WSL2-Linux-Kernel/drivers/hwmon/fscher.c

691 строка
20 KiB
C

/*
* fscher.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* fujitsu siemens hermes chip,
* module based on fscpos.c
* Copyright (C) 2000 Hermann Jung <hej@odn.de>
* Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* and Philip Edelbrock <phil@netroedge.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
/*
* Addresses to scan
*/
static unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
/*
* Insmod parameters
*/
I2C_CLIENT_INSMOD_1(fscher);
/*
* The FSCHER registers
*/
/* chip identification */
#define FSCHER_REG_IDENT_0 0x00
#define FSCHER_REG_IDENT_1 0x01
#define FSCHER_REG_IDENT_2 0x02
#define FSCHER_REG_REVISION 0x03
/* global control and status */
#define FSCHER_REG_EVENT_STATE 0x04
#define FSCHER_REG_CONTROL 0x05
/* watchdog */
#define FSCHER_REG_WDOG_PRESET 0x28
#define FSCHER_REG_WDOG_STATE 0x23
#define FSCHER_REG_WDOG_CONTROL 0x21
/* fan 0 */
#define FSCHER_REG_FAN0_MIN 0x55
#define FSCHER_REG_FAN0_ACT 0x0e
#define FSCHER_REG_FAN0_STATE 0x0d
#define FSCHER_REG_FAN0_RIPPLE 0x0f
/* fan 1 */
#define FSCHER_REG_FAN1_MIN 0x65
#define FSCHER_REG_FAN1_ACT 0x6b
#define FSCHER_REG_FAN1_STATE 0x62
#define FSCHER_REG_FAN1_RIPPLE 0x6f
/* fan 2 */
#define FSCHER_REG_FAN2_MIN 0xb5
#define FSCHER_REG_FAN2_ACT 0xbb
#define FSCHER_REG_FAN2_STATE 0xb2
#define FSCHER_REG_FAN2_RIPPLE 0xbf
/* voltage supervision */
#define FSCHER_REG_VOLT_12 0x45
#define FSCHER_REG_VOLT_5 0x42
#define FSCHER_REG_VOLT_BATT 0x48
/* temperature 0 */
#define FSCHER_REG_TEMP0_ACT 0x64
#define FSCHER_REG_TEMP0_STATE 0x71
/* temperature 1 */
#define FSCHER_REG_TEMP1_ACT 0x32
#define FSCHER_REG_TEMP1_STATE 0x81
/* temperature 2 */
#define FSCHER_REG_TEMP2_ACT 0x35
#define FSCHER_REG_TEMP2_STATE 0x91
/*
* Functions declaration
*/
static int fscher_attach_adapter(struct i2c_adapter *adapter);
static int fscher_detect(struct i2c_adapter *adapter, int address, int kind);
static int fscher_detach_client(struct i2c_client *client);
static struct fscher_data *fscher_update_device(struct device *dev);
static void fscher_init_client(struct i2c_client *client);
static int fscher_read_value(struct i2c_client *client, u8 reg);
static int fscher_write_value(struct i2c_client *client, u8 reg, u8 value);
/*
* Driver data (common to all clients)
*/
static struct i2c_driver fscher_driver = {
.driver = {
.name = "fscher",
},
.id = I2C_DRIVERID_FSCHER,
.attach_adapter = fscher_attach_adapter,
.detach_client = fscher_detach_client,
};
/*
* Client data (each client gets its own)
*/
struct fscher_data {
struct i2c_client client;
struct class_device *class_dev;
struct mutex update_lock;
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
/* register values */
u8 revision; /* revision of chip */
u8 global_event; /* global event status */
u8 global_control; /* global control register */
u8 watchdog[3]; /* watchdog */
u8 volt[3]; /* 12, 5, battery voltage */
u8 temp_act[3]; /* temperature */
u8 temp_status[3]; /* status of sensor */
u8 fan_act[3]; /* fans revolutions per second */
u8 fan_status[3]; /* fan status */
u8 fan_min[3]; /* fan min value for rps */
u8 fan_ripple[3]; /* divider for rps */
};
/*
* Sysfs stuff
*/
#define sysfs_r(kind, sub, offset, reg) \
static ssize_t show_##kind##sub (struct fscher_data *, char *, int); \
static ssize_t show_##kind##offset##sub (struct device *, struct device_attribute *attr, char *); \
static ssize_t show_##kind##offset##sub (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct fscher_data *data = fscher_update_device(dev); \
return show_##kind##sub(data, buf, (offset)); \
}
#define sysfs_w(kind, sub, offset, reg) \
static ssize_t set_##kind##sub (struct i2c_client *, struct fscher_data *, const char *, size_t, int, int); \
static ssize_t set_##kind##offset##sub (struct device *, struct device_attribute *attr, const char *, size_t); \
static ssize_t set_##kind##offset##sub (struct device *dev, struct device_attribute *attr, const char *buf, size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct fscher_data *data = i2c_get_clientdata(client); \
return set_##kind##sub(client, data, buf, count, (offset), reg); \
}
#define sysfs_rw_n(kind, sub, offset, reg) \
sysfs_r(kind, sub, offset, reg) \
sysfs_w(kind, sub, offset, reg) \
static DEVICE_ATTR(kind##offset##sub, S_IRUGO | S_IWUSR, show_##kind##offset##sub, set_##kind##offset##sub);
#define sysfs_rw(kind, sub, reg) \
sysfs_r(kind, sub, 0, reg) \
sysfs_w(kind, sub, 0, reg) \
static DEVICE_ATTR(kind##sub, S_IRUGO | S_IWUSR, show_##kind##0##sub, set_##kind##0##sub);
#define sysfs_ro_n(kind, sub, offset, reg) \
sysfs_r(kind, sub, offset, reg) \
static DEVICE_ATTR(kind##offset##sub, S_IRUGO, show_##kind##offset##sub, NULL);
#define sysfs_ro(kind, sub, reg) \
sysfs_r(kind, sub, 0, reg) \
static DEVICE_ATTR(kind, S_IRUGO, show_##kind##0##sub, NULL);
#define sysfs_fan(offset, reg_status, reg_min, reg_ripple, reg_act) \
sysfs_rw_n(pwm, , offset, reg_min) \
sysfs_rw_n(fan, _status, offset, reg_status) \
sysfs_rw_n(fan, _div , offset, reg_ripple) \
sysfs_ro_n(fan, _input , offset, reg_act)
#define sysfs_temp(offset, reg_status, reg_act) \
sysfs_rw_n(temp, _status, offset, reg_status) \
sysfs_ro_n(temp, _input , offset, reg_act)
#define sysfs_in(offset, reg_act) \
sysfs_ro_n(in, _input, offset, reg_act)
#define sysfs_revision(reg_revision) \
sysfs_ro(revision, , reg_revision)
#define sysfs_alarms(reg_events) \
sysfs_ro(alarms, , reg_events)
#define sysfs_control(reg_control) \
sysfs_rw(control, , reg_control)
#define sysfs_watchdog(reg_control, reg_status, reg_preset) \
sysfs_rw(watchdog, _control, reg_control) \
sysfs_rw(watchdog, _status , reg_status) \
sysfs_rw(watchdog, _preset , reg_preset)
sysfs_fan(1, FSCHER_REG_FAN0_STATE, FSCHER_REG_FAN0_MIN,
FSCHER_REG_FAN0_RIPPLE, FSCHER_REG_FAN0_ACT)
sysfs_fan(2, FSCHER_REG_FAN1_STATE, FSCHER_REG_FAN1_MIN,
FSCHER_REG_FAN1_RIPPLE, FSCHER_REG_FAN1_ACT)
sysfs_fan(3, FSCHER_REG_FAN2_STATE, FSCHER_REG_FAN2_MIN,
FSCHER_REG_FAN2_RIPPLE, FSCHER_REG_FAN2_ACT)
sysfs_temp(1, FSCHER_REG_TEMP0_STATE, FSCHER_REG_TEMP0_ACT)
sysfs_temp(2, FSCHER_REG_TEMP1_STATE, FSCHER_REG_TEMP1_ACT)
sysfs_temp(3, FSCHER_REG_TEMP2_STATE, FSCHER_REG_TEMP2_ACT)
sysfs_in(0, FSCHER_REG_VOLT_12)
sysfs_in(1, FSCHER_REG_VOLT_5)
sysfs_in(2, FSCHER_REG_VOLT_BATT)
sysfs_revision(FSCHER_REG_REVISION)
sysfs_alarms(FSCHER_REG_EVENTS)
sysfs_control(FSCHER_REG_CONTROL)
sysfs_watchdog(FSCHER_REG_WDOG_CONTROL, FSCHER_REG_WDOG_STATE, FSCHER_REG_WDOG_PRESET)
static struct attribute *fscher_attributes[] = {
&dev_attr_revision.attr,
&dev_attr_alarms.attr,
&dev_attr_control.attr,
&dev_attr_watchdog_status.attr,
&dev_attr_watchdog_control.attr,
&dev_attr_watchdog_preset.attr,
&dev_attr_in0_input.attr,
&dev_attr_in1_input.attr,
&dev_attr_in2_input.attr,
&dev_attr_fan1_status.attr,
&dev_attr_fan1_div.attr,
&dev_attr_fan1_input.attr,
&dev_attr_pwm1.attr,
&dev_attr_fan2_status.attr,
&dev_attr_fan2_div.attr,
&dev_attr_fan2_input.attr,
&dev_attr_pwm2.attr,
&dev_attr_fan3_status.attr,
&dev_attr_fan3_div.attr,
&dev_attr_fan3_input.attr,
&dev_attr_pwm3.attr,
&dev_attr_temp1_status.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp2_status.attr,
&dev_attr_temp2_input.attr,
&dev_attr_temp3_status.attr,
&dev_attr_temp3_input.attr,
NULL
};
static const struct attribute_group fscher_group = {
.attrs = fscher_attributes,
};
/*
* Real code
*/
static int fscher_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, fscher_detect);
}
static int fscher_detect(struct i2c_adapter *adapter, int address, int kind)
{
struct i2c_client *new_client;
struct fscher_data *data;
int err = 0;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
goto exit;
/* OK. For now, we presume we have a valid client. We now create the
* client structure, even though we cannot fill it completely yet.
* But it allows us to access i2c_smbus_read_byte_data. */
if (!(data = kzalloc(sizeof(struct fscher_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit;
}
/* The common I2C client data is placed right before the
* Hermes-specific data. */
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &fscher_driver;
new_client->flags = 0;
/* Do the remaining detection unless force or force_fscher parameter */
if (kind < 0) {
if ((i2c_smbus_read_byte_data(new_client,
FSCHER_REG_IDENT_0) != 0x48) /* 'H' */
|| (i2c_smbus_read_byte_data(new_client,
FSCHER_REG_IDENT_1) != 0x45) /* 'E' */
|| (i2c_smbus_read_byte_data(new_client,
FSCHER_REG_IDENT_2) != 0x52)) /* 'R' */
goto exit_free;
}
/* Fill in the remaining client fields and put it into the
* global list */
strlcpy(new_client->name, "fscher", I2C_NAME_SIZE);
data->valid = 0;
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto exit_free;
fscher_init_client(new_client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &fscher_group)))
goto exit_detach;
data->class_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
sysfs_remove_group(&new_client->dev.kobj, &fscher_group);
exit_detach:
i2c_detach_client(new_client);
exit_free:
kfree(data);
exit:
return err;
}
static int fscher_detach_client(struct i2c_client *client)
{
struct fscher_data *data = i2c_get_clientdata(client);
int err;
hwmon_device_unregister(data->class_dev);
sysfs_remove_group(&client->dev.kobj, &fscher_group);
if ((err = i2c_detach_client(client)))
return err;
kfree(data);
return 0;
}
static int fscher_read_value(struct i2c_client *client, u8 reg)
{
dev_dbg(&client->dev, "read reg 0x%02x\n", reg);
return i2c_smbus_read_byte_data(client, reg);
}
static int fscher_write_value(struct i2c_client *client, u8 reg, u8 value)
{
dev_dbg(&client->dev, "write reg 0x%02x, val 0x%02x\n",
reg, value);
return i2c_smbus_write_byte_data(client, reg, value);
}
/* Called when we have found a new FSC Hermes. */
static void fscher_init_client(struct i2c_client *client)
{
struct fscher_data *data = i2c_get_clientdata(client);
/* Read revision from chip */
data->revision = fscher_read_value(client, FSCHER_REG_REVISION);
}
static struct fscher_data *fscher_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct fscher_data *data = i2c_get_clientdata(client);
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
dev_dbg(&client->dev, "Starting fscher update\n");
data->temp_act[0] = fscher_read_value(client, FSCHER_REG_TEMP0_ACT);
data->temp_act[1] = fscher_read_value(client, FSCHER_REG_TEMP1_ACT);
data->temp_act[2] = fscher_read_value(client, FSCHER_REG_TEMP2_ACT);
data->temp_status[0] = fscher_read_value(client, FSCHER_REG_TEMP0_STATE);
data->temp_status[1] = fscher_read_value(client, FSCHER_REG_TEMP1_STATE);
data->temp_status[2] = fscher_read_value(client, FSCHER_REG_TEMP2_STATE);
data->volt[0] = fscher_read_value(client, FSCHER_REG_VOLT_12);
data->volt[1] = fscher_read_value(client, FSCHER_REG_VOLT_5);
data->volt[2] = fscher_read_value(client, FSCHER_REG_VOLT_BATT);
data->fan_act[0] = fscher_read_value(client, FSCHER_REG_FAN0_ACT);
data->fan_act[1] = fscher_read_value(client, FSCHER_REG_FAN1_ACT);
data->fan_act[2] = fscher_read_value(client, FSCHER_REG_FAN2_ACT);
data->fan_status[0] = fscher_read_value(client, FSCHER_REG_FAN0_STATE);
data->fan_status[1] = fscher_read_value(client, FSCHER_REG_FAN1_STATE);
data->fan_status[2] = fscher_read_value(client, FSCHER_REG_FAN2_STATE);
data->fan_min[0] = fscher_read_value(client, FSCHER_REG_FAN0_MIN);
data->fan_min[1] = fscher_read_value(client, FSCHER_REG_FAN1_MIN);
data->fan_min[2] = fscher_read_value(client, FSCHER_REG_FAN2_MIN);
data->fan_ripple[0] = fscher_read_value(client, FSCHER_REG_FAN0_RIPPLE);
data->fan_ripple[1] = fscher_read_value(client, FSCHER_REG_FAN1_RIPPLE);
data->fan_ripple[2] = fscher_read_value(client, FSCHER_REG_FAN2_RIPPLE);
data->watchdog[0] = fscher_read_value(client, FSCHER_REG_WDOG_PRESET);
data->watchdog[1] = fscher_read_value(client, FSCHER_REG_WDOG_STATE);
data->watchdog[2] = fscher_read_value(client, FSCHER_REG_WDOG_CONTROL);
data->global_event = fscher_read_value(client, FSCHER_REG_EVENT_STATE);
data->global_control = fscher_read_value(client,
FSCHER_REG_CONTROL);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
#define FAN_INDEX_FROM_NUM(nr) ((nr) - 1)
static ssize_t set_fan_status(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 0..1, 3..7 reserved => mask with 0x04 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x04;
mutex_lock(&data->update_lock);
data->fan_status[FAN_INDEX_FROM_NUM(nr)] &= ~v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_status(struct fscher_data *data, char *buf, int nr)
{
/* bits 0..1, 3..7 reserved => mask with 0x04 */
return sprintf(buf, "%u\n", data->fan_status[FAN_INDEX_FROM_NUM(nr)] & 0x04);
}
static ssize_t set_pwm(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[FAN_INDEX_FROM_NUM(nr)] = v > 0xff ? 0xff : v;
fscher_write_value(client, reg, data->fan_min[FAN_INDEX_FROM_NUM(nr)]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->fan_min[FAN_INDEX_FROM_NUM(nr)]);
}
static ssize_t set_fan_div(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* supported values: 2, 4, 8 */
unsigned long v = simple_strtoul(buf, NULL, 10);
switch (v) {
case 2: v = 1; break;
case 4: v = 2; break;
case 8: v = 3; break;
default:
dev_err(&client->dev, "fan_div value %ld not "
"supported. Choose one of 2, 4 or 8!\n", v);
return -EINVAL;
}
mutex_lock(&data->update_lock);
/* bits 2..7 reserved => mask with 0x03 */
data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] &= ~0x03;
data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] |= v;
fscher_write_value(client, reg, data->fan_ripple[FAN_INDEX_FROM_NUM(nr)]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_div(struct fscher_data *data, char *buf, int nr)
{
/* bits 2..7 reserved => mask with 0x03 */
return sprintf(buf, "%u\n", 1 << (data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] & 0x03));
}
#define RPM_FROM_REG(val) (val*60)
static ssize_t show_fan_input (struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[FAN_INDEX_FROM_NUM(nr)]));
}
#define TEMP_INDEX_FROM_NUM(nr) ((nr) - 1)
static ssize_t set_temp_status(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 2..7 reserved, 0 read only => mask with 0x02 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02;
mutex_lock(&data->update_lock);
data->temp_status[TEMP_INDEX_FROM_NUM(nr)] &= ~v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_status(struct fscher_data *data, char *buf, int nr)
{
/* bits 2..7 reserved => mask with 0x03 */
return sprintf(buf, "%u\n", data->temp_status[TEMP_INDEX_FROM_NUM(nr)] & 0x03);
}
#define TEMP_FROM_REG(val) (((val) - 128) * 1000)
static ssize_t show_temp_input(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[TEMP_INDEX_FROM_NUM(nr)]));
}
/*
* The final conversion is specified in sensors.conf, as it depends on
* mainboard specific values. We export the registers contents as
* pseudo-hundredths-of-Volts (range 0V - 2.55V). Not that it makes much
* sense per se, but it minimizes the conversions count and keeps the
* values within a usual range.
*/
#define VOLT_FROM_REG(val) ((val) * 10)
static ssize_t show_in_input(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", VOLT_FROM_REG(data->volt[nr]));
}
static ssize_t show_revision(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->revision);
}
static ssize_t show_alarms(struct fscher_data *data, char *buf, int nr)
{
/* bits 2, 5..6 reserved => mask with 0x9b */
return sprintf(buf, "%u\n", data->global_event & 0x9b);
}
static ssize_t set_control(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 1..7 reserved => mask with 0x01 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x01;
mutex_lock(&data->update_lock);
data->global_control = v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_control(struct fscher_data *data, char *buf, int nr)
{
/* bits 1..7 reserved => mask with 0x01 */
return sprintf(buf, "%u\n", data->global_control & 0x01);
}
static ssize_t set_watchdog_control(struct i2c_client *client, struct
fscher_data *data, const char *buf, size_t count,
int nr, int reg)
{
/* bits 0..3 reserved => mask with 0xf0 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0xf0;
mutex_lock(&data->update_lock);
data->watchdog[2] &= ~0xf0;
data->watchdog[2] |= v;
fscher_write_value(client, reg, data->watchdog[2]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_watchdog_control(struct fscher_data *data, char *buf, int nr)
{
/* bits 0..3 reserved, bit 5 write only => mask with 0xd0 */
return sprintf(buf, "%u\n", data->watchdog[2] & 0xd0);
}
static ssize_t set_watchdog_status(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 0, 2..7 reserved => mask with 0x02 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02;
mutex_lock(&data->update_lock);
data->watchdog[1] &= ~v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_watchdog_status(struct fscher_data *data, char *buf, int nr)
{
/* bits 0, 2..7 reserved => mask with 0x02 */
return sprintf(buf, "%u\n", data->watchdog[1] & 0x02);
}
static ssize_t set_watchdog_preset(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10) & 0xff;
mutex_lock(&data->update_lock);
data->watchdog[0] = v;
fscher_write_value(client, reg, data->watchdog[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_watchdog_preset(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->watchdog[0]);
}
static int __init sensors_fscher_init(void)
{
return i2c_add_driver(&fscher_driver);
}
static void __exit sensors_fscher_exit(void)
{
i2c_del_driver(&fscher_driver);
}
MODULE_AUTHOR("Reinhard Nissl <rnissl@gmx.de>");
MODULE_DESCRIPTION("FSC Hermes driver");
MODULE_LICENSE("GPL");
module_init(sensors_fscher_init);
module_exit(sensors_fscher_exit);