepend radiotap information */
|
|
ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
|
|
|
|
skb_reset_mac_header(skb);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->pkt_type = PACKET_OTHERHOST;
|
|
skb->protocol = htons(ETH_P_802_2);
|
|
|
|
return skb;
|
|
}
|
|
|
|
/*
|
|
* This function copies a received frame to all monitor interfaces and
|
|
* returns a cleaned-up SKB that no longer includes the FCS nor the
|
|
* radiotap header the driver might have added.
|
|
*/
|
|
static struct sk_buff *
|
|
ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
|
|
struct ieee80211_rate *rate)
|
|
{
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct sk_buff *monskb = NULL;
|
|
int present_fcs_len = 0;
|
|
unsigned int rtap_space = 0;
|
|
struct ieee80211_sub_if_data *monitor_sdata =
|
|
rcu_dereference(local->monitor_sdata);
|
|
bool only_monitor = false;
|
|
unsigned int min_head_len;
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_HE)
|
|
rtap_space += sizeof(struct ieee80211_radiotap_he);
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
|
|
rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
|
|
|
|
if (status->flag & RX_FLAG_RADIOTAP_LSIG)
|
|
rtap_space += sizeof(struct ieee80211_radiotap_lsig);
|
|
|
|
if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
|
|
struct ieee80211_vendor_radiotap *rtap =
|
|
(void *)(origskb->data + rtap_space);
|
|
|
|
rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
|
|
}
|
|
|
|
min_head_len = rtap_space;
|
|
|
|
/*
|
|
* First, we may need to make a copy of the skb because
|
|
* (1) we need to modify it for radiotap (if not present), and
|
|
* (2) the other RX handlers will modify the skb we got.
|
|
*
|
|
* We don't need to, of course, if we aren't going to return
|
|
* the SKB because it has a bad FCS/PLCP checksum.
|
|
*/
|
|
|
|
if (!(status->flag & RX_FLAG_NO_PSDU)) {
|
|
if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
|
|
if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
|
|
/* driver bug */
|
|
WARN_ON(1);
|
|
dev_kfree_skb(origskb);
|
|
return NULL;
|
|
}
|
|
present_fcs_len = FCS_LEN;
|
|
}
|
|
|
|
/* also consider the hdr->frame_control */
|
|
min_head_len += 2;
|
|
}
|
|
|
|
/* ensure that the expected data elements are in skb head */
|
|
if (!pskb_may_pull(origskb, min_head_len)) {
|
|
dev_kfree_skb(origskb);
|
|
return NULL;
|
|
}
|
|
|
|
only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
|
|
|
|
if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
|
|
if (only_monitor) {
|
|
dev_kfree_skb(origskb);
|
|
return NULL;
|
|
}
|
|
|
|
return ieee80211_clean_skb(origskb, present_fcs_len,
|
|
rtap_space);
|
|
}
|
|
|
|
ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
|
|
|
|
list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
|
|
bool last_monitor = list_is_last(&sdata->u.mntr.list,
|
|
&local->mon_list);
|
|
|
|
if (!monskb)
|
|
monskb = ieee80211_make_monitor_skb(local, &origskb,
|
|
rate, rtap_space,
|
|
only_monitor &&
|
|
last_monitor);
|
|
|
|
if (monskb) {
|
|
struct sk_buff *skb;
|
|
|
|
if (last_monitor) {
|
|
skb = monskb;
|
|
monskb = NULL;
|
|
} else {
|
|
skb = skb_clone(monskb, GFP_ATOMIC);
|
|
}
|
|
|
|
if (skb) {
|
|
skb->dev = sdata->dev;
|
|
dev_sw_netstats_rx_add(skb->dev, skb->len);
|
|
netif_receive_skb(skb);
|
|
}
|
|
}
|
|
|
|
if (last_monitor)
|
|
break;
|
|
}
|
|
|
|
/* this happens if last_monitor was erroneously false */
|
|
dev_kfree_skb(monskb);
|
|
|
|
/* ditto */
|
|
if (!origskb)
|
|
return NULL;
|
|
|
|
return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
|
|
}
|
|
|
|
static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
int tid, seqno_idx, security_idx;
|
|
|
|
/* does the frame have a qos control field? */
|
|
if (ieee80211_is_data_qos(hdr->frame_control)) {
|
|
u8 *qc = ieee80211_get_qos_ctl(hdr);
|
|
/* frame has qos control */
|
|
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
|
|
if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
|
|
status->rx_flags |= IEEE80211_RX_AMSDU;
|
|
|
|
seqno_idx = tid;
|
|
security_idx = tid;
|
|
} else {
|
|
/*
|
|
* IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
|
|
*
|
|
* Sequence numbers for management frames, QoS data
|
|
* frames with a broadcast/multicast address in the
|
|
* Address 1 field, and all non-QoS data frames sent
|
|
* by QoS STAs are assigned using an additional single
|
|
* modulo-4096 counter, [...]
|
|
*
|
|
* We also use that counter for non-QoS STAs.
|
|
*/
|
|
seqno_idx = IEEE80211_NUM_TIDS;
|
|
security_idx = 0;
|
|
if (ieee80211_is_mgmt(hdr->frame_control))
|
|
security_idx = IEEE80211_NUM_TIDS;
|
|
tid = 0;
|
|
}
|
|
|
|
rx->seqno_idx = seqno_idx;
|
|
rx->security_idx = security_idx;
|
|
/* Set skb->priority to 1d tag if highest order bit of TID is not set.
|
|
* For now, set skb->priority to 0 for other cases. */
|
|
rx->skb->priority = (tid > 7) ? 0 : tid;
|
|
}
|
|
|
|
/**
|
|
* DOC: Packet alignment
|
|
*
|
|
* Drivers always need to pass packets that are aligned to two-byte boundaries
|
|
* to the stack.
|
|
*
|
|
* Additionally, should, if possible, align the payload data in a way that
|
|
* guarantees that the contained IP header is aligned to a four-byte
|
|
* boundary. In the case of regular frames, this simply means aligning the
|
|
* payload to a four-byte boundary (because either the IP header is directly
|
|
* contained, or IV/RFC1042 headers that have a length divisible by four are
|
|
* in front of it). If the payload data is not properly aligned and the
|
|
* architecture doesn't support efficient unaligned operations, mac80211
|
|
* will align the data.
|
|
*
|
|
* With A-MSDU frames, however, the payload data address must yield two modulo
|
|
* four because there are 14-byte 802.3 headers within the A-MSDU frames that
|
|
* push the IP header further back to a multiple of four again. Thankfully, the
|
|
* specs were sane enough this time around to require padding each A-MSDU
|
|
* subframe to a length that is a multiple of four.
|
|
*
|
|
* Padding like Atheros hardware adds which is between the 802.11 header and
|
|
* the payload is not supported, the driver is required to move the 802.11
|
|
* header to be directly in front of the payload in that case.
|
|
*/
|
|
static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
|
|
{
|
|
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
|
|
WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* rx handlers */
|
|
|
|
static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1))
|
|
return 0;
|
|
|
|
return ieee80211_is_robust_mgmt_frame(skb);
|
|
}
|
|
|
|
|
|
static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
|
|
if (!is_multicast_ether_addr(hdr->addr1))
|
|
return 0;
|
|
|
|
return ieee80211_is_robust_mgmt_frame(skb);
|
|
}
|
|
|
|
|
|
/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
|
|
static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
|
|
struct ieee80211_mmie *mmie;
|
|
struct ieee80211_mmie_16 *mmie16;
|
|
|
|
if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
|
|
return -1;
|
|
|
|
if (!ieee80211_is_robust_mgmt_frame(skb) &&
|
|
!ieee80211_is_beacon(hdr->frame_control))
|
|
return -1; /* not a robust management frame */
|
|
|
|
mmie = (struct ieee80211_mmie *)
|
|
(skb->data + skb->len - sizeof(*mmie));
|
|
if (mmie->element_id == WLAN_EID_MMIE &&
|
|
mmie->length == sizeof(*mmie) - 2)
|
|
return le16_to_cpu(mmie->key_id);
|
|
|
|
mmie16 = (struct ieee80211_mmie_16 *)
|
|
(skb->data + skb->len - sizeof(*mmie16));
|
|
if (skb->len >= 24 + sizeof(*mmie16) &&
|
|
mmie16->element_id == WLAN_EID_MMIE &&
|
|
mmie16->length == sizeof(*mmie16) - 2)
|
|
return le16_to_cpu(mmie16->key_id);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int ieee80211_get_keyid(struct sk_buff *skb,
|
|
const struct ieee80211_cipher_scheme *cs)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
__le16 fc;
|
|
int hdrlen;
|
|
int minlen;
|
|
u8 key_idx_off;
|
|
u8 key_idx_shift;
|
|
u8 keyid;
|
|
|
|
fc = hdr->frame_control;
|
|
hdrlen = ieee80211_hdrlen(fc);
|
|
|
|
if (cs) {
|
|
minlen = hdrlen + cs->hdr_len;
|
|
key_idx_off = hdrlen + cs->key_idx_off;
|
|
key_idx_shift = cs->key_idx_shift;
|
|
} else {
|
|
/* WEP, TKIP, CCMP and GCMP */
|
|
minlen = hdrlen + IEEE80211_WEP_IV_LEN;
|
|
key_idx_off = hdrlen + 3;
|
|
key_idx_shift = 6;
|
|
}
|
|
|
|
if (unlikely(skb->len < minlen))
|
|
return -EINVAL;
|
|
|
|
skb_copy_bits(skb, key_idx_off, &keyid, 1);
|
|
|
|
if (cs)
|
|
keyid &= cs->key_idx_mask;
|
|
keyid >>= key_idx_shift;
|
|
|
|
/* cs could use more than the usual two bits for the keyid */
|
|
if (unlikely(keyid >= NUM_DEFAULT_KEYS))
|
|
return -EINVAL;
|
|
|
|
return keyid;
|
|
}
|
|
|
|
static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
char *dev_addr = rx->sdata->vif.addr;
|
|
|
|
if (ieee80211_is_data(hdr->frame_control)) {
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
if (ieee80211_has_tods(hdr->frame_control) ||
|
|
!ieee80211_has_fromds(hdr->frame_control))
|
|
return RX_DROP_MONITOR;
|
|
if (ether_addr_equal(hdr->addr3, dev_addr))
|
|
return RX_DROP_MONITOR;
|
|
} else {
|
|
if (!ieee80211_has_a4(hdr->frame_control))
|
|
return RX_DROP_MONITOR;
|
|
if (ether_addr_equal(hdr->addr4, dev_addr))
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
}
|
|
|
|
/* If there is not an established peer link and this is not a peer link
|
|
* establisment frame, beacon or probe, drop the frame.
|
|
*/
|
|
|
|
if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
|
|
struct ieee80211_mgmt *mgmt;
|
|
|
|
if (!ieee80211_is_mgmt(hdr->frame_control))
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (ieee80211_is_action(hdr->frame_control)) {
|
|
u8 category;
|
|
|
|
/* make sure category field is present */
|
|
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
|
|
return RX_DROP_MONITOR;
|
|
|
|
mgmt = (struct ieee80211_mgmt *)hdr;
|
|
category = mgmt->u.action.category;
|
|
if (category != WLAN_CATEGORY_MESH_ACTION &&
|
|
category != WLAN_CATEGORY_SELF_PROTECTED)
|
|
return RX_DROP_MONITOR;
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
if (ieee80211_is_probe_req(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control) ||
|
|
ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_auth(hdr->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
|
|
int index)
|
|
{
|
|
struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
|
|
struct sk_buff *tail = skb_peek_tail(frames);
|
|
struct ieee80211_rx_status *status;
|
|
|
|
if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
|
|
return true;
|
|
|
|
if (!tail)
|
|
return false;
|
|
|
|
status = IEEE80211_SKB_RXCB(tail);
|
|
if (status->flag & RX_FLAG_AMSDU_MORE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
|
|
struct tid_ampdu_rx *tid_agg_rx,
|
|
int index,
|
|
struct sk_buff_head *frames)
|
|
{
|
|
struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
|
|
struct sk_buff *skb;
|
|
struct ieee80211_rx_status *status;
|
|
|
|
lockdep_assert_held(&tid_agg_rx->reorder_lock);
|
|
|
|
if (skb_queue_empty(skb_list))
|
|
goto no_frame;
|
|
|
|
if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
|
|
__skb_queue_purge(skb_list);
|
|
goto no_frame;
|
|
}
|
|
|
|
/* release frames from the reorder ring buffer */
|
|
tid_agg_rx->stored_mpdu_num--;
|
|
while ((skb = __skb_dequeue(skb_list))) {
|
|
status = IEEE80211_SKB_RXCB(skb);
|
|
status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
|
|
__skb_queue_tail(frames, skb);
|
|
}
|
|
|
|
no_frame:
|
|
tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
|
|
tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
|
|
}
|
|
|
|
static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
|
|
struct tid_ampdu_rx *tid_agg_rx,
|
|
u16 head_seq_num,
|
|
struct sk_buff_head *frames)
|
|
{
|
|
int index;
|
|
|
|
lockdep_assert_held(&tid_agg_rx->reorder_lock);
|
|
|
|
while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
|
|
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
|
|
ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
|
|
frames);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
|
|
* the skb was added to the buffer longer than this time ago, the earlier
|
|
* frames that have not yet been received are assumed to be lost and the skb
|
|
* can be released for processing. This may also release other skb's from the
|
|
* reorder buffer if there are no additional gaps between the frames.
|
|
*
|
|
* Callers must hold tid_agg_rx->reorder_lock.
|
|
*/
|
|
#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
|
|
|
|
static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
|
|
struct tid_ampdu_rx *tid_agg_rx,
|
|
struct sk_buff_head *frames)
|
|
{
|
|
int index, i, j;
|
|
|
|
lockdep_assert_held(&tid_agg_rx->reorder_lock);
|
|
|
|
/* release the buffer until next missing frame */
|
|
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
|
|
if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
|
|
tid_agg_rx->stored_mpdu_num) {
|
|
/*
|
|
* No buffers ready to be released, but check whether any
|
|
* frames in the reorder buffer have timed out.
|
|
*/
|
|
int skipped = 1;
|
|
for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
|
|
j = (j + 1) % tid_agg_rx->buf_size) {
|
|
if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
if (skipped &&
|
|
!time_after(jiffies, tid_agg_rx->reorder_time[j] +
|
|
HT_RX_REORDER_BUF_TIMEOUT))
|
|
goto set_release_timer;
|
|
|
|
/* don't leave incomplete A-MSDUs around */
|
|
for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
|
|
i = (i + 1) % tid_agg_rx->buf_size)
|
|
__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
|
|
|
|
ht_dbg_ratelimited(sdata,
|
|
"release an RX reorder frame due to timeout on earlier frames\n");
|
|
ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
|
|
frames);
|
|
|
|
/*
|
|
* Increment the head seq# also for the skipped slots.
|
|
*/
|
|
tid_agg_rx->head_seq_num =
|
|
(tid_agg_rx->head_seq_num +
|
|
skipped) & IEEE80211_SN_MASK;
|
|
skipped = 0;
|
|
}
|
|
} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
|
|
ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
|
|
frames);
|
|
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
|
|
}
|
|
|
|
if (tid_agg_rx->stored_mpdu_num) {
|
|
j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
|
|
|
|
for (; j != (index - 1) % tid_agg_rx->buf_size;
|
|
j = (j + 1) % tid_agg_rx->buf_size) {
|
|
if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
|
|
break;
|
|
}
|
|
|
|
set_release_timer:
|
|
|
|
if (!tid_agg_rx->removed)
|
|
mod_timer(&tid_agg_rx->reorder_timer,
|
|
tid_agg_rx->reorder_time[j] + 1 +
|
|
HT_RX_REORDER_BUF_TIMEOUT);
|
|
} else {
|
|
del_timer(&tid_agg_rx->reorder_timer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* As this function belongs to the RX path it must be under
|
|
* rcu_read_lock protection. It returns false if the frame
|
|
* can be processed immediately, true if it was consumed.
|
|
*/
|
|
static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
|
|
struct tid_ampdu_rx *tid_agg_rx,
|
|
struct sk_buff *skb,
|
|
struct sk_buff_head *frames)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
u16 sc = le16_to_cpu(hdr->seq_ctrl);
|
|
u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
|
|
u16 head_seq_num, buf_size;
|
|
int index;
|
|
bool ret = true;
|
|
|
|
spin_lock(&tid_agg_rx->reorder_lock);
|
|
|
|
/*
|
|
* Offloaded BA sessions have no known starting sequence number so pick
|
|
* one from first Rxed frame for this tid after BA was started.
|
|
*/
|
|
if (unlikely(tid_agg_rx->auto_seq)) {
|
|
tid_agg_rx->auto_seq = false;
|
|
tid_agg_rx->ssn = mpdu_seq_num;
|
|
tid_agg_rx->head_seq_num = mpdu_seq_num;
|
|
}
|
|
|
|
buf_size = tid_agg_rx->buf_size;
|
|
head_seq_num = tid_agg_rx->head_seq_num;
|
|
|
|
/*
|
|
* If the current MPDU's SN is smaller than the SSN, it shouldn't
|
|
* be reordered.
|
|
*/
|
|
if (unlikely(!tid_agg_rx->started)) {
|
|
if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
tid_agg_rx->started = true;
|
|
}
|
|
|
|
/* frame with out of date sequence number */
|
|
if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
|
|
dev_kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If frame the sequence number exceeds our buffering window
|
|
* size release some previous frames to make room for this one.
|
|
*/
|
|
if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
|
|
head_seq_num = ieee80211_sn_inc(
|
|
ieee80211_sn_sub(mpdu_seq_num, buf_size));
|
|
/* release stored frames up to new head to stack */
|
|
ieee80211_release_reorder_frames(sdata, tid_agg_rx,
|
|
head_seq_num, frames);
|
|
}
|
|
|
|
/* Now the new frame is always in the range of the reordering buffer */
|
|
|
|
index = mpdu_seq_num % tid_agg_rx->buf_size;
|
|
|
|
/* check if we already stored this frame */
|
|
if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
|
|
dev_kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the current MPDU is in the right order and nothing else
|
|
* is stored we can process it directly, no need to buffer it.
|
|
* If it is first but there's something stored, we may be able
|
|
* to release frames after this one.
|
|
*/
|
|
if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
|
|
tid_agg_rx->stored_mpdu_num == 0) {
|
|
if (!(status->flag & RX_FLAG_AMSDU_MORE))
|
|
tid_agg_rx->head_seq_num =
|
|
ieee80211_sn_inc(tid_agg_rx->head_seq_num);
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
/* put the frame in the reordering buffer */
|
|
__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
|
|
if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
|
|
tid_agg_rx->reorder_time[index] = jiffies;
|
|
tid_agg_rx->stored_mpdu_num++;
|
|
ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&tid_agg_rx->reorder_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
|
|
* true if the MPDU was buffered, false if it should be processed.
|
|
*/
|
|
static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
|
|
struct sk_buff_head *frames)
|
|
{
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
struct sta_info *sta = rx->sta;
|
|
struct tid_ampdu_rx *tid_agg_rx;
|
|
u16 sc;
|
|
u8 tid, ack_policy;
|
|
|
|
if (!ieee80211_is_data_qos(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
goto dont_reorder;
|
|
|
|
/*
|
|
* filter the QoS data rx stream according to
|
|
* STA/TID and check if this STA/TID is on aggregation
|
|
*/
|
|
|
|
if (!sta)
|
|
goto dont_reorder;
|
|
|
|
ack_policy = *ieee80211_get_qos_ctl(hdr) &
|
|
IEEE80211_QOS_CTL_ACK_POLICY_MASK;
|
|
tid = ieee80211_get_tid(hdr);
|
|
|
|
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
|
|
if (!tid_agg_rx) {
|
|
if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
|
|
!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
|
|
!test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
|
|
ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
|
|
WLAN_BACK_RECIPIENT,
|
|
WLAN_REASON_QSTA_REQUIRE_SETUP);
|
|
goto dont_reorder;
|
|
}
|
|
|
|
/* qos null data frames are excluded */
|
|
if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
|
|
goto dont_reorder;
|
|
|
|
/* not part of a BA session */
|
|
if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
|
|
ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
|
|
goto dont_reorder;
|
|
|
|
/* new, potentially un-ordered, ampdu frame - process it */
|
|
|
|
/* reset session timer */
|
|
if (tid_agg_rx->timeout)
|
|
tid_agg_rx->last_rx = jiffies;
|
|
|
|
/* if this mpdu is fragmented - terminate rx aggregation session */
|
|
sc = le16_to_cpu(hdr->seq_ctrl);
|
|
if (sc & IEEE80211_SCTL_FRAG) {
|
|
ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* No locking needed -- we will only ever process one
|
|
* RX packet at a time, and thus own tid_agg_rx. All
|
|
* other code manipulating it needs to (and does) make
|
|
* sure that we cannot get to it any more before doing
|
|
* anything with it.
|
|
*/
|
|
if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
|
|
frames))
|
|
return;
|
|
|
|
dont_reorder:
|
|
__skb_queue_tail(frames, skb);
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
|
|
if (status->flag & RX_FLAG_DUP_VALIDATED)
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* Drop duplicate 802.11 retransmissions
|
|
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
|
|
*/
|
|
|
|
if (rx->skb->len < 24)
|
|
return RX_CONTINUE;
|
|
|
|
if (ieee80211_is_ctl(hdr->frame_control) ||
|
|
ieee80211_is_any_nullfunc(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
return RX_CONTINUE;
|
|
|
|
if (!rx->sta)
|
|
return RX_CONTINUE;
|
|
|
|
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
|
|
rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
|
|
I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
|
|
rx->sta->rx_stats.num_duplicates++;
|
|
return RX_DROP_UNUSABLE;
|
|
} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
|
|
rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
|
|
/* Drop disallowed frame classes based on STA auth/assoc state;
|
|
* IEEE 802.11, Chap 5.5.
|
|
*
|
|
* mac80211 filters only based on association state, i.e. it drops
|
|
* Class 3 frames from not associated stations. hostapd sends
|
|
* deauth/disassoc frames when needed. In addition, hostapd is
|
|
* responsible for filtering on both auth and assoc states.
|
|
*/
|
|
|
|
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
|
|
return ieee80211_rx_mesh_check(rx);
|
|
|
|
if (unlikely((ieee80211_is_data(hdr->frame_control) ||
|
|
ieee80211_is_pspoll(hdr->frame_control)) &&
|
|
rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
|
|
rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
|
|
(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
|
|
/*
|
|
* accept port control frames from the AP even when it's not
|
|
* yet marked ASSOC to prevent a race where we don't set the
|
|
* assoc bit quickly enough before it sends the first frame
|
|
*/
|
|
if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
|
|
ieee80211_is_data_present(hdr->frame_control)) {
|
|
unsigned int hdrlen;
|
|
__be16 ethertype;
|
|
|
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
if (rx->skb->len < hdrlen + 8)
|
|
return RX_DROP_MONITOR;
|
|
|
|
skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
|
|
if (ethertype == rx->sdata->control_port_protocol)
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
|
|
cfg80211_rx_spurious_frame(rx->sdata->dev,
|
|
hdr->addr2,
|
|
GFP_ATOMIC))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_local *local;
|
|
struct ieee80211_hdr *hdr;
|
|
struct sk_buff *skb;
|
|
|
|
local = rx->local;
|
|
skb = rx->skb;
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
|
|
if (!local->pspolling)
|
|
return RX_CONTINUE;
|
|
|
|
if (!ieee80211_has_fromds(hdr->frame_control))
|
|
/* this is not from AP */
|
|
return RX_CONTINUE;
|
|
|
|
if (!ieee80211_is_data(hdr->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
if (!ieee80211_has_moredata(hdr->frame_control)) {
|
|
/* AP has no more frames buffered for us */
|
|
local->pspolling = false;
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
/* more data bit is set, let's request a new frame from the AP */
|
|
ieee80211_send_pspoll(local, rx->sdata);
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static void sta_ps_start(struct sta_info *sta)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = sta->sdata;
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ps_data *ps;
|
|
int tid;
|
|
|
|
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
|
|
sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
|
|
ps = &sdata->bss->ps;
|
|
else
|
|
return;
|
|
|
|
atomic_inc(&ps->num_sta_ps);
|
|
set_sta_flag(sta, WLAN_STA_PS_STA);
|
|
if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
|
|
drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
|
|
ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
|
|
sta->sta.addr, sta->sta.aid);
|
|
|
|
ieee80211_clear_fast_xmit(sta);
|
|
|
|
if (!sta->sta.txq[0])
|
|
return;
|
|
|
|
for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
|
|
struct ieee80211_txq *txq = sta->sta.txq[tid];
|
|
|
|
ieee80211_unschedule_txq(&local->hw, txq, false);
|
|
|
|
if (txq_has_queue(txq))
|
|
set_bit(tid, &sta->txq_buffered_tids);
|
|
else
|
|
clear_bit(tid, &sta->txq_buffered_tids);
|
|
}
|
|
}
|
|
|
|
static void sta_ps_end(struct sta_info *sta)
|
|
{
|
|
ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
|
|
sta->sta.addr, sta->sta.aid);
|
|
|
|
if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
|
|
/*
|
|
* Clear the flag only if the other one is still set
|
|
* so that the TX path won't start TX'ing new frames
|
|
* directly ... In the case that the driver flag isn't
|
|
* set ieee80211_sta_ps_deliver_wakeup() will clear it.
|
|
*/
|
|
clear_sta_flag(sta, WLAN_STA_PS_STA);
|
|
ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
|
|
sta->sta.addr, sta->sta.aid);
|
|
return;
|
|
}
|
|
|
|
set_sta_flag(sta, WLAN_STA_PS_DELIVER);
|
|
clear_sta_flag(sta, WLAN_STA_PS_STA);
|
|
ieee80211_sta_ps_deliver_wakeup(sta);
|
|
}
|
|
|
|
int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
|
|
{
|
|
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
|
|
bool in_ps;
|
|
|
|
WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
|
|
|
|
/* Don't let the same PS state be set twice */
|
|
in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
|
|
if ((start && in_ps) || (!start && !in_ps))
|
|
return -EINVAL;
|
|
|
|
if (start)
|
|
sta_ps_start(sta);
|
|
else
|
|
sta_ps_end(sta);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_sta_ps_transition);
|
|
|
|
void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
|
|
{
|
|
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
|
|
|
|
if (test_sta_flag(sta, WLAN_STA_SP))
|
|
return;
|
|
|
|
if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
|
|
ieee80211_sta_ps_deliver_poll_response(sta);
|
|
else
|
|
set_sta_flag(sta, WLAN_STA_PSPOLL);
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_sta_pspoll);
|
|
|
|
void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
|
|
{
|
|
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
|
|
int ac = ieee80211_ac_from_tid(tid);
|
|
|
|
/*
|
|
* If this AC is not trigger-enabled do nothing unless the
|
|
* driver is calling us after it already checked.
|
|
*
|
|
* NB: This could/should check a separate bitmap of trigger-
|
|
* enabled queues, but for now we only implement uAPSD w/o
|
|
* TSPEC changes to the ACs, so they're always the same.
|
|
*/
|
|
if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
|
|
tid != IEEE80211_NUM_TIDS)
|
|
return;
|
|
|
|
/* if we are in a service period, do nothing */
|
|
if (test_sta_flag(sta, WLAN_STA_SP))
|
|
return;
|
|
|
|
if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
|
|
ieee80211_sta_ps_deliver_uapsd(sta);
|
|
else
|
|
set_sta_flag(sta, WLAN_STA_UAPSD);
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
|
|
if (!rx->sta)
|
|
return RX_CONTINUE;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* The device handles station powersave, so don't do anything about
|
|
* uAPSD and PS-Poll frames (the latter shouldn't even come up from
|
|
* it to mac80211 since they're handled.)
|
|
*/
|
|
if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* Don't do anything if the station isn't already asleep. In
|
|
* the uAPSD case, the station will probably be marked asleep,
|
|
* in the PS-Poll case the station must be confused ...
|
|
*/
|
|
if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
|
|
return RX_CONTINUE;
|
|
|
|
if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
|
|
ieee80211_sta_pspoll(&rx->sta->sta);
|
|
|
|
/* Free PS Poll skb here instead of returning RX_DROP that would
|
|
* count as an dropped frame. */
|
|
dev_kfree_skb(rx->skb);
|
|
|
|
return RX_QUEUED;
|
|
} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
|
|
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
|
|
ieee80211_has_pm(hdr->frame_control) &&
|
|
(ieee80211_is_data_qos(hdr->frame_control) ||
|
|
ieee80211_is_qos_nullfunc(hdr->frame_control))) {
|
|
u8 tid = ieee80211_get_tid(hdr);
|
|
|
|
ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct sta_info *sta = rx->sta;
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
int i;
|
|
|
|
if (!sta)
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* Update last_rx only for IBSS packets which are for the current
|
|
* BSSID and for station already AUTHORIZED to avoid keeping the
|
|
* current IBSS network alive in cases where other STAs start
|
|
* using different BSSID. This will also give the station another
|
|
* chance to restart the authentication/authorization in case
|
|
* something went wrong the first time.
|
|
*/
|
|
if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
|
|
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
|
|
NL80211_IFTYPE_ADHOC);
|
|
if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
|
|
test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
|
|
sta->rx_stats.last_rx = jiffies;
|
|
if (ieee80211_is_data(hdr->frame_control) &&
|
|
!is_multicast_ether_addr(hdr->addr1))
|
|
sta->rx_stats.last_rate =
|
|
sta_stats_encode_rate(status);
|
|
}
|
|
} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
|
|
sta->rx_stats.last_rx = jiffies;
|
|
} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
|
|
!is_multicast_ether_addr(hdr->addr1)) {
|
|
/*
|
|
* Mesh beacons will update last_rx when if they are found to
|
|
* match the current local configuration when processed.
|
|
*/
|
|
sta->rx_stats.last_rx = jiffies;
|
|
if (ieee80211_is_data(hdr->frame_control))
|
|
sta->rx_stats.last_rate = sta_stats_encode_rate(status);
|
|
}
|
|
|
|
sta->rx_stats.fragments++;
|
|
|
|
u64_stats_update_begin(&rx->sta->rx_stats.syncp);
|
|
sta->rx_stats.bytes += rx->skb->len;
|
|
u64_stats_update_end(&rx->sta->rx_stats.syncp);
|
|
|
|
if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
|
|
sta->rx_stats.last_signal = status->signal;
|
|
ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
|
|
}
|
|
|
|
if (status->chains) {
|
|
sta->rx_stats.chains = status->chains;
|
|
for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
|
|
int signal = status->chain_signal[i];
|
|
|
|
if (!(status->chains & BIT(i)))
|
|
continue;
|
|
|
|
sta->rx_stats.chain_signal_last[i] = signal;
|
|
ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
|
|
-signal);
|
|
}
|
|
}
|
|
|
|
if (ieee80211_is_s1g_beacon(hdr->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* Change STA power saving mode only at the end of a frame
|
|
* exchange sequence, and only for a data or management
|
|
* frame as specified in IEEE 802.11-2016 11.2.3.2
|
|
*/
|
|
if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
|
|
!ieee80211_has_morefrags(hdr->frame_control) &&
|
|
!is_multicast_ether_addr(hdr->addr1) &&
|
|
(ieee80211_is_mgmt(hdr->frame_control) ||
|
|
ieee80211_is_data(hdr->frame_control)) &&
|
|
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
|
|
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
|
|
rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
|
|
if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
|
|
if (!ieee80211_has_pm(hdr->frame_control))
|
|
sta_ps_end(sta);
|
|
} else {
|
|
if (ieee80211_has_pm(hdr->frame_control))
|
|
sta_ps_start(sta);
|
|
}
|
|
}
|
|
|
|
/* mesh power save support */
|
|
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
|
|
ieee80211_mps_rx_h_sta_process(sta, hdr);
|
|
|
|
/*
|
|
* Drop (qos-)data::nullfunc frames silently, since they
|
|
* are used only to control station power saving mode.
|
|
*/
|
|
if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
|
|
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
|
|
|
|
/*
|
|
* If we receive a 4-addr nullfunc frame from a STA
|
|
* that was not moved to a 4-addr STA vlan yet send
|
|
* the event to userspace and for older hostapd drop
|
|
* the frame to the monitor interface.
|
|
*/
|
|
if (ieee80211_has_a4(hdr->frame_control) &&
|
|
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
|
|
(rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
|
|
!rx->sdata->u.vlan.sta))) {
|
|
if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
|
|
cfg80211_rx_unexpected_4addr_frame(
|
|
rx->sdata->dev, sta->sta.addr,
|
|
GFP_ATOMIC);
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
/*
|
|
* Update counter and free packet here to avoid
|
|
* counting this as a dropped packed.
|
|
*/
|
|
sta->rx_stats.packets++;
|
|
dev_kfree_skb(rx->skb);
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
} /* ieee80211_rx_h_sta_process */
|
|
|
|
static struct ieee80211_key *
|
|
ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
|
|
{
|
|
struct ieee80211_key *key = NULL;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
int idx2;
|
|
|
|
/* Make sure key gets set if either BIGTK key index is set so that
|
|
* ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
|
|
* Beacon frames and Beacon frames that claim to use another BIGTK key
|
|
* index (i.e., a key that we do not have).
|
|
*/
|
|
|
|
if (idx < 0) {
|
|
idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
|
|
idx2 = idx + 1;
|
|
} else {
|
|
if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
|
|
idx2 = idx + 1;
|
|
else
|
|
idx2 = idx - 1;
|
|
}
|
|
|
|
if (rx->sta)
|
|
key = rcu_dereference(rx->sta->gtk[idx]);
|
|
if (!key)
|
|
key = rcu_dereference(sdata->keys[idx]);
|
|
if (!key && rx->sta)
|
|
key = rcu_dereference(rx->sta->gtk[idx2]);
|
|
if (!key)
|
|
key = rcu_dereference(sdata->keys[idx2]);
|
|
|
|
return key;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
int keyidx;
|
|
ieee80211_rx_result result = RX_DROP_UNUSABLE;
|
|
struct ieee80211_key *sta_ptk = NULL;
|
|
struct ieee80211_key *ptk_idx = NULL;
|
|
int mmie_keyidx = -1;
|
|
__le16 fc;
|
|
const struct ieee80211_cipher_scheme *cs = NULL;
|
|
|
|
if (ieee80211_is_ext(hdr->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* Key selection 101
|
|
*
|
|
* There are five types of keys:
|
|
* - GTK (group keys)
|
|
* - IGTK (group keys for management frames)
|
|
* - BIGTK (group keys for Beacon frames)
|
|
* - PTK (pairwise keys)
|
|
* - STK (station-to-station pairwise keys)
|
|
*
|
|
* When selecting a key, we have to distinguish between multicast
|
|
* (including broadcast) and unicast frames, the latter can only
|
|
* use PTKs and STKs while the former always use GTKs, IGTKs, and
|
|
* BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
|
|
* then unicast frames can also use key indices like GTKs. Hence, if we
|
|
* don't have a PTK/STK we check the key index for a WEP key.
|
|
*
|
|
* Note that in a regular BSS, multicast frames are sent by the
|
|
* AP only, associated stations unicast the frame to the AP first
|
|
* which then multicasts it on their behalf.
|
|
*
|
|
* There is also a slight problem in IBSS mode: GTKs are negotiated
|
|
* with each station, that is something we don't currently handle.
|
|
* The spec seems to expect that one negotiates the same key with
|
|
* every station but there's no such requirement; VLANs could be
|
|
* possible.
|
|
*/
|
|
|
|
/* start without a key */
|
|
rx->key = NULL;
|
|
fc = hdr->frame_control;
|
|
|
|
if (rx->sta) {
|
|
int keyid = rx->sta->ptk_idx;
|
|
sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
|
|
|
|
if (ieee80211_has_protected(fc) &&
|
|
!(status->flag & RX_FLAG_IV_STRIPPED)) {
|
|
cs = rx->sta->cipher_scheme;
|
|
keyid = ieee80211_get_keyid(rx->skb, cs);
|
|
|
|
if (unlikely(keyid < 0))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
|
|
}
|
|
}
|
|
|
|
if (!ieee80211_has_protected(fc))
|
|
mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
|
|
|
|
if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
|
|
rx->key = ptk_idx ? ptk_idx : sta_ptk;
|
|
if ((status->flag & RX_FLAG_DECRYPTED) &&
|
|
(status->flag & RX_FLAG_IV_STRIPPED))
|
|
return RX_CONTINUE;
|
|
/* Skip decryption if the frame is not protected. */
|
|
if (!ieee80211_has_protected(fc))
|
|
return RX_CONTINUE;
|
|
} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
|
|
/* Broadcast/multicast robust management frame / BIP */
|
|
if ((status->flag & RX_FLAG_DECRYPTED) &&
|
|
(status->flag & RX_FLAG_IV_STRIPPED))
|
|
return RX_CONTINUE;
|
|
|
|
if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
|
|
mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
|
|
NUM_DEFAULT_BEACON_KEYS) {
|
|
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
|
|
skb->data,
|
|
skb->len);
|
|
return RX_DROP_MONITOR; /* unexpected BIP keyidx */
|
|
}
|
|
|
|
rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
|
|
if (!rx->key)
|
|
return RX_CONTINUE; /* Beacon protection not in use */
|
|
} else if (mmie_keyidx >= 0) {
|
|
/* Broadcast/multicast robust management frame / BIP */
|
|
if ((status->flag & RX_FLAG_DECRYPTED) &&
|
|
(status->flag & RX_FLAG_IV_STRIPPED))
|
|
return RX_CONTINUE;
|
|
|
|
if (mmie_keyidx < NUM_DEFAULT_KEYS ||
|
|
mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
|
|
return RX_DROP_MONITOR; /* unexpected BIP keyidx */
|
|
if (rx->sta) {
|
|
if (ieee80211_is_group_privacy_action(skb) &&
|
|
test_sta_flag(rx->sta, WLAN_STA_MFP))
|
|
return RX_DROP_MONITOR;
|
|
|
|
rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
|
|
}
|
|
if (!rx->key)
|
|
rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
|
|
} else if (!ieee80211_has_protected(fc)) {
|
|
/*
|
|
* The frame was not protected, so skip decryption. However, we
|
|
* need to set rx->key if there is a key that could have been
|
|
* used so that the frame may be dropped if encryption would
|
|
* have been expected.
|
|
*/
|
|
struct ieee80211_key *key = NULL;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
int i;
|
|
|
|
if (ieee80211_is_beacon(fc)) {
|
|
key = ieee80211_rx_get_bigtk(rx, -1);
|
|
} else if (ieee80211_is_mgmt(fc) &&
|
|
is_multicast_ether_addr(hdr->addr1)) {
|
|
key = rcu_dereference(rx->sdata->default_mgmt_key);
|
|
} else {
|
|
if (rx->sta) {
|
|
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
|
|
key = rcu_dereference(rx->sta->gtk[i]);
|
|
if (key)
|
|
break;
|
|
}
|
|
}
|
|
if (!key) {
|
|
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
|
|
key = rcu_dereference(sdata->keys[i]);
|
|
if (key)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (key)
|
|
rx->key = key;
|
|
return RX_CONTINUE;
|
|
} else {
|
|
/*
|
|
* The device doesn't give us the IV so we won't be
|
|
* able to look up the key. That's ok though, we
|
|
* don't need to decrypt the frame, we just won't
|
|
* be able to keep statistics accurate.
|
|
* Except for key threshold notifications, should
|
|
* we somehow allow the driver to tell us which key
|
|
* the hardware used if this flag is set?
|
|
*/
|
|
if ((status->flag & RX_FLAG_DECRYPTED) &&
|
|
(status->flag & RX_FLAG_IV_STRIPPED))
|
|
return RX_CONTINUE;
|
|
|
|
keyidx = ieee80211_get_keyid(rx->skb, cs);
|
|
|
|
if (unlikely(keyidx < 0))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
/* check per-station GTK first, if multicast packet */
|
|
if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
|
|
rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
|
|
|
|
/* if not found, try default key */
|
|
if (!rx->key) {
|
|
rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
|
|
|
|
/*
|
|
* RSNA-protected unicast frames should always be
|
|
* sent with pairwise or station-to-station keys,
|
|
* but for WEP we allow using a key index as well.
|
|
*/
|
|
if (rx->key &&
|
|
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
|
|
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
|
|
!is_multicast_ether_addr(hdr->addr1))
|
|
rx->key = NULL;
|
|
}
|
|
}
|
|
|
|
if (rx->key) {
|
|
if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* TODO: add threshold stuff again */
|
|
} else {
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
switch (rx->key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_WEP40:
|
|
case WLAN_CIPHER_SUITE_WEP104:
|
|
result = ieee80211_crypto_wep_decrypt(rx);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
result = ieee80211_crypto_tkip_decrypt(rx);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
result = ieee80211_crypto_ccmp_decrypt(
|
|
rx, IEEE80211_CCMP_MIC_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
result = ieee80211_crypto_ccmp_decrypt(
|
|
rx, IEEE80211_CCMP_256_MIC_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
result = ieee80211_crypto_aes_cmac_decrypt(rx);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
result = ieee80211_crypto_aes_gmac_decrypt(rx);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
result = ieee80211_crypto_gcmp_decrypt(rx);
|
|
break;
|
|
default:
|
|
result = ieee80211_crypto_hw_decrypt(rx);
|
|
}
|
|
|
|
/* the hdr variable is invalid after the decrypt handlers */
|
|
|
|
/* either the frame has been decrypted or will be dropped */
|
|
status->flag |= RX_FLAG_DECRYPTED;
|
|
|
|
if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
|
|
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
|
|
skb->data, skb->len);
|
|
|
|
return result;
|
|
}
|
|
|
|
void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
|
|
skb_queue_head_init(&cache->entries[i].skb_list);
|
|
}
|
|
|
|
void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
|
|
__skb_queue_purge(&cache->entries[i].skb_list);
|
|
}
|
|
|
|
static inline struct ieee80211_fragment_entry *
|
|
ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
|
|
unsigned int frag, unsigned int seq, int rx_queue,
|
|
struct sk_buff **skb)
|
|
{
|
|
struct ieee80211_fragment_entry *entry;
|
|
|
|
entry = &cache->entries[cache->next++];
|
|
if (cache->next >= IEEE80211_FRAGMENT_MAX)
|
|
cache->next = 0;
|
|
|
|
__skb_queue_purge(&entry->skb_list);
|
|
|
|
__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
|
|
*skb = NULL;
|
|
entry->first_frag_time = jiffies;
|
|
entry->seq = seq;
|
|
entry->rx_queue = rx_queue;
|
|
entry->last_frag = frag;
|
|
entry->check_sequential_pn = false;
|
|
entry->extra_len = 0;
|
|
|
|
return entry;
|
|
}
|
|
|
|
static inline struct ieee80211_fragment_entry *
|
|
ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
|
|
unsigned int frag, unsigned int seq,
|
|
int rx_queue, struct ieee80211_hdr *hdr)
|
|
{
|
|
struct ieee80211_fragment_entry *entry;
|
|
int i, idx;
|
|
|
|
idx = cache->next;
|
|
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
|
|
struct ieee80211_hdr *f_hdr;
|
|
struct sk_buff *f_skb;
|
|
|
|
idx--;
|
|
if (idx < 0)
|
|
idx = IEEE80211_FRAGMENT_MAX - 1;
|
|
|
|
entry = &cache->entries[idx];
|
|
if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
|
|
entry->rx_queue != rx_queue ||
|
|
entry->last_frag + 1 != frag)
|
|
continue;
|
|
|
|
f_skb = __skb_peek(&entry->skb_list);
|
|
f_hdr = (struct ieee80211_hdr *) f_skb->data;
|
|
|
|
/*
|
|
* Check ftype and addresses are equal, else check next fragment
|
|
*/
|
|
if (((hdr->frame_control ^ f_hdr->frame_control) &
|
|
cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
|
|
!ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
|
|
!ether_addr_equal(hdr->addr2, f_hdr->addr2))
|
|
continue;
|
|
|
|
if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
|
|
__skb_queue_purge(&entry->skb_list);
|
|
continue;
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
|
|
{
|
|
return rx->key &&
|
|
(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
|
|
rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
|
|
rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
|
|
rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
|
|
ieee80211_has_protected(fc);
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
|
|
struct ieee80211_hdr *hdr;
|
|
u16 sc;
|
|
__le16 fc;
|
|
unsigned int frag, seq;
|
|
struct ieee80211_fragment_entry *entry;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
|
|
hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
fc = hdr->frame_control;
|
|
|
|
if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
|
|
return RX_CONTINUE;
|
|
|
|
sc = le16_to_cpu(hdr->seq_ctrl);
|
|
frag = sc & IEEE80211_SCTL_FRAG;
|
|
|
|
if (rx->sta)
|
|
cache = &rx->sta->frags;
|
|
|
|
if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
|
|
goto out;
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1))
|
|
return RX_DROP_MONITOR;
|
|
|
|
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
|
|
|
|
if (skb_linearize(rx->skb))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
/*
|
|
* skb_linearize() might change the skb->data and
|
|
* previously cached variables (in this case, hdr) need to
|
|
* be refreshed with the new data.
|
|
*/
|
|
hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
|
|
|
|
if (frag == 0) {
|
|
/* This is the first fragment of a new frame. */
|
|
entry = ieee80211_reassemble_add(cache, frag, seq,
|
|
rx->seqno_idx, &(rx->skb));
|
|
if (requires_sequential_pn(rx, fc)) {
|
|
int queue = rx->security_idx;
|
|
|
|
/* Store CCMP/GCMP PN so that we can verify that the
|
|
* next fragment has a sequential PN value.
|
|
*/
|
|
entry->check_sequential_pn = true;
|
|
entry->is_protected = true;
|
|
entry->key_color = rx->key->color;
|
|
memcpy(entry->last_pn,
|
|
rx->key->u.ccmp.rx_pn[queue],
|
|
IEEE80211_CCMP_PN_LEN);
|
|
BUILD_BUG_ON(offsetof(struct ieee80211_key,
|
|
u.ccmp.rx_pn) !=
|
|
offsetof(struct ieee80211_key,
|
|
u.gcmp.rx_pn));
|
|
BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
|
|
sizeof(rx->key->u.gcmp.rx_pn[queue]));
|
|
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
|
|
IEEE80211_GCMP_PN_LEN);
|
|
} else if (rx->key &&
|
|
(ieee80211_has_protected(fc) ||
|
|
(status->flag & RX_FLAG_DECRYPTED))) {
|
|
entry->is_protected = true;
|
|
entry->key_color = rx->key->color;
|
|
}
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
/* This is a fragment for a frame that should already be pending in
|
|
* fragment cache. Add this fragment to the end of the pending entry.
|
|
*/
|
|
entry = ieee80211_reassemble_find(cache, frag, seq,
|
|
rx->seqno_idx, hdr);
|
|
if (!entry) {
|
|
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
/* "The receiver shall discard MSDUs and MMPDUs whose constituent
|
|
* MPDU PN values are not incrementing in steps of 1."
|
|
* see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
|
|
* and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
|
|
*/
|
|
if (entry->check_sequential_pn) {
|
|
int i;
|
|
u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
|
|
|
|
if (!requires_sequential_pn(rx, fc))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
/* Prevent mixed key and fragment cache attacks */
|
|
if (entry->key_color != rx->key->color)
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
|
|
for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
|
|
pn[i]++;
|
|
if (pn[i])
|
|
break;
|
|
}
|
|
|
|
rpn = rx->ccm_gcm.pn;
|
|
if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
|
|
return RX_DROP_UNUSABLE;
|
|
memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
|
|
} else if (entry->is_protected &&
|
|
(!rx->key ||
|
|
(!ieee80211_has_protected(fc) &&
|
|
!(status->flag & RX_FLAG_DECRYPTED)) ||
|
|
rx->key->color != entry->key_color)) {
|
|
/* Drop this as a mixed key or fragment cache attack, even
|
|
* if for TKIP Michael MIC should protect us, and WEP is a
|
|
* lost cause anyway.
|
|
*/
|
|
return RX_DROP_UNUSABLE;
|
|
} else if (entry->is_protected && rx->key &&
|
|
entry->key_color != rx->key->color &&
|
|
(status->flag & RX_FLAG_DECRYPTED)) {
|
|
return RX_DROP_UNUSABLE;
|
|
}
|
|
|
|
skb_pull(rx->skb, ieee80211_hdrlen(fc));
|
|
__skb_queue_tail(&entry->skb_list, rx->skb);
|
|
entry->last_frag = frag;
|
|
entry->extra_len += rx->skb->len;
|
|
if (ieee80211_has_morefrags(fc)) {
|
|
rx->skb = NULL;
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
rx->skb = __skb_dequeue(&entry->skb_list);
|
|
if (skb_tailroom(rx->skb) < entry->extra_len) {
|
|
I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
|
|
if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
|
|
GFP_ATOMIC))) {
|
|
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
|
|
__skb_queue_purge(&entry->skb_list);
|
|
return RX_DROP_UNUSABLE;
|
|
}
|
|
}
|
|
while ((skb = __skb_dequeue(&entry->skb_list))) {
|
|
skb_put_data(rx->skb, skb->data, skb->len);
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
out:
|
|
ieee80211_led_rx(rx->local);
|
|
if (rx->sta)
|
|
rx->sta->rx_stats.packets++;
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
|
|
{
|
|
if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
|
|
{
|
|
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/*
|
|
* Pass through unencrypted frames if the hardware has
|
|
* decrypted them already.
|
|
*/
|
|
if (status->flag & RX_FLAG_DECRYPTED)
|
|
return 0;
|
|
|
|
/* check mesh EAPOL frames first */
|
|
if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
|
|
ieee80211_is_data(fc))) {
|
|
struct ieee80211s_hdr *mesh_hdr;
|
|
u16 hdr_len = ieee80211_hdrlen(fc);
|
|
u16 ethertype_offset;
|
|
__be16 ethertype;
|
|
|
|
if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
|
|
goto drop_check;
|
|
|
|
/* make sure fixed part of mesh header is there, also checks skb len */
|
|
if (!pskb_may_pull(rx->skb, hdr_len + 6))
|
|
goto drop_check;
|
|
|
|
mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
|
|
ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
|
|
sizeof(rfc1042_header);
|
|
|
|
if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
|
|
ethertype == rx->sdata->control_port_protocol)
|
|
return 0;
|
|
}
|
|
|
|
drop_check:
|
|
/* Drop unencrypted frames if key is set. */
|
|
if (unlikely(!ieee80211_has_protected(fc) &&
|
|
!ieee80211_is_any_nullfunc(fc) &&
|
|
ieee80211_is_data(fc) && rx->key))
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
__le16 fc = hdr->frame_control;
|
|
|
|
/*
|
|
* Pass through unencrypted frames if the hardware has
|
|
* decrypted them already.
|
|
*/
|
|
if (status->flag & RX_FLAG_DECRYPTED)
|
|
return 0;
|
|
|
|
if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
|
|
if (unlikely(!ieee80211_has_protected(fc) &&
|
|
ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
|
|
rx->key)) {
|
|
if (ieee80211_is_deauth(fc) ||
|
|
ieee80211_is_disassoc(fc))
|
|
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
|
|
rx->skb->data,
|
|
rx->skb->len);
|
|
return -EACCES;
|
|
}
|
|
/* BIP does not use Protected field, so need to check MMIE */
|
|
if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
|
|
ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
|
|
if (ieee80211_is_deauth(fc) ||
|
|
ieee80211_is_disassoc(fc))
|
|
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
|
|
rx->skb->data,
|
|
rx->skb->len);
|
|
return -EACCES;
|
|
}
|
|
if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
|
|
ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
|
|
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
|
|
rx->skb->data,
|
|
rx->skb->len);
|
|
return -EACCES;
|
|
}
|
|
/*
|
|
* When using MFP, Action frames are not allowed prior to
|
|
* having configured keys.
|
|
*/
|
|
if (unlikely(ieee80211_is_action(fc) && !rx->key &&
|
|
ieee80211_is_robust_mgmt_frame(rx->skb)))
|
|
return -EACCES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
bool check_port_control = false;
|
|
struct ethhdr *ehdr;
|
|
int ret;
|
|
|
|
*port_control = false;
|
|
if (ieee80211_has_a4(hdr->frame_control) &&
|
|
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
|
|
return -1;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
|
|
!!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
|
|
|
|
if (!sdata->u.mgd.use_4addr)
|
|
return -1;
|
|
else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
|
|
check_port_control = true;
|
|
}
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1) &&
|
|
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
|
|
return -1;
|
|
|
|
ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ehdr = (struct ethhdr *) rx->skb->data;
|
|
if (ehdr->h_proto == rx->sdata->control_port_protocol)
|
|
*port_control = true;
|
|
else if (check_port_control)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* requires that rx->skb is a frame with ethernet header
|
|
*/
|
|
static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
|
|
{
|
|
static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
|
|
= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
|
|
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
|
|
|
|
/*
|
|
* Allow EAPOL frames to us/the PAE group address regardless of
|
|
* whether the frame was encrypted or not, and always disallow
|
|
* all other destination addresses for them.
|
|
*/
|
|
if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
|
|
return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
|
|
ether_addr_equal(ehdr->h_dest, pae_group_addr);
|
|
|
|
if (ieee80211_802_1x_port_control(rx) ||
|
|
ieee80211_drop_unencrypted(rx, fc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
|
|
struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct net_device *dev = sdata->dev;
|
|
|
|
if (unlikely((skb->protocol == sdata->control_port_protocol ||
|
|
(skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
|
|
!sdata->control_port_no_preauth)) &&
|
|
sdata->control_port_over_nl80211)) {
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
|
|
|
|
cfg80211_rx_control_port(dev, skb, noencrypt);
|
|
dev_kfree_skb(skb);
|
|
} else {
|
|
struct ethhdr *ehdr = (void *)skb_mac_header(skb);
|
|
|
|
memset(skb->cb, 0, sizeof(skb->cb));
|
|
|
|
/*
|
|
* 802.1X over 802.11 requires that the authenticator address
|
|
* be used for EAPOL frames. However, 802.1X allows the use of
|
|
* the PAE group address instead. If the interface is part of
|
|
* a bridge and we pass the frame with the PAE group address,
|
|
* then the bridge will forward it to the network (even if the
|
|
* client was not associated yet), which isn't supposed to
|
|
* happen.
|
|
* To avoid that, rewrite the destination address to our own
|
|
* address, so that the authenticator (e.g. hostapd) will see
|
|
* the frame, but bridge won't forward it anywhere else. Note
|
|
* that due to earlier filtering, the only other address can
|
|
* be the PAE group address.
|
|
*/
|
|
if (unlikely(skb->protocol == sdata->control_port_protocol &&
|
|
!ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
|
|
ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
|
|
|
|
/* deliver to local stack */
|
|
if (rx->list)
|
|
list_add_tail(&skb->list, rx->list);
|
|
else
|
|
netif_receive_skb(skb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* requires that rx->skb is a frame with ethernet header
|
|
*/
|
|
static void
|
|
ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct net_device *dev = sdata->dev;
|
|
struct sk_buff *skb, *xmit_skb;
|
|
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
|
|
struct sta_info *dsta;
|
|
|
|
skb = rx->skb;
|
|
xmit_skb = NULL;
|
|
|
|
dev_sw_netstats_rx_add(dev, skb->len);
|
|
|
|
if (rx->sta) {
|
|
/* The seqno index has the same property as needed
|
|
* for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
|
|
* for non-QoS-data frames. Here we know it's a data
|
|
* frame, so count MSDUs.
|
|
*/
|
|
u64_stats_update_begin(&rx->sta->rx_stats.syncp);
|
|
rx->sta->rx_stats.msdu[rx->seqno_idx]++;
|
|
u64_stats_update_end(&rx->sta->rx_stats.syncp);
|
|
}
|
|
|
|
if ((sdata->vif.type == NL80211_IFTYPE_AP ||
|
|
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
|
|
!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
|
|
ehdr->h_proto != rx->sdata->control_port_protocol &&
|
|
(sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
|
|
if (is_multicast_ether_addr(ehdr->h_dest) &&
|
|
ieee80211_vif_get_num_mcast_if(sdata) != 0) {
|
|
/*
|
|
* send multicast frames both to higher layers in
|
|
* local net stack and back to the wireless medium
|
|
*/
|
|
xmit_skb = skb_copy(skb, GFP_ATOMIC);
|
|
if (!xmit_skb)
|
|
net_info_ratelimited("%s: failed to clone multicast frame\n",
|
|
dev->name);
|
|
} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
|
|
!ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
|
|
dsta = sta_info_get(sdata, ehdr->h_dest);
|
|
if (dsta) {
|
|
/*
|
|
* The destination station is associated to
|
|
* this AP (in this VLAN), so send the frame
|
|
* directly to it and do not pass it to local
|
|
* net stack.
|
|
*/
|
|
xmit_skb = skb;
|
|
skb = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
|
|
if (skb) {
|
|
/* 'align' will only take the values 0 or 2 here since all
|
|
* frames are required to be aligned to 2-byte boundaries
|
|
* when being passed to mac80211; the code here works just
|
|
* as well if that isn't true, but mac80211 assumes it can
|
|
* access fields as 2-byte aligned (e.g. for ether_addr_equal)
|
|
*/
|
|
int align;
|
|
|
|
align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
|
|
if (align) {
|
|
if (WARN_ON(skb_headroom(skb) < 3)) {
|
|
dev_kfree_skb(skb);
|
|
skb = NULL;
|
|
} else {
|
|
u8 *data = skb->data;
|
|
size_t len = skb_headlen(skb);
|
|
skb->data -= align;
|
|
memmove(skb->data, data, len);
|
|
skb_set_tail_pointer(skb, len);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (skb) {
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
ieee80211_deliver_skb_to_local_stack(skb, rx);
|
|
}
|
|
|
|
if (xmit_skb) {
|
|
/*
|
|
* Send to wireless media and increase priority by 256 to
|
|
* keep the received priority instead of reclassifying
|
|
* the frame (see cfg80211_classify8021d).
|
|
*/
|
|
xmit_skb->priority += 256;
|
|
xmit_skb->protocol = htons(ETH_P_802_3);
|
|
skb_reset_network_header(xmit_skb);
|
|
skb_reset_mac_header(xmit_skb);
|
|
dev_queue_xmit(xmit_skb);
|
|
}
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
|
|
{
|
|
struct net_device *dev = rx->sdata->dev;
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
__le16 fc = hdr->frame_control;
|
|
struct sk_buff_head frame_list;
|
|
struct ethhdr ethhdr;
|
|
const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
|
|
|
|
if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
|
|
check_da = NULL;
|
|
check_sa = NULL;
|
|
} else switch (rx->sdata->vif.type) {
|
|
case NL80211_IFTYPE_AP:
|
|
case NL80211_IFTYPE_AP_VLAN:
|
|
check_da = NULL;
|
|
break;
|
|
case NL80211_IFTYPE_STATION:
|
|
if (!rx->sta ||
|
|
!test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
|
|
check_sa = NULL;
|
|
break;
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
check_sa = NULL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
skb->dev = dev;
|
|
__skb_queue_head_init(&frame_list);
|
|
|
|
if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
|
|
rx->sdata->vif.addr,
|
|
rx->sdata->vif.type,
|
|
data_offset, true))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
|
|
rx->sdata->vif.type,
|
|
rx->local->hw.extra_tx_headroom,
|
|
check_da, check_sa);
|
|
|
|
while (!skb_queue_empty(&frame_list)) {
|
|
rx->skb = __skb_dequeue(&frame_list);
|
|
|
|
if (!ieee80211_frame_allowed(rx, fc)) {
|
|
dev_kfree_skb(rx->skb);
|
|
continue;
|
|
}
|
|
|
|
ieee80211_deliver_skb(rx);
|
|
}
|
|
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
__le16 fc = hdr->frame_control;
|
|
|
|
if (!(status->rx_flags & IEEE80211_RX_AMSDU))
|
|
return RX_CONTINUE;
|
|
|
|
if (unlikely(!ieee80211_is_data(fc)))
|
|
return RX_CONTINUE;
|
|
|
|
if (unlikely(!ieee80211_is_data_present(fc)))
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
|
|
switch (rx->sdata->vif.type) {
|
|
case NL80211_IFTYPE_AP_VLAN:
|
|
if (!rx->sdata->u.vlan.sta)
|
|
return RX_DROP_UNUSABLE;
|
|
break;
|
|
case NL80211_IFTYPE_STATION:
|
|
if (!rx->sdata->u.mgd.use_4addr)
|
|
return RX_DROP_UNUSABLE;
|
|
break;
|
|
default:
|
|
return RX_DROP_UNUSABLE;
|
|
}
|
|
}
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
if (rx->key) {
|
|
/*
|
|
* We should not receive A-MSDUs on pre-HT connections,
|
|
* and HT connections cannot use old ciphers. Thus drop
|
|
* them, as in those cases we couldn't even have SPP
|
|
* A-MSDUs or such.
|
|
*/
|
|
switch (rx->key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_WEP40:
|
|
case WLAN_CIPHER_SUITE_WEP104:
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
return RX_DROP_UNUSABLE;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return __ieee80211_rx_h_amsdu(rx, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_MAC80211_MESH
|
|
static ieee80211_rx_result
|
|
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_hdr *fwd_hdr, *hdr;
|
|
struct ieee80211_tx_info *info;
|
|
struct ieee80211s_hdr *mesh_hdr;
|
|
struct sk_buff *skb = rx->skb, *fwd_skb;
|
|
struct ieee80211_local *local = rx->local;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
|
|
u16 ac, q, hdrlen;
|
|
int tailroom = 0;
|
|
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
/* make sure fixed part of mesh header is there, also checks skb len */
|
|
if (!pskb_may_pull(rx->skb, hdrlen + 6))
|
|
return RX_DROP_MONITOR;
|
|
|
|
mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
|
|
|
|
/* make sure full mesh header is there, also checks skb len */
|
|
if (!pskb_may_pull(rx->skb,
|
|
hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* reload pointers */
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
|
|
|
|
if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* frame is in RMC, don't forward */
|
|
if (ieee80211_is_data(hdr->frame_control) &&
|
|
is_multicast_ether_addr(hdr->addr1) &&
|
|
mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (!ieee80211_is_data(hdr->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
if (!mesh_hdr->ttl)
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (mesh_hdr->flags & MESH_FLAGS_AE) {
|
|
struct mesh_path *mppath;
|
|
char *proxied_addr;
|
|
char *mpp_addr;
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
mpp_addr = hdr->addr3;
|
|
proxied_addr = mesh_hdr->eaddr1;
|
|
} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
|
|
MESH_FLAGS_AE_A5_A6) {
|
|
/* has_a4 already checked in ieee80211_rx_mesh_check */
|
|
mpp_addr = hdr->addr4;
|
|
proxied_addr = mesh_hdr->eaddr2;
|
|
} else {
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
mppath = mpp_path_lookup(sdata, proxied_addr);
|
|
if (!mppath) {
|
|
mpp_path_add(sdata, proxied_addr, mpp_addr);
|
|
} else {
|
|
spin_lock_bh(&mppath->state_lock);
|
|
if (!ether_addr_equal(mppath->mpp, mpp_addr))
|
|
memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
|
|
mppath->exp_time = jiffies;
|
|
spin_unlock_bh(&mppath->state_lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Frame has reached destination. Don't forward */
|
|
if (!is_multicast_ether_addr(hdr->addr1) &&
|
|
ether_addr_equal(sdata->vif.addr, hdr->addr3))
|
|
return RX_CONTINUE;
|
|
|
|
ac = ieee80211_select_queue_80211(sdata, skb, hdr);
|
|
q = sdata->vif.hw_queue[ac];
|
|
if (ieee80211_queue_stopped(&local->hw, q)) {
|
|
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
skb_set_queue_mapping(skb, q);
|
|
|
|
if (!--mesh_hdr->ttl) {
|
|
if (!is_multicast_ether_addr(hdr->addr1))
|
|
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
|
|
dropped_frames_ttl);
|
|
goto out;
|
|
}
|
|
|
|
if (!ifmsh->mshcfg.dot11MeshForwarding)
|
|
goto out;
|
|
|
|
if (sdata->crypto_tx_tailroom_needed_cnt)
|
|
tailroom = IEEE80211_ENCRYPT_TAILROOM;
|
|
|
|
fwd_skb = skb_copy_expand(skb, local->tx_headroom +
|
|
sdata->encrypt_headroom,
|
|
tailroom, GFP_ATOMIC);
|
|
if (!fwd_skb)
|
|
goto out;
|
|
|
|
fwd_skb->dev = sdata->dev;
|
|
fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
|
|
fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
|
|
info = IEEE80211_SKB_CB(fwd_skb);
|
|
memset(info, 0, sizeof(*info));
|
|
info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
|
|
info->control.vif = &rx->sdata->vif;
|
|
info->control.jiffies = jiffies;
|
|
if (is_multicast_ether_addr(fwd_hdr->addr1)) {
|
|
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
|
|
memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
|
|
/* update power mode indication when forwarding */
|
|
ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
|
|
} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
|
|
/* mesh power mode flags updated in mesh_nexthop_lookup */
|
|
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
|
|
} else {
|
|
/* unable to resolve next hop */
|
|
mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
|
|
fwd_hdr->addr3, 0,
|
|
WLAN_REASON_MESH_PATH_NOFORWARD,
|
|
fwd_hdr->addr2);
|
|
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
|
|
kfree_skb(fwd_skb);
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
|
|
ieee80211_add_pending_skb(local, fwd_skb);
|
|
out:
|
|
if (is_multicast_ether_addr(hdr->addr1))
|
|
return RX_CONTINUE;
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
#endif
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_local *local = rx->local;
|
|
struct net_device *dev = sdata->dev;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
|
__le16 fc = hdr->frame_control;
|
|
bool port_control;
|
|
int err;
|
|
|
|
if (unlikely(!ieee80211_is_data(hdr->frame_control)))
|
|
return RX_CONTINUE;
|
|
|
|
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/*
|
|
* Send unexpected-4addr-frame event to hostapd. For older versions,
|
|
* also drop the frame to cooked monitor interfaces.
|
|
*/
|
|
if (ieee80211_has_a4(hdr->frame_control) &&
|
|
sdata->vif.type == NL80211_IFTYPE_AP) {
|
|
if (rx->sta &&
|
|
!test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
|
|
cfg80211_rx_unexpected_4addr_frame(
|
|
rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
err = __ieee80211_data_to_8023(rx, &port_control);
|
|
if (unlikely(err))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
if (!ieee80211_frame_allowed(rx, fc))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* directly handle TDLS channel switch requests/responses */
|
|
if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
|
|
cpu_to_be16(ETH_P_TDLS))) {
|
|
struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
|
|
|
|
if (pskb_may_pull(rx->skb,
|
|
offsetof(struct ieee80211_tdls_data, u)) &&
|
|
tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
|
|
tf->category == WLAN_CATEGORY_TDLS &&
|
|
(tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
|
|
tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
|
|
rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
|
|
__ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
|
|
return RX_QUEUED;
|
|
}
|
|
}
|
|
|
|
if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
|
|
unlikely(port_control) && sdata->bss) {
|
|
sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
|
|
u.ap);
|
|
dev = sdata->dev;
|
|
rx->sdata = sdata;
|
|
}
|
|
|
|
rx->skb->dev = dev;
|
|
|
|
if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
|
|
local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
|
|
!is_multicast_ether_addr(
|
|
((struct ethhdr *)rx->skb->data)->h_dest) &&
|
|
(!local->scanning &&
|
|
!test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
|
|
mod_timer(&local->dynamic_ps_timer, jiffies +
|
|
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
|
|
|
|
ieee80211_deliver_skb(rx);
|
|
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
|
|
{
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
|
|
struct tid_ampdu_rx *tid_agg_rx;
|
|
u16 start_seq_num;
|
|
u16 tid;
|
|
|
|
if (likely(!ieee80211_is_ctl(bar->frame_control)))
|
|
return RX_CONTINUE;
|
|
|
|
if (ieee80211_is_back_req(bar->frame_control)) {
|
|
struct {
|
|
__le16 control, start_seq_num;
|
|
} __packed bar_data;
|
|
struct ieee80211_event event = {
|
|
.type = BAR_RX_EVENT,
|
|
};
|
|
|
|
if (!rx->sta)
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
|
|
&bar_data, sizeof(bar_data)))
|
|
return RX_DROP_MONITOR;
|
|
|
|
tid = le16_to_cpu(bar_data.control) >> 12;
|
|
|
|
if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
|
|
!test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
|
|
ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
|
|
WLAN_BACK_RECIPIENT,
|
|
WLAN_REASON_QSTA_REQUIRE_SETUP);
|
|
|
|
tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
|
|
if (!tid_agg_rx)
|
|
return RX_DROP_MONITOR;
|
|
|
|
start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
|
|
event.u.ba.tid = tid;
|
|
event.u.ba.ssn = start_seq_num;
|
|
event.u.ba.sta = &rx->sta->sta;
|
|
|
|
/* reset session timer */
|
|
if (tid_agg_rx->timeout)
|
|
mod_timer(&tid_agg_rx->session_timer,
|
|
TU_TO_EXP_TIME(tid_agg_rx->timeout));
|
|
|
|
spin_lock(&tid_agg_rx->reorder_lock);
|
|
/* release stored frames up to start of BAR */
|
|
ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
|
|
start_seq_num, frames);
|
|
spin_unlock(&tid_agg_rx->reorder_lock);
|
|
|
|
drv_event_callback(rx->local, rx->sdata, &event);
|
|
|
|
kfree_skb(skb);
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
/*
|
|
* After this point, we only want management frames,
|
|
* so we can drop all remaining control frames to
|
|
* cooked monitor interfaces.
|
|
*/
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
|
|
struct ieee80211_mgmt *mgmt,
|
|
size_t len)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_mgmt *resp;
|
|
|
|
if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
|
|
/* Not to own unicast address */
|
|
return;
|
|
}
|
|
|
|
if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
|
|
!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
|
|
/* Not from the current AP or not associated yet. */
|
|
return;
|
|
}
|
|
|
|
if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
|
|
/* Too short SA Query request frame */
|
|
return;
|
|
}
|
|
|
|
skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
|
|
if (skb == NULL)
|
|
return;
|
|
|
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
|
resp = skb_put_zero(skb, 24);
|
|
memcpy(resp->da, mgmt->sa, ETH_ALEN);
|
|
memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
|
|
memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
|
|
resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
|
|
IEEE80211_STYPE_ACTION);
|
|
skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
|
|
resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
|
|
resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
|
|
memcpy(resp->u.action.u.sa_query.trans_id,
|
|
mgmt->u.action.u.sa_query.trans_id,
|
|
WLAN_SA_QUERY_TR_ID_LEN);
|
|
|
|
ieee80211_tx_skb(sdata, skb);
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
|
|
if (ieee80211_is_s1g_beacon(mgmt->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* From here on, look only at management frames.
|
|
* Data and control frames are already handled,
|
|
* and unknown (reserved) frames are useless.
|
|
*/
|
|
if (rx->skb->len < 24)
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (!ieee80211_is_mgmt(mgmt->frame_control))
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
|
|
ieee80211_is_beacon(mgmt->frame_control) &&
|
|
!(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
|
|
int sig = 0;
|
|
|
|
if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
|
|
!(status->flag & RX_FLAG_NO_SIGNAL_VAL))
|
|
sig = status->signal;
|
|
|
|
cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
|
|
rx->skb->data, rx->skb->len,
|
|
ieee80211_rx_status_to_khz(status),
|
|
sig);
|
|
rx->flags |= IEEE80211_RX_BEACON_REPORTED;
|
|
}
|
|
|
|
if (ieee80211_drop_unencrypted_mgmt(rx))
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static bool
|
|
ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
|
|
/* TWT actions are only supported in AP for the moment */
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP)
|
|
return false;
|
|
|
|
if (!rx->local->ops->add_twt_setup)
|
|
return false;
|
|
|
|
if (!sdata->vif.bss_conf.twt_responder)
|
|
return false;
|
|
|
|
if (!rx->sta)
|
|
return false;
|
|
|
|
switch (mgmt->u.action.u.s1g.action_code) {
|
|
case WLAN_S1G_TWT_SETUP: {
|
|
struct ieee80211_twt_setup *twt;
|
|
|
|
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
|
|
1 + /* action code */
|
|
sizeof(struct ieee80211_twt_setup) +
|
|
2 /* TWT req_type agrt */)
|
|
break;
|
|
|
|
twt = (void *)mgmt->u.action.u.s1g.variable;
|
|
if (twt->element_id != WLAN_EID_S1G_TWT)
|
|
break;
|
|
|
|
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
|
|
4 + /* action code + token + tlv */
|
|
twt->length)
|
|
break;
|
|
|
|
return true; /* queue the frame */
|
|
}
|
|
case WLAN_S1G_TWT_TEARDOWN:
|
|
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
|
|
break;
|
|
|
|
return true; /* queue the frame */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_local *local = rx->local;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
int len = rx->skb->len;
|
|
|
|
if (!ieee80211_is_action(mgmt->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
/* drop too small frames */
|
|
if (len < IEEE80211_MIN_ACTION_SIZE)
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
|
|
mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
|
|
mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
switch (mgmt->u.action.category) {
|
|
case WLAN_CATEGORY_HT:
|
|
/* reject HT action frames from stations not supporting HT */
|
|
if (!rx->sta->sta.ht_cap.ht_supported)
|
|
goto invalid;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
|
|
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP &&
|
|
sdata->vif.type != NL80211_IFTYPE_ADHOC)
|
|
break;
|
|
|
|
/* verify action & smps_control/chanwidth are present */
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 2)
|
|
goto invalid;
|
|
|
|
switch (mgmt->u.action.u.ht_smps.action) {
|
|
case WLAN_HT_ACTION_SMPS: {
|
|
struct ieee80211_supported_band *sband;
|
|
enum ieee80211_smps_mode smps_mode;
|
|
struct sta_opmode_info sta_opmode = {};
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
|
|
goto handled;
|
|
|
|
/* convert to HT capability */
|
|
switch (mgmt->u.action.u.ht_smps.smps_control) {
|
|
case WLAN_HT_SMPS_CONTROL_DISABLED:
|
|
smps_mode = IEEE80211_SMPS_OFF;
|
|
break;
|
|
case WLAN_HT_SMPS_CONTROL_STATIC:
|
|
smps_mode = IEEE80211_SMPS_STATIC;
|
|
break;
|
|
case WLAN_HT_SMPS_CONTROL_DYNAMIC:
|
|
smps_mode = IEEE80211_SMPS_DYNAMIC;
|
|
break;
|
|
default:
|
|
goto invalid;
|
|
}
|
|
|
|
/* if no change do nothing */
|
|
if (rx->sta->sta.smps_mode == smps_mode)
|
|
goto handled;
|
|
rx->sta->sta.smps_mode = smps_mode;
|
|
sta_opmode.smps_mode =
|
|
ieee80211_smps_mode_to_smps_mode(smps_mode);
|
|
sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
|
|
|
|
sband = rx->local->hw.wiphy->bands[status->band];
|
|
|
|
rate_control_rate_update(local, sband, rx->sta,
|
|
IEEE80211_RC_SMPS_CHANGED);
|
|
cfg80211_sta_opmode_change_notify(sdata->dev,
|
|
rx->sta->addr,
|
|
&sta_opmode,
|
|
GFP_ATOMIC);
|
|
goto handled;
|
|
}
|
|
case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
|
|
struct ieee80211_supported_band *sband;
|
|
u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
|
|
enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
|
|
struct sta_opmode_info sta_opmode = {};
|
|
|
|
/* If it doesn't support 40 MHz it can't change ... */
|
|
if (!(rx->sta->sta.ht_cap.cap &
|
|
IEEE80211_HT_CAP_SUP_WIDTH_20_40))
|
|
goto handled;
|
|
|
|
if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
|
|
max_bw = IEEE80211_STA_RX_BW_20;
|
|
else
|
|
max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
|
|
|
|
/* set cur_max_bandwidth and recalc sta bw */
|
|
rx->sta->cur_max_bandwidth = max_bw;
|
|
new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
|
|
|
|
if (rx->sta->sta.bandwidth == new_bw)
|
|
goto handled;
|
|
|
|
rx->sta->sta.bandwidth = new_bw;
|
|
sband = rx->local->hw.wiphy->bands[status->band];
|
|
sta_opmode.bw =
|
|
ieee80211_sta_rx_bw_to_chan_width(rx->sta);
|
|
sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
|
|
|
|
rate_control_rate_update(local, sband, rx->sta,
|
|
IEEE80211_RC_BW_CHANGED);
|
|
cfg80211_sta_opmode_change_notify(sdata->dev,
|
|
rx->sta->addr,
|
|
&sta_opmode,
|
|
GFP_ATOMIC);
|
|
goto handled;
|
|
}
|
|
default:
|
|
goto invalid;
|
|
}
|
|
|
|
break;
|
|
case WLAN_CATEGORY_PUBLIC:
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
|
|
goto invalid;
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
break;
|
|
if (!rx->sta)
|
|
break;
|
|
if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
|
|
break;
|
|
if (mgmt->u.action.u.ext_chan_switch.action_code !=
|
|
WLAN_PUB_ACTION_EXT_CHANSW_ANN)
|
|
break;
|
|
if (len < offsetof(struct ieee80211_mgmt,
|
|
u.action.u.ext_chan_switch.variable))
|
|
goto invalid;
|
|
goto queue;
|
|
case WLAN_CATEGORY_VHT:
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
|
|
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP &&
|
|
sdata->vif.type != NL80211_IFTYPE_ADHOC)
|
|
break;
|
|
|
|
/* verify action code is present */
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
|
|
goto invalid;
|
|
|
|
switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
|
|
case WLAN_VHT_ACTION_OPMODE_NOTIF: {
|
|
/* verify opmode is present */
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 2)
|
|
goto invalid;
|
|
goto queue;
|
|
}
|
|
case WLAN_VHT_ACTION_GROUPID_MGMT: {
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 25)
|
|
goto invalid;
|
|
goto queue;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case WLAN_CATEGORY_BACK:
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
|
|
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
|
|
sdata->vif.type != NL80211_IFTYPE_AP &&
|
|
sdata->vif.type != NL80211_IFTYPE_ADHOC)
|
|
break;
|
|
|
|
/* verify action_code is present */
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
|
|
break;
|
|
|
|
switch (mgmt->u.action.u.addba_req.action_code) {
|
|
case WLAN_ACTION_ADDBA_REQ:
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.addba_req)))
|
|
goto invalid;
|
|
break;
|
|
case WLAN_ACTION_ADDBA_RESP:
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.addba_resp)))
|
|
goto invalid;
|
|
break;
|
|
case WLAN_ACTION_DELBA:
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.delba)))
|
|
goto invalid;
|
|
break;
|
|
default:
|
|
goto invalid;
|
|
}
|
|
|
|
goto queue;
|
|
case WLAN_CATEGORY_SPECTRUM_MGMT:
|
|
/* verify action_code is present */
|
|
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
|
|
break;
|
|
|
|
switch (mgmt->u.action.u.measurement.action_code) {
|
|
case WLAN_ACTION_SPCT_MSR_REQ:
|
|
if (status->band != NL80211_BAND_5GHZ)
|
|
break;
|
|
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.measurement)))
|
|
break;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
break;
|
|
|
|
ieee80211_process_measurement_req(sdata, mgmt, len);
|
|
goto handled;
|
|
case WLAN_ACTION_SPCT_CHL_SWITCH: {
|
|
u8 *bssid;
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.chan_switch)))
|
|
break;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
|
|
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
|
|
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
|
|
break;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_STATION)
|
|
bssid = sdata->u.mgd.bssid;
|
|
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
|
|
bssid = sdata->u.ibss.bssid;
|
|
else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
|
|
bssid = mgmt->sa;
|
|
else
|
|
break;
|
|
|
|
if (!ether_addr_equal(mgmt->bssid, bssid))
|
|
break;
|
|
|
|
goto queue;
|
|
}
|
|
}
|
|
break;
|
|
case WLAN_CATEGORY_SELF_PROTECTED:
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.self_prot.action_code)))
|
|
break;
|
|
|
|
switch (mgmt->u.action.u.self_prot.action_code) {
|
|
case WLAN_SP_MESH_PEERING_OPEN:
|
|
case WLAN_SP_MESH_PEERING_CLOSE:
|
|
case WLAN_SP_MESH_PEERING_CONFIRM:
|
|
if (!ieee80211_vif_is_mesh(&sdata->vif))
|
|
goto invalid;
|
|
if (sdata->u.mesh.user_mpm)
|
|
/* userspace handles this frame */
|
|
break;
|
|
goto queue;
|
|
case WLAN_SP_MGK_INFORM:
|
|
case WLAN_SP_MGK_ACK:
|
|
if (!ieee80211_vif_is_mesh(&sdata->vif))
|
|
goto invalid;
|
|
break;
|
|
}
|
|
break;
|
|
case WLAN_CATEGORY_MESH_ACTION:
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.mesh_action.action_code)))
|
|
break;
|
|
|
|
if (!ieee80211_vif_is_mesh(&sdata->vif))
|
|
break;
|
|
if (mesh_action_is_path_sel(mgmt) &&
|
|
!mesh_path_sel_is_hwmp(sdata))
|
|
break;
|
|
goto queue;
|
|
case WLAN_CATEGORY_S1G:
|
|
switch (mgmt->u.action.u.s1g.action_code) {
|
|
case WLAN_S1G_TWT_SETUP:
|
|
case WLAN_S1G_TWT_TEARDOWN:
|
|
if (ieee80211_process_rx_twt_action(rx))
|
|
goto queue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
|
|
invalid:
|
|
status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
|
|
/* will return in the next handlers */
|
|
return RX_CONTINUE;
|
|
|
|
handled:
|
|
if (rx->sta)
|
|
rx->sta->rx_stats.packets++;
|
|
dev_kfree_skb(rx->skb);
|
|
return RX_QUEUED;
|
|
|
|
queue:
|
|
ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
int sig = 0;
|
|
|
|
/* skip known-bad action frames and return them in the next handler */
|
|
if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* Getting here means the kernel doesn't know how to handle
|
|
* it, but maybe userspace does ... include returned frames
|
|
* so userspace can register for those to know whether ones
|
|
* it transmitted were processed or returned.
|
|
*/
|
|
|
|
if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
|
|
!(status->flag & RX_FLAG_NO_SIGNAL_VAL))
|
|
sig = status->signal;
|
|
|
|
if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
|
|
ieee80211_rx_status_to_khz(status), sig,
|
|
rx->skb->data, rx->skb->len, 0)) {
|
|
if (rx->sta)
|
|
rx->sta->rx_stats.packets++;
|
|
dev_kfree_skb(rx->skb);
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
|
|
int len = rx->skb->len;
|
|
|
|
if (!ieee80211_is_action(mgmt->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
switch (mgmt->u.action.category) {
|
|
case WLAN_CATEGORY_SA_QUERY:
|
|
if (len < (IEEE80211_MIN_ACTION_SIZE +
|
|
sizeof(mgmt->u.action.u.sa_query)))
|
|
break;
|
|
|
|
switch (mgmt->u.action.u.sa_query.action) {
|
|
case WLAN_ACTION_SA_QUERY_REQUEST:
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
break;
|
|
ieee80211_process_sa_query_req(sdata, mgmt, len);
|
|
goto handled;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return RX_CONTINUE;
|
|
|
|
handled:
|
|
if (rx->sta)
|
|
rx->sta->rx_stats.packets++;
|
|
dev_kfree_skb(rx->skb);
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_local *local = rx->local;
|
|
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
|
|
struct sk_buff *nskb;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
|
|
if (!ieee80211_is_action(mgmt->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
/*
|
|
* For AP mode, hostapd is responsible for handling any action
|
|
* frames that we didn't handle, including returning unknown
|
|
* ones. For all other modes we will return them to the sender,
|
|
* setting the 0x80 bit in the action category, as required by
|
|
* 802.11-2012 9.24.4.
|
|
* Newer versions of hostapd shall also use the management frame
|
|
* registration mechanisms, but older ones still use cooked
|
|
* monitor interfaces so push all frames there.
|
|
*/
|
|
if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
|
|
(sdata->vif.type == NL80211_IFTYPE_AP ||
|
|
sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
|
|
return RX_DROP_MONITOR;
|
|
|
|
if (is_multicast_ether_addr(mgmt->da))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* do not return rejected action frames */
|
|
if (mgmt->u.action.category & 0x80)
|
|
return RX_DROP_UNUSABLE;
|
|
|
|
nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
|
|
GFP_ATOMIC);
|
|
if (nskb) {
|
|
struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
|
|
|
|
nmgmt->u.action.category |= 0x80;
|
|
memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
|
|
memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
|
|
|
|
memset(nskb->cb, 0, sizeof(nskb->cb));
|
|
|
|
if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
|
|
|
|
info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
|
|
IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
|
|
IEEE80211_TX_CTL_NO_CCK_RATE;
|
|
if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
|
|
info->hw_queue =
|
|
local->hw.offchannel_tx_hw_queue;
|
|
}
|
|
|
|
__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
|
|
status->band);
|
|
}
|
|
dev_kfree_skb(rx->skb);
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
|
|
|
|
if (!ieee80211_is_ext(hdr->frame_control))
|
|
return RX_CONTINUE;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* for now only beacons are ext, so queue them */
|
|
ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
|
|
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static ieee80211_rx_result debug_noinline
|
|
ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
|
|
__le16 stype;
|
|
|
|
stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
|
|
|
|
if (!ieee80211_vif_is_mesh(&sdata->vif) &&
|
|
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
|
|
sdata->vif.type != NL80211_IFTYPE_OCB &&
|
|
sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
return RX_DROP_MONITOR;
|
|
|
|
switch (stype) {
|
|
case cpu_to_le16(IEEE80211_STYPE_AUTH):
|
|
case cpu_to_le16(IEEE80211_STYPE_BEACON):
|
|
case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
|
|
/* process for all: mesh, mlme, ibss */
|
|
break;
|
|
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
|
|
if (is_multicast_ether_addr(mgmt->da) &&
|
|
!is_broadcast_ether_addr(mgmt->da))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* process only for station/IBSS */
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
|
|
sdata->vif.type != NL80211_IFTYPE_ADHOC)
|
|
return RX_DROP_MONITOR;
|
|
break;
|
|
case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
|
|
case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
|
|
case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
|
|
if (is_multicast_ether_addr(mgmt->da) &&
|
|
!is_broadcast_ether_addr(mgmt->da))
|
|
return RX_DROP_MONITOR;
|
|
|
|
/* process only for station */
|
|
if (sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
return RX_DROP_MONITOR;
|
|
break;
|
|
case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
|
|
/* process only for ibss and mesh */
|
|
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
|
|
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
|
|
return RX_DROP_MONITOR;
|
|
break;
|
|
default:
|
|
return RX_DROP_MONITOR;
|
|
}
|
|
|
|
ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
|
|
|
|
return RX_QUEUED;
|
|
}
|
|
|
|
static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
|
|
struct ieee80211_rate *rate)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct ieee80211_local *local = rx->local;
|
|
struct sk_buff *skb = rx->skb, *skb2;
|
|
struct net_device *prev_dev = NULL;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
int needed_headroom;
|
|
|
|
/*
|
|
* If cooked monitor has been processed already, then
|
|
* don't do it again. If not, set the flag.
|
|
*/
|
|
if (rx->flags & IEEE80211_RX_CMNTR)
|
|
goto out_free_skb;
|
|
rx->flags |= IEEE80211_RX_CMNTR;
|
|
|
|
/* If there are no cooked monitor interfaces, just free the SKB */
|
|
if (!local->cooked_mntrs)
|
|
goto out_free_skb;
|
|
|
|
/* vendor data is long removed here */
|
|
status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
|
|
/* room for the radiotap header based on driver features */
|
|
needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
|
|
|
|
if (skb_headroom(skb) < needed_headroom &&
|
|
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
|
|
goto out_free_skb;
|
|
|
|
/* prepend radiotap information */
|
|
ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
|
|
false);
|
|
|
|
skb_reset_mac_header(skb);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->pkt_type = PACKET_OTHERHOST;
|
|
skb->protocol = htons(ETH_P_802_2);
|
|
|
|
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
|
|
if (!ieee80211_sdata_running(sdata))
|
|
continue;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
|
|
!(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
|
|
continue;
|
|
|
|
if (prev_dev) {
|
|
skb2 = skb_clone(skb, GFP_ATOMIC);
|
|
if (skb2) {
|
|
skb2->dev = prev_dev;
|
|
netif_receive_skb(skb2);
|
|
}
|
|
}
|
|
|
|
prev_dev = sdata->dev;
|
|
dev_sw_netstats_rx_add(sdata->dev, skb->len);
|
|
}
|
|
|
|
if (prev_dev) {
|
|
skb->dev = prev_dev;
|
|
netif_receive_skb(skb);
|
|
return;
|
|
}
|
|
|
|
out_free_skb:
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
|
|
ieee80211_rx_result res)
|
|
{
|
|
switch (res) {
|
|
case RX_DROP_MONITOR:
|
|
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
|
|
if (rx->sta)
|
|
rx->sta->rx_stats.dropped++;
|
|
fallthrough;
|
|
case RX_CONTINUE: {
|
|
struct ieee80211_rate *rate = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_rx_status *status;
|
|
|
|
status = IEEE80211_SKB_RXCB((rx->skb));
|
|
|
|
sband = rx->local->hw.wiphy->bands[status->band];
|
|
if (status->encoding == RX_ENC_LEGACY)
|
|
rate = &sband->bitrates[status->rate_idx];
|
|
|
|
ieee80211_rx_cooked_monitor(rx, rate);
|
|
break;
|
|
}
|
|
case RX_DROP_UNUSABLE:
|
|
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
|
|
if (rx->sta)
|
|
rx->sta->rx_stats.dropped++;
|
|
dev_kfree_skb(rx->skb);
|
|
break;
|
|
case RX_QUEUED:
|
|
I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
|
|
struct sk_buff_head *frames)
|
|
{
|
|
ieee80211_rx_result res = RX_DROP_MONITOR;
|
|
struct sk_buff *skb;
|
|
|
|
#define CALL_RXH(rxh) \
|
|
do { \
|
|
res = rxh(rx); \
|
|
if (res != RX_CONTINUE) \
|
|
goto rxh_next; \
|
|
} while (0)
|
|
|
|
/* Lock here to avoid hitting all of the data used in the RX
|
|
* path (e.g. key data, station data, ...) concurrently when
|
|
* a frame is released from the reorder buffer due to timeout
|
|
* from the timer, potentially concurrently with RX from the
|
|
* driver.
|
|
*/
|
|
spin_lock_bh(&rx->local->rx_path_lock);
|
|
|
|
while ((skb = __skb_dequeue(frames))) {
|
|
/*
|
|
* all the other fields are valid across frames
|
|
* that belong to an aMPDU since they are on the
|
|
* same TID from the same station
|
|
*/
|
|
rx->skb = skb;
|
|
|
|
CALL_RXH(ieee80211_rx_h_check_more_data);
|
|
CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
|
|
CALL_RXH(ieee80211_rx_h_sta_process);
|
|
CALL_RXH(ieee80211_rx_h_decrypt);
|
|
CALL_RXH(ieee80211_rx_h_defragment);
|
|
CALL_RXH(ieee80211_rx_h_michael_mic_verify);
|
|
/* must be after MMIC verify so header is counted in MPDU mic */
|
|
#ifdef CONFIG_MAC80211_MESH
|
|
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
|
|
CALL_RXH(ieee80211_rx_h_mesh_fwding);
|
|
#endif
|
|
CALL_RXH(ieee80211_rx_h_amsdu);
|
|
CALL_RXH(ieee80211_rx_h_data);
|
|
|
|
/* special treatment -- needs the queue */
|
|
res = ieee80211_rx_h_ctrl(rx, frames);
|
|
if (res != RX_CONTINUE)
|
|
goto rxh_next;
|
|
|
|
CALL_RXH(ieee80211_rx_h_mgmt_check);
|
|
CALL_RXH(ieee80211_rx_h_action);
|
|
CALL_RXH(ieee80211_rx_h_userspace_mgmt);
|
|
CALL_RXH(ieee80211_rx_h_action_post_userspace);
|
|
CALL_RXH(ieee80211_rx_h_action_return);
|
|
CALL_RXH(ieee80211_rx_h_ext);
|
|
CALL_RXH(ieee80211_rx_h_mgmt);
|
|
|
|
rxh_next:
|
|
ieee80211_rx_handlers_result(rx, res);
|
|
|
|
#undef CALL_RXH
|
|
}
|
|
|
|
spin_unlock_bh(&rx->local->rx_path_lock);
|
|
}
|
|
|
|
static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct sk_buff_head reorder_release;
|
|
ieee80211_rx_result res = RX_DROP_MONITOR;
|
|
|
|
__skb_queue_head_init(&reorder_release);
|
|
|
|
#define CALL_RXH(rxh) \
|
|
do { \
|
|
res = rxh(rx); \
|
|
if (res != RX_CONTINUE) \
|
|
goto rxh_next; \
|
|
} while (0)
|
|
|
|
CALL_RXH(ieee80211_rx_h_check_dup);
|
|
CALL_RXH(ieee80211_rx_h_check);
|
|
|
|
ieee80211_rx_reorder_ampdu(rx, &reorder_release);
|
|
|
|
ieee80211_rx_handlers(rx, &reorder_release);
|
|
return;
|
|
|
|
rxh_next:
|
|
ieee80211_rx_handlers_result(rx, res);
|
|
|
|
#undef CALL_RXH
|
|
}
|
|
|
|
/*
|
|
* This function makes calls into the RX path, therefore
|
|
* it has to be invoked under RCU read lock.
|
|
*/
|
|
void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
|
|
{
|
|
struct sk_buff_head frames;
|
|
struct ieee80211_rx_data rx = {
|
|
.sta = sta,
|
|
.sdata = sta->sdata,
|
|
.local = sta->local,
|
|
/* This is OK -- must be QoS data frame */
|
|
.security_idx = tid,
|
|
.seqno_idx = tid,
|
|
};
|
|
struct tid_ampdu_rx *tid_agg_rx;
|
|
|
|
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
|
|
if (!tid_agg_rx)
|
|
return;
|
|
|
|
__skb_queue_head_init(&frames);
|
|
|
|
spin_lock(&tid_agg_rx->reorder_lock);
|
|
ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
|
|
spin_unlock(&tid_agg_rx->reorder_lock);
|
|
|
|
if (!skb_queue_empty(&frames)) {
|
|
struct ieee80211_event event = {
|
|
.type = BA_FRAME_TIMEOUT,
|
|
.u.ba.tid = tid,
|
|
.u.ba.sta = &sta->sta,
|
|
};
|
|
drv_event_callback(rx.local, rx.sdata, &event);
|
|
}
|
|
|
|
ieee80211_rx_handlers(&rx, &frames);
|
|
}
|
|
|
|
void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
|
|
u16 ssn, u64 filtered,
|
|
u16 received_mpdus)
|
|
{
|
|
struct sta_info *sta;
|
|
struct tid_ampdu_rx *tid_agg_rx;
|
|
struct sk_buff_head frames;
|
|
struct ieee80211_rx_data rx = {
|
|
/* This is OK -- must be QoS data frame */
|
|
.security_idx = tid,
|
|
.seqno_idx = tid,
|
|
};
|
|
int i, diff;
|
|
|
|
if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
|
|
__skb_queue_head_init(&frames);
|
|
|
|
sta = container_of(pubsta, struct sta_info, sta);
|
|
|
|
rx.sta = sta;
|
|
rx.sdata = sta->sdata;
|
|
rx.local = sta->local;
|
|
|
|
rcu_read_lock();
|
|
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
|
|
if (!tid_agg_rx)
|
|
goto out;
|
|
|
|
spin_lock_bh(&tid_agg_rx->reorder_lock);
|
|
|
|
if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
|
|
int release;
|
|
|
|
/* release all frames in the reorder buffer */
|
|
release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
|
|
IEEE80211_SN_MODULO;
|
|
ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
|
|
release, &frames);
|
|
/* update ssn to match received ssn */
|
|
tid_agg_rx->head_seq_num = ssn;
|
|
} else {
|
|
ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
|
|
&frames);
|
|
}
|
|
|
|
/* handle the case that received ssn is behind the mac ssn.
|
|
* it can be tid_agg_rx->buf_size behind and still be valid */
|
|
diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
|
|
if (diff >= tid_agg_rx->buf_size) {
|
|
tid_agg_rx->reorder_buf_filtered = 0;
|
|
goto release;
|
|
}
|
|
filtered = filtered >> diff;
|
|
ssn += diff;
|
|
|
|
/* update bitmap */
|
|
for (i = 0; i < tid_agg_rx->buf_size; i++) {
|
|
int index = (ssn + i) % tid_agg_rx->buf_size;
|
|
|
|
tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
|
|
if (filtered & BIT_ULL(i))
|
|
tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
|
|
}
|
|
|
|
/* now process also frames that the filter marking released */
|
|
ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
|
|
|
|
release:
|
|
spin_unlock_bh(&tid_agg_rx->reorder_lock);
|
|
|
|
ieee80211_rx_handlers(&rx, &frames);
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
|
|
|
|
/* main receive path */
|
|
|
|
static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
|
|
bool multicast = is_multicast_ether_addr(hdr->addr1) ||
|
|
ieee80211_is_s1g_beacon(hdr->frame_control);
|
|
|
|
switch (sdata->vif.type) {
|
|
case NL80211_IFTYPE_STATION:
|
|
if (!bssid && !sdata->u.mgd.use_4addr)
|
|
return false;
|
|
if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
|
|
return false;
|
|
if (multicast)
|
|
return true;
|
|
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
|
|
case NL80211_IFTYPE_ADHOC:
|
|
if (!bssid)
|
|
return false;
|
|
if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
|
|
ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
|
|
!is_valid_ether_addr(hdr->addr2))
|
|
return false;
|
|
if (ieee80211_is_beacon(hdr->frame_control))
|
|
return true;
|
|
if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
|
|
return false;
|
|
if (!multicast &&
|
|
!ether_addr_equal(sdata->vif.addr, hdr->addr1))
|
|
return false;
|
|
if (!rx->sta) {
|
|
int rate_idx;
|
|
if (status->encoding != RX_ENC_LEGACY)
|
|
rate_idx = 0; /* TODO: HT/VHT rates */
|
|
else
|
|
rate_idx = status->rate_idx;
|
|
ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
|
|
BIT(rate_idx));
|
|
}
|
|
return true;
|
|
case NL80211_IFTYPE_OCB:
|
|
if (!bssid)
|
|
return false;
|
|
if (!ieee80211_is_data_present(hdr->frame_control))
|
|
return false;
|
|
if (!is_broadcast_ether_addr(bssid))
|
|
return false;
|
|
if (!multicast &&
|
|
!ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
|
|
return false;
|
|
if (!rx->sta) {
|
|
int rate_idx;
|
|
if (status->encoding != RX_ENC_LEGACY)
|
|
rate_idx = 0; /* TODO: HT rates */
|
|
else
|
|
rate_idx = status->rate_idx;
|
|
ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
|
|
BIT(rate_idx));
|
|
}
|
|
return true;
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
|
|
return false;
|
|
if (multicast)
|
|
return true;
|
|
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
|
|
case NL80211_IFTYPE_AP_VLAN:
|
|
case NL80211_IFTYPE_AP:
|
|
if (!bssid)
|
|
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
|
|
|
|
if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
|
|
/*
|
|
* Accept public action frames even when the
|
|
* BSSID doesn't match, this is used for P2P
|
|
* and location updates. Note that mac80211
|
|
* itself never looks at these frames.
|
|
*/
|
|
if (!multicast &&
|
|
!ether_addr_equal(sdata->vif.addr, hdr->addr1))
|
|
return false;
|
|
if (ieee80211_is_public_action(hdr, skb->len))
|
|
return true;
|
|
return ieee80211_is_beacon(hdr->frame_control);
|
|
}
|
|
|
|
if (!ieee80211_has_tods(hdr->frame_control)) {
|
|
/* ignore data frames to TDLS-peers */
|
|
if (ieee80211_is_data(hdr->frame_control))
|
|
return false;
|
|
/* ignore action frames to TDLS-peers */
|
|
if (ieee80211_is_action(hdr->frame_control) &&
|
|
!is_broadcast_ether_addr(bssid) &&
|
|
!ether_addr_equal(bssid, hdr->addr1))
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* 802.11-2016 Table 9-26 says that for data frames, A1 must be
|
|
* the BSSID - we've checked that already but may have accepted
|
|
* the wildcard (ff:ff:ff:ff:ff:ff).
|
|
*
|
|
* It also says:
|
|
* The BSSID of the Data frame is determined as follows:
|
|
* a) If the STA is contained within an AP or is associated
|
|
* with an AP, the BSSID is the address currently in use
|
|
* by the STA contained in the AP.
|
|
*
|
|
* So we should not accept data frames with an address that's
|
|
* multicast.
|
|
*
|
|
* Accepting it also opens a security problem because stations
|
|
* could encrypt it with the GTK and inject traffic that way.
|
|
*/
|
|
if (ieee80211_is_data(hdr->frame_control) && multicast)
|
|
return false;
|
|
|
|
return true;
|
|
case NL80211_IFTYPE_P2P_DEVICE:
|
|
return ieee80211_is_public_action(hdr, skb->len) ||
|
|
ieee80211_is_probe_req(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control) ||
|
|
ieee80211_is_beacon(hdr->frame_control);
|
|
case NL80211_IFTYPE_NAN:
|
|
/* Currently no frames on NAN interface are allowed */
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
WARN_ON_ONCE(1);
|
|
return false;
|
|
}
|
|
|
|
void ieee80211_check_fast_rx(struct sta_info *sta)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = sta->sdata;
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_key *key;
|
|
struct ieee80211_fast_rx fastrx = {
|
|
.dev = sdata->dev,
|
|
.vif_type = sdata->vif.type,
|
|
.control_port_protocol = sdata->control_port_protocol,
|
|
}, *old, *new = NULL;
|
|
bool set_offload = false;
|
|
bool assign = false;
|
|
bool offload;
|
|
|
|
/* use sparse to check that we don't return without updating */
|
|
__acquire(check_fast_rx);
|
|
|
|
BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
|
|
BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
|
|
ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
|
|
ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
|
|
|
|
fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
|
|
|
|
/* fast-rx doesn't do reordering */
|
|
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
|
|
!ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
|
|
goto clear;
|
|
|
|
switch (sdata->vif.type) {
|
|
case NL80211_IFTYPE_STATION:
|
|
if (sta->sta.tdls) {
|
|
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
|
|
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
|
|
fastrx.expected_ds_bits = 0;
|
|
} else {
|
|
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
|
|
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
|
|
fastrx.expected_ds_bits =
|
|
cpu_to_le16(IEEE80211_FCTL_FROMDS);
|
|
}
|
|
|
|
if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
|
|
fastrx.expected_ds_bits |=
|
|
cpu_to_le16(IEEE80211_FCTL_TODS);
|
|
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
|
|
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
|
|
}
|
|
|
|
if (!sdata->u.mgd.powersave)
|
|
break;
|
|
|
|
/* software powersave is a huge mess, avoid all of it */
|
|
if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
|
|
goto clear;
|
|
if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
|
|
!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
|
|
goto clear;
|
|
break;
|
|
case NL80211_IFTYPE_AP_VLAN:
|
|
case NL80211_IFTYPE_AP:
|
|
/* parallel-rx requires this, at least with calls to
|
|
* ieee80211_sta_ps_transition()
|
|
*/
|
|
if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
|
|
goto clear;
|
|
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
|
|
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
|
|
fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
|
|
|
|
fastrx.internal_forward =
|
|
!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
|
|
(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
|
|
!sdata->u.vlan.sta);
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
|
|
sdata->u.vlan.sta) {
|
|
fastrx.expected_ds_bits |=
|
|
cpu_to_le16(IEEE80211_FCTL_FROMDS);
|
|
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
|
|
fastrx.internal_forward = 0;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
goto clear;
|
|
}
|
|
|
|
if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
|
|
goto clear;
|
|
|
|
rcu_read_lock();
|
|
key = rcu_dereference(sta->ptk[sta->ptk_idx]);
|
|
if (!key)
|
|
key = rcu_dereference(sdata->default_unicast_key);
|
|
if (key) {
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
/* we don't want to deal with MMIC in fast-rx */
|
|
goto clear_rcu;
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
break;
|
|
default:
|
|
/* We also don't want to deal with
|
|
* WEP or cipher scheme.
|
|
*/
|
|
goto clear_rcu;
|
|
}
|
|
|
|
fastrx.key = true;
|
|
fastrx.icv_len = key->conf.icv_len;
|
|
}
|
|
|
|
assign = true;
|
|
clear_rcu:
|
|
rcu_read_unlock();
|
|
clear:
|
|
__release(check_fast_rx);
|
|
|
|
if (assign)
|
|
new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
|
|
|
|
offload = assign &&
|
|
(sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
|
|
|
|
if (offload)
|
|
set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
|
|
else
|
|
set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
|
|
|
|
if (set_offload)
|
|
drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
|
|
|
|
spin_lock_bh(&sta->lock);
|
|
old = rcu_dereference_protected(sta->fast_rx, true);
|
|
rcu_assign_pointer(sta->fast_rx, new);
|
|
spin_unlock_bh(&sta->lock);
|
|
|
|
if (old)
|
|
kfree_rcu(old, rcu_head);
|
|
}
|
|
|
|
void ieee80211_clear_fast_rx(struct sta_info *sta)
|
|
{
|
|
struct ieee80211_fast_rx *old;
|
|
|
|
spin_lock_bh(&sta->lock);
|
|
old = rcu_dereference_protected(sta->fast_rx, true);
|
|
RCU_INIT_POINTER(sta->fast_rx, NULL);
|
|
spin_unlock_bh(&sta->lock);
|
|
|
|
if (old)
|
|
kfree_rcu(old, rcu_head);
|
|
}
|
|
|
|
void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct sta_info *sta;
|
|
|
|
lockdep_assert_held(&local->sta_mtx);
|
|
|
|
list_for_each_entry(sta, &local->sta_list, list) {
|
|
if (sdata != sta->sdata &&
|
|
(!sta->sdata->bss || sta->sdata->bss != sdata->bss))
|
|
continue;
|
|
ieee80211_check_fast_rx(sta);
|
|
}
|
|
}
|
|
|
|
void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
|
|
mutex_lock(&local->sta_mtx);
|
|
__ieee80211_check_fast_rx_iface(sdata);
|
|
mutex_unlock(&local->sta_mtx);
|
|
}
|
|
|
|
static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
|
|
struct ieee80211_fast_rx *fast_rx,
|
|
int orig_len)
|
|
{
|
|
struct ieee80211_sta_rx_stats *stats;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
|
|
struct sta_info *sta = rx->sta;
|
|
struct sk_buff *skb = rx->skb;
|
|
void *sa = skb->data + ETH_ALEN;
|
|
void *da = skb->data;
|
|
|
|
stats = &sta->rx_stats;
|
|
if (fast_rx->uses_rss)
|
|
stats = this_cpu_ptr(sta->pcpu_rx_stats);
|
|
|
|
/* statistics part of ieee80211_rx_h_sta_process() */
|
|
if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
|
|
stats->last_signal = status->signal;
|
|
if (!fast_rx->uses_rss)
|
|
ewma_signal_add(&sta->rx_stats_avg.signal,
|
|
-status->signal);
|
|
}
|
|
|
|
if (status->chains) {
|
|
int i;
|
|
|
|
stats->chains = status->chains;
|
|
for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
|
|
int signal = status->chain_signal[i];
|
|
|
|
if (!(status->chains & BIT(i)))
|
|
continue;
|
|
|
|
stats->chain_signal_last[i] = signal;
|
|
if (!fast_rx->uses_rss)
|
|
ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
|
|
-signal);
|
|
}
|
|
}
|
|
/* end of statistics */
|
|
|
|
stats->last_rx = jiffies;
|
|
stats->last_rate = sta_stats_encode_rate(status);
|
|
|
|
stats->fragments++;
|
|
stats->packets++;
|
|
|
|
skb->dev = fast_rx->dev;
|
|
|
|
dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
|
|
|
|
/* The seqno index has the same property as needed
|
|
* for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
|
|
* for non-QoS-data frames. Here we know it's a data
|
|
* frame, so count MSDUs.
|
|
*/
|
|
u64_stats_update_begin(&stats->syncp);
|
|
stats->msdu[rx->seqno_idx]++;
|
|
stats->bytes += orig_len;
|
|
u64_stats_update_end(&stats->syncp);
|
|
|
|
if (fast_rx->internal_forward) {
|
|
struct sk_buff *xmit_skb = NULL;
|
|
if (is_multicast_ether_addr(da)) {
|
|
xmit_skb = skb_copy(skb, GFP_ATOMIC);
|
|
} else if (!ether_addr_equal(da, sa) &&
|
|
sta_info_get(rx->sdata, da)) {
|
|
xmit_skb = skb;
|
|
skb = NULL;
|
|
}
|
|
|
|
if (xmit_skb) {
|
|
/*
|
|
* Send to wireless media and increase priority by 256
|
|
* to keep the received priority instead of
|
|
* reclassifying the frame (see cfg80211_classify8021d).
|
|
*/
|
|
xmit_skb->priority += 256;
|
|
xmit_skb->protocol = htons(ETH_P_802_3);
|
|
skb_reset_network_header(xmit_skb);
|
|
skb_reset_mac_header(xmit_skb);
|
|
dev_queue_xmit(xmit_skb);
|
|
}
|
|
|
|
if (!skb)
|
|
return;
|
|
}
|
|
|
|
/* deliver to local stack */
|
|
skb->protocol = eth_type_trans(skb, fast_rx->dev);
|
|
memset(skb->cb, 0, sizeof(skb->cb));
|
|
if (rx->list)
|
|
list_add_tail(&skb->list, rx->list);
|
|
else
|
|
netif_receive_skb(skb);
|
|
|
|
}
|
|
|
|
static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
|
|
struct ieee80211_fast_rx *fast_rx)
|
|
{
|
|
struct sk_buff *skb = rx->skb;
|
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct sta_info *sta = rx->sta;
|
|
int orig_len = skb->len;
|
|
int hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
int snap_offs = hdrlen;
|
|
struct {
|
|
u8 snap[sizeof(rfc1042_header)];
|
|
__be16 proto;
|
|
} *payload __aligned(2);
|
|
struct {
|
|
u8 da[ETH_ALEN];
|
|
u8 sa[ETH_ALEN];
|
|
} addrs __aligned(2);
|
|
struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
|
|
|
|
/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
|
|
* to a common data structure; drivers can implement that per queue
|
|
* but we don't have that information in mac80211
|
|
*/
|
|
if (!(status->flag & RX_FLAG_DUP_VALIDATED))
|
|
return false;
|
|
|
|
#define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
|
|
|
|
/* If using encryption, we also need to have:
|
|
* - PN_VALIDATED: similar, but the implementation is tricky
|
|
* - DECRYPTED: necessary for PN_VALIDATED
|
|
*/
|
|
if (fast_rx->key &&
|
|
(status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
|
|
return false;
|
|
|
|
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
|
|
return false;
|
|
|
|
if (unlikely(ieee80211_is_frag(hdr)))
|
|
return false;
|
|
|
|
/* Since our interface address cannot be multicast, this
|
|
* implicitly also rejects multicast frames without the
|
|
* explicit check.
|
|
*
|
|
* We shouldn't get any *data* frames not addressed to us
|
|
* (AP mode will accept multicast *management* frames), but
|
|
* punting here will make it go through the full checks in
|
|
* ieee80211_accept_frame().
|
|
*/
|
|
if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
|
|
return false;
|
|
|
|
if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
|
|
IEEE80211_FCTL_TODS)) !=
|
|
fast_rx->expected_ds_bits)
|
|
return false;
|
|
|
|
/* assign the key to drop unencrypted frames (later)
|
|
* and strip the IV/MIC if necessary
|
|
*/
|
|
if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
|
|
/* GCMP header length is the same */
|
|
snap_offs += IEEE80211_CCMP_HDR_LEN;
|
|
}
|
|
|
|
if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
|
|
if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
|
|
goto drop;
|
|
|
|
payload = (void *)(skb->data + snap_offs);
|
|
|
|
if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
|
|
return false;
|
|
|
|
/* Don't handle these here since they require special code.
|
|
* Accept AARP and IPX even though they should come with a
|
|
* bridge-tunnel header - but if we get them this way then
|
|
* there's little point in discarding them.
|
|
*/
|
|
if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
|
|
payload->proto == fast_rx->control_port_protocol))
|
|
return false;
|
|
}
|
|
|
|
/* after this point, don't punt to the slowpath! */
|
|
|
|
if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
|
|
pskb_trim(skb, skb->len - fast_rx->icv_len))
|
|
goto drop;
|
|
|
|
if (rx->key && !ieee80211_has_protected(hdr->frame_control))
|
|
goto drop;
|
|
|
|
if (status->rx_flags & IEEE80211_RX_AMSDU) {
|
|
if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
|
|
RX_QUEUED)
|
|
goto drop;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* do the header conversion - first grab the addresses */
|
|
ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
|
|
ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
|
|
/* remove the SNAP but leave the ethertype */
|
|
skb_pull(skb, snap_offs + sizeof(rfc1042_header));
|
|
/* push the addresses in front */
|
|
memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
|
|
|
|
ieee80211_rx_8023(rx, fast_rx, orig_len);
|
|
|
|
return true;
|
|
drop:
|
|
dev_kfree_skb(skb);
|
|
if (fast_rx->uses_rss)
|
|
stats = this_cpu_ptr(sta->pcpu_rx_stats);
|
|
|
|
stats->dropped++;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This function returns whether or not the SKB
|
|
* was destined for RX processing or not, which,
|
|
* if consume is true, is equivalent to whether
|
|
* or not the skb was consumed.
|
|
*/
|
|
static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
|
|
struct sk_buff *skb, bool consume)
|
|
{
|
|
struct ieee80211_local *local = rx->local;
|
|
struct ieee80211_sub_if_data *sdata = rx->sdata;
|
|
|
|
rx->skb = skb;
|
|
|
|
/* See if we can do fast-rx; if we have to copy we already lost,
|
|
* so punt in that case. We should never have to deliver a data
|
|
* frame to multiple interfaces anyway.
|
|
*
|
|
* We skip the ieee80211_accept_frame() call and do the necessary
|
|
* checking inside ieee80211_invoke_fast_rx().
|
|
*/
|
|
if (consume && rx->sta) {
|
|
struct ieee80211_fast_rx *fast_rx;
|
|
|
|
fast_rx = rcu_dereference(rx->sta->fast_rx);
|
|
if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
|
|
return true;
|
|
}
|
|
|
|
if (!ieee80211_accept_frame(rx))
|
|
return false;
|
|
|
|
if (!consume) {
|
|
skb = skb_copy(skb, GFP_ATOMIC);
|
|
if (!skb) {
|
|
if (net_ratelimit())
|
|
wiphy_debug(local->hw.wiphy,
|
|
"failed to copy skb for %s\n",
|
|
sdata->name);
|
|
return true;
|
|
}
|
|
|
|
rx->skb = skb;
|
|
}
|
|
|
|
ieee80211_invoke_rx_handlers(rx);
|
|
return true;
|
|
}
|
|
|
|
static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *pubsta,
|
|
struct sk_buff *skb,
|
|
struct list_head *list)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct ieee80211_fast_rx *fast_rx;
|
|
struct ieee80211_rx_data rx;
|
|
|
|
memset(&rx, 0, sizeof(rx));
|
|
rx.skb = skb;
|
|
rx.local = local;
|
|
rx.list = list;
|
|
|
|
I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
|
|
|
|
/* drop frame if too short for header */
|
|
if (skb->len < sizeof(struct ethhdr))
|
|
goto drop;
|
|
|
|
if (!pubsta)
|
|
goto drop;
|
|
|
|
rx.sta = container_of(pubsta, struct sta_info, sta);
|
|
rx.sdata = rx.sta->sdata;
|
|
|
|
fast_rx = rcu_dereference(rx.sta->fast_rx);
|
|
if (!fast_rx)
|
|
goto drop;
|
|
|
|
ieee80211_rx_8023(&rx, fast_rx, skb->len);
|
|
return;
|
|
|
|
drop:
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* This is the actual Rx frames handler. as it belongs to Rx path it must
|
|
* be called with rcu_read_lock protection.
|
|
*/
|
|
static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *pubsta,
|
|
struct sk_buff *skb,
|
|
struct list_head *list)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct ieee80211_hdr *hdr;
|
|
__le16 fc;
|
|
struct ieee80211_rx_data rx;
|
|
struct ieee80211_sub_if_data *prev;
|
|
struct rhlist_head *tmp;
|
|
int err = 0;
|
|
|
|
fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
|
|
memset(&rx, 0, sizeof(rx));
|
|
rx.skb = skb;
|
|
rx.local = local;
|
|
rx.list = list;
|
|
|
|
if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
|
|
I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
|
|
|
|
if (ieee80211_is_mgmt(fc)) {
|
|
/* drop frame if too short for header */
|
|
if (skb->len < ieee80211_hdrlen(fc))
|
|
err = -ENOBUFS;
|
|
else
|
|
err = skb_linearize(skb);
|
|
} else {
|
|
err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
|
|
}
|
|
|
|
if (err) {
|
|
dev_kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
ieee80211_parse_qos(&rx);
|
|
ieee80211_verify_alignment(&rx);
|
|
|
|
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
|
|
ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_s1g_beacon(hdr->frame_control)))
|
|
ieee80211_scan_rx(local, skb);
|
|
|
|
if (ieee80211_is_data(fc)) {
|
|
struct sta_info *sta, *prev_sta;
|
|
|
|
if (pubsta) {
|
|
rx.sta = container_of(pubsta, struct sta_info, sta);
|
|
rx.sdata = rx.sta->sdata;
|
|
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
|
|
return;
|
|
goto out;
|
|
}
|
|
|
|
prev_sta = NULL;
|
|
|
|
for_each_sta_info(local, hdr->addr2, sta, tmp) {
|
|
if (!prev_sta) {
|
|
prev_sta = sta;
|
|
continue;
|
|
}
|
|
|
|
rx.sta = prev_sta;
|
|
rx.sdata = prev_sta->sdata;
|
|
ieee80211_prepare_and_rx_handle(&rx, skb, false);
|
|
|
|
prev_sta = sta;
|
|
}
|
|
|
|
if (prev_sta) {
|
|
rx.sta = prev_sta;
|
|
rx.sdata = prev_sta->sdata;
|
|
|
|
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
|
|
return;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
prev = NULL;
|
|
|
|
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
|
|
if (!ieee80211_sdata_running(sdata))
|
|
continue;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
|
|
sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
|
|
continue;
|
|
|
|
/*
|
|
* frame is destined for this interface, but if it's
|
|
* not also for the previous one we handle that after
|
|
* the loop to avoid copying the SKB once too much
|
|
*/
|
|
|
|
if (!prev) {
|
|
prev = sdata;
|
|
continue;
|
|
}
|
|
|
|
rx.sta = sta_info_get_bss(prev, hdr->addr2);
|
|
rx.sdata = prev;
|
|
ieee80211_prepare_and_rx_handle(&rx, skb, false);
|
|
|
|
prev = sdata;
|
|
}
|
|
|
|
if (prev) {
|
|
rx.sta = sta_info_get_bss(prev, hdr->addr2);
|
|
rx.sdata = prev;
|
|
|
|
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
|
|
return;
|
|
}
|
|
|
|
out:
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* This is the receive path handler. It is called by a low level driver when an
|
|
* 802.11 MPDU is received from the hardware.
|
|
*/
|
|
void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
|
|
struct sk_buff *skb, struct list_head *list)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct ieee80211_rate *rate = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
WARN_ON_ONCE(softirq_count() == 0);
|
|
|
|
if (WARN_ON(status->band >= NUM_NL80211_BANDS))
|
|
goto drop;
|
|
|
|
sband = local->hw.wiphy->bands[status->band];
|
|
if (WARN_ON(!sband))
|
|
goto drop;
|
|
|
|
/*
|
|
* If we're suspending, it is possible although not too likely
|
|
* that we'd be receiving frames after having already partially
|
|
* quiesced the stack. We can't process such frames then since
|
|
* that might, for example, cause stations to be added or other
|
|
* driver callbacks be invoked.
|
|
*/
|
|
if (unlikely(local->quiescing || local->suspended))
|
|
goto drop;
|
|
|
|
/* We might be during a HW reconfig, prevent Rx for the same reason */
|
|
if (unlikely(local->in_reconfig))
|
|
goto drop;
|
|
|
|
/*
|
|
* The same happens when we're not even started,
|
|
* but that's worth a warning.
|
|
*/
|
|
if (WARN_ON(!local->started))
|
|
goto drop;
|
|
|
|
if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
|
|
/*
|
|
* Validate the rate, unless a PLCP error means that
|
|
* we probably can't have a valid rate here anyway.
|
|
*/
|
|
|
|
switch (status->encoding) {
|
|
case RX_ENC_HT:
|
|
/*
|
|
* rate_idx is MCS index, which can be [0-76]
|
|
* as documented on:
|
|
*
|
|
* https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
|
|
*
|
|
* Anything else would be some sort of driver or
|
|
* hardware error. The driver should catch hardware
|
|
* errors.
|
|
*/
|
|
if (WARN(status->rate_idx > 76,
|
|
"Rate marked as an HT rate but passed "
|
|
"status->rate_idx is not "
|
|
"an MCS index [0-76]: %d (0x%02x)\n",
|
|
status->rate_idx,
|
|
status->rate_idx))
|
|
goto drop;
|
|
break;
|
|
case RX_ENC_VHT:
|
|
if (WARN_ONCE(status->rate_idx > 11 ||
|
|
!status->nss ||
|
|
status->nss > 8,
|
|
"Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
|
|
status->rate_idx, status->nss))
|
|
goto drop;
|
|
break;
|
|
case RX_ENC_HE:
|
|
if (WARN_ONCE(status->rate_idx > 11 ||
|
|
!status->nss ||
|
|
status->nss > 8,
|
|
"Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
|
|
status->rate_idx, status->nss))
|
|
goto drop;
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
fallthrough;
|
|
case RX_ENC_LEGACY:
|
|
if (WARN_ON(status->rate_idx >= sband->n_bitrates))
|
|
goto drop;
|
|
rate = &sband->bitrates[status->rate_idx];
|
|
}
|
|
}
|
|
|
|
status->rx_flags = 0;
|
|
|
|
kcov_remote_start_common(skb_get_kcov_handle(skb));
|
|
|
|
/*
|
|
* Frames with failed FCS/PLCP checksum are not returned,
|
|
* all other frames are returned without radiotap header
|
|
* if it was previously present.
|
|
* Also, frames with less than 16 bytes are dropped.
|
|
*/
|
|
if (!(status->flag & RX_FLAG_8023))
|
|
skb = ieee80211_rx_monitor(local, skb, rate);
|
|
if (skb) {
|
|
if ((status->flag & RX_FLAG_8023) ||
|
|
ieee80211_is_data_present(hdr->frame_control))
|
|
ieee80211_tpt_led_trig_rx(local, skb->len);
|
|
|
|
if (status->flag & RX_FLAG_8023)
|
|
__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
|
|
else
|
|
__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
|
|
}
|
|
|
|
kcov_remote_stop();
|
|
return;
|
|
drop:
|
|
kfree_skb(skb);
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_rx_list);
|
|
|
|
void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
|
|
struct sk_buff *skb, struct napi_struct *napi)
|
|
{
|
|
struct sk_buff *tmp;
|
|
LIST_HEAD(list);
|
|
|
|
|
|
/*
|
|
* key references and virtual interfaces are protected using RCU
|
|
* and this requires that we are in a read-side RCU section during
|
|
* receive processing
|
|
*/
|
|
rcu_read_lock();
|
|
ieee80211_rx_list(hw, pubsta, skb, &list);
|
|
rcu_read_unlock();
|
|
|
|
if (!napi) {
|
|
netif_receive_skb_list(&list);
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry_safe(skb, tmp, &list, list) {
|
|
skb_list_del_init(skb);
|
|
napi_gro_receive(napi, skb);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_rx_napi);
|
|
|
|
/* This is a version of the rx handler that can be called from hard irq
|
|
* context. Post the skb on the queue and schedule the tasklet */
|
|
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
|
|
|
|
skb->pkt_type = IEEE80211_RX_MSG;
|
|
skb_queue_tail(&local->skb_queue, skb);
|
|
tasklet_schedule(&local->tasklet);
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_rx_irqsafe);
|