WSL2-Linux-Kernel/arch/powerpc/kvm/powerpc.c

2485 строки
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright IBM Corp. 2007
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
#include <linux/hrtimer.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
#include <asm/cputable.h>
#include <linux/uaccess.h>
#include <asm/kvm_ppc.h>
#include <asm/cputhreads.h>
#include <asm/irqflags.h>
#include <asm/iommu.h>
#include <asm/switch_to.h>
#include <asm/xive.h>
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
#include <asm/ultravisor.h>
#include <asm/kvm_host.h>
#include "timing.h"
#include "irq.h"
#include "../mm/mmu_decl.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
}
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
{
return kvm_arch_vcpu_runnable(vcpu);
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
return false;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return 1;
}
/*
* Common checks before entering the guest world. Call with interrupts
* disabled.
*
* returns:
*
* == 1 if we're ready to go into guest state
* <= 0 if we need to go back to the host with return value
*/
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
int r;
WARN_ON(irqs_disabled());
hard_irq_disable();
while (true) {
if (need_resched()) {
local_irq_enable();
cond_resched();
hard_irq_disable();
continue;
}
if (signal_pending(current)) {
kvmppc_account_exit(vcpu, SIGNAL_EXITS);
vcpu->run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
break;
}
vcpu->mode = IN_GUEST_MODE;
/*
* Reading vcpu->requests must happen after setting vcpu->mode,
* so we don't miss a request because the requester sees
* OUTSIDE_GUEST_MODE and assumes we'll be checking requests
* before next entering the guest (and thus doesn't IPI).
* This also orders the write to mode from any reads
* to the page tables done while the VCPU is running.
* Please see the comment in kvm_flush_remote_tlbs.
*/
smp_mb();
if (kvm_request_pending(vcpu)) {
/* Make sure we process requests preemptable */
local_irq_enable();
trace_kvm_check_requests(vcpu);
r = kvmppc_core_check_requests(vcpu);
hard_irq_disable();
if (r > 0)
continue;
break;
}
if (kvmppc_core_prepare_to_enter(vcpu)) {
/* interrupts got enabled in between, so we
are back at square 1 */
continue;
}
guest_enter_irqoff();
return 1;
}
/* return to host */
local_irq_enable();
return r;
}
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
int i;
shared->sprg0 = swab64(shared->sprg0);
shared->sprg1 = swab64(shared->sprg1);
shared->sprg2 = swab64(shared->sprg2);
shared->sprg3 = swab64(shared->sprg3);
shared->srr0 = swab64(shared->srr0);
shared->srr1 = swab64(shared->srr1);
shared->dar = swab64(shared->dar);
shared->msr = swab64(shared->msr);
shared->dsisr = swab32(shared->dsisr);
shared->int_pending = swab32(shared->int_pending);
for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
shared->sr[i] = swab32(shared->sr[i]);
}
#endif
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
int nr = kvmppc_get_gpr(vcpu, 11);
int r;
unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
unsigned long r2 = 0;
if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
/* 32 bit mode */
param1 &= 0xffffffff;
param2 &= 0xffffffff;
param3 &= 0xffffffff;
param4 &= 0xffffffff;
}
switch (nr) {
case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
{
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
/* Book3S can be little endian, find it out here */
int shared_big_endian = true;
if (vcpu->arch.intr_msr & MSR_LE)
shared_big_endian = false;
if (shared_big_endian != vcpu->arch.shared_big_endian)
kvmppc_swab_shared(vcpu);
vcpu->arch.shared_big_endian = shared_big_endian;
#endif
if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
/*
* Older versions of the Linux magic page code had
* a bug where they would map their trampoline code
* NX. If that's the case, remove !PR NX capability.
*/
vcpu->arch.disable_kernel_nx = true;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
#ifdef CONFIG_PPC_64K_PAGES
/*
* Make sure our 4k magic page is in the same window of a 64k
* page within the guest and within the host's page.
*/
if ((vcpu->arch.magic_page_pa & 0xf000) !=
((ulong)vcpu->arch.shared & 0xf000)) {
void *old_shared = vcpu->arch.shared;
ulong shared = (ulong)vcpu->arch.shared;
void *new_shared;
shared &= PAGE_MASK;
shared |= vcpu->arch.magic_page_pa & 0xf000;
new_shared = (void*)shared;
memcpy(new_shared, old_shared, 0x1000);
vcpu->arch.shared = new_shared;
}
#endif
r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
r = EV_SUCCESS;
break;
}
case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
r = EV_SUCCESS;
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
/* Second return value is in r4 */
break;
case EV_HCALL_TOKEN(EV_IDLE):
r = EV_SUCCESS;
kvm_vcpu_block(vcpu);
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
break;
default:
r = EV_UNIMPLEMENTED;
break;
}
kvmppc_set_gpr(vcpu, 4, r2);
return r;
}
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
int r = false;
/* We have to know what CPU to virtualize */
if (!vcpu->arch.pvr)
goto out;
/* PAPR only works with book3s_64 */
if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
goto out;
/* HV KVM can only do PAPR mode for now */
if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
goto out;
#ifdef CONFIG_KVM_BOOKE_HV
if (!cpu_has_feature(CPU_FTR_EMB_HV))
goto out;
#endif
r = true;
out:
vcpu->arch.sane = r;
return r ? 0 : -EINVAL;
}
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
enum emulation_result er;
int r;
er = kvmppc_emulate_loadstore(vcpu);
switch (er) {
case EMULATE_DONE:
/* Future optimization: only reload non-volatiles if they were
* actually modified. */
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
/* We must reload nonvolatiles because "update" load/store
* instructions modify register state. */
/* Future optimization: only reload non-volatiles if they were
* actually modified. */
r = RESUME_HOST_NV;
break;
case EMULATE_FAIL:
{
u32 last_inst;
kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
/* XXX Deliver Program interrupt to guest. */
pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
r = RESUME_HOST;
break;
}
default:
WARN_ON(1);
r = RESUME_GUEST;
}
return r;
}
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
struct kvmppc_pte pte;
int r = -EINVAL;
vcpu->stat.st++;
if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
size);
if ((!r) || (r == -EAGAIN))
return r;
r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
XLATE_WRITE, &pte);
if (r < 0)
return r;
*eaddr = pte.raddr;
if (!pte.may_write)
return -EPERM;
/* Magic page override */
if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
void *magic = vcpu->arch.shared;
magic += pte.eaddr & 0xfff;
memcpy(magic, ptr, size);
return EMULATE_DONE;
}
if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
struct kvmppc_pte pte;
int rc = -EINVAL;
vcpu->stat.ld++;
if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
size);
if ((!rc) || (rc == -EAGAIN))
return rc;
rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
XLATE_READ, &pte);
if (rc)
return rc;
*eaddr = pte.raddr;
if (!pte.may_read)
return -EPERM;
if (!data && !pte.may_execute)
return -ENOEXEC;
/* Magic page override */
if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
void *magic = vcpu->arch.shared;
magic += pte.eaddr & 0xfff;
memcpy(ptr, magic, size);
return EMULATE_DONE;
}
if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);
int kvm_arch_hardware_enable(void)
{
return 0;
}
int kvm_arch_hardware_setup(void)
{
return 0;
}
int kvm_arch_check_processor_compat(void)
{
return kvmppc_core_check_processor_compat();
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
struct kvmppc_ops *kvm_ops = NULL;
/*
* if we have both HV and PR enabled, default is HV
*/
if (type == 0) {
if (kvmppc_hv_ops)
kvm_ops = kvmppc_hv_ops;
else
kvm_ops = kvmppc_pr_ops;
if (!kvm_ops)
goto err_out;
} else if (type == KVM_VM_PPC_HV) {
if (!kvmppc_hv_ops)
goto err_out;
kvm_ops = kvmppc_hv_ops;
} else if (type == KVM_VM_PPC_PR) {
if (!kvmppc_pr_ops)
goto err_out;
kvm_ops = kvmppc_pr_ops;
} else
goto err_out;
if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
return -ENOENT;
kvm->arch.kvm_ops = kvm_ops;
return kvmppc_core_init_vm(kvm);
err_out:
return -EINVAL;
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
#ifdef CONFIG_KVM_XICS
/*
* We call kick_all_cpus_sync() to ensure that all
* CPUs have executed any pending IPIs before we
* continue and free VCPUs structures below.
*/
if (is_kvmppc_hv_enabled(kvm))
kick_all_cpus_sync();
#endif
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_arch_vcpu_free(vcpu);
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
kvmppc_core_destroy_vm(kvm);
mutex_unlock(&kvm->lock);
/* drop the module reference */
module_put(kvm->arch.kvm_ops->owner);
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
/* Assume we're using HV mode when the HV module is loaded */
int hv_enabled = kvmppc_hv_ops ? 1 : 0;
if (kvm) {
/*
* Hooray - we know which VM type we're running on. Depend on
* that rather than the guess above.
*/
hv_enabled = is_kvmppc_hv_enabled(kvm);
}
switch (ext) {
#ifdef CONFIG_BOOKE
case KVM_CAP_PPC_BOOKE_SREGS:
case KVM_CAP_PPC_BOOKE_WATCHDOG:
case KVM_CAP_PPC_EPR:
#else
case KVM_CAP_PPC_SEGSTATE:
case KVM_CAP_PPC_HIOR:
case KVM_CAP_PPC_PAPR:
#endif
case KVM_CAP_PPC_UNSET_IRQ:
case KVM_CAP_PPC_IRQ_LEVEL:
case KVM_CAP_ENABLE_CAP:
case KVM_CAP_ONE_REG:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_DEVICE_CTRL:
case KVM_CAP_IMMEDIATE_EXIT:
r = 1;
break;
case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
/* fall through */
case KVM_CAP_PPC_PAIRED_SINGLES:
case KVM_CAP_PPC_OSI:
case KVM_CAP_PPC_GET_PVINFO:
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
case KVM_CAP_SW_TLB:
#endif
/* We support this only for PR */
r = !hv_enabled;
break;
#ifdef CONFIG_KVM_MPIC
case KVM_CAP_IRQ_MPIC:
r = 1;
break;
#endif
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_CAP_SPAPR_TCE:
case KVM_CAP_SPAPR_TCE_64:
r = 1;
break;
case KVM_CAP_SPAPR_TCE_VFIO:
r = !!cpu_has_feature(CPU_FTR_HVMODE);
break;
case KVM_CAP_PPC_RTAS:
case KVM_CAP_PPC_FIXUP_HCALL:
case KVM_CAP_PPC_ENABLE_HCALL:
#ifdef CONFIG_KVM_XICS
case KVM_CAP_IRQ_XICS:
#endif
case KVM_CAP_PPC_GET_CPU_CHAR:
r = 1;
break;
#ifdef CONFIG_KVM_XIVE
case KVM_CAP_PPC_IRQ_XIVE:
/*
* We need XIVE to be enabled on the platform (implies
* a POWER9 processor) and the PowerNV platform, as
* nested is not yet supported.
*/
r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
kvmppc_xive_native_supported();
break;
#endif
case KVM_CAP_PPC_ALLOC_HTAB:
r = hv_enabled;
break;
#endif /* CONFIG_PPC_BOOK3S_64 */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_SMT:
r = 0;
if (kvm) {
if (kvm->arch.emul_smt_mode > 1)
r = kvm->arch.emul_smt_mode;
else
r = kvm->arch.smt_mode;
} else if (hv_enabled) {
if (cpu_has_feature(CPU_FTR_ARCH_300))
r = 1;
else
r = threads_per_subcore;
}
break;
case KVM_CAP_PPC_SMT_POSSIBLE:
r = 1;
if (hv_enabled) {
if (!cpu_has_feature(CPU_FTR_ARCH_300))
r = ((threads_per_subcore << 1) - 1);
else
/* P9 can emulate dbells, so allow any mode */
r = 8 | 4 | 2 | 1;
}
break;
case KVM_CAP_PPC_RMA:
r = 0;
break;
case KVM_CAP_PPC_HWRNG:
r = kvmppc_hwrng_present();
break;
case KVM_CAP_PPC_MMU_RADIX:
r = !!(hv_enabled && radix_enabled());
break;
case KVM_CAP_PPC_MMU_HASH_V3:
r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
cpu_has_feature(CPU_FTR_HVMODE));
break;
case KVM_CAP_PPC_NESTED_HV:
r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
!kvmppc_hv_ops->enable_nested(NULL));
break;
#endif
case KVM_CAP_SYNC_MMU:
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
r = hv_enabled;
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
r = 1;
#else
r = 0;
#endif
break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_HTAB_FD:
r = hv_enabled;
break;
#endif
case KVM_CAP_NR_VCPUS:
/*
* Recommending a number of CPUs is somewhat arbitrary; we
* return the number of present CPUs for -HV (since a host
* will have secondary threads "offline"), and for other KVM
* implementations just count online CPUs.
*/
if (hv_enabled)
r = num_present_cpus();
else
r = num_online_cpus();
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_MAX_VCPU_ID:
r = KVM_MAX_VCPU_ID;
break;
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_CAP_PPC_GET_SMMU_INFO:
r = 1;
break;
case KVM_CAP_SPAPR_MULTITCE:
r = 1;
break;
case KVM_CAP_SPAPR_RESIZE_HPT:
r = !!hv_enabled;
break;
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_FWNMI:
r = hv_enabled;
break;
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
case KVM_CAP_PPC_HTM:
r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
(hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
break;
#endif
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
return -EINVAL;
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
kvmppc_core_free_memslot(kvm, free, dont);
}
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return kvmppc_core_create_memslot(kvm, slot, npages);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvmppc_core_flush_memslot(kvm, slot);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvm_vcpu *vcpu;
vcpu = kvmppc_core_vcpu_create(kvm, id);
if (!IS_ERR(vcpu)) {
vcpu->arch.wqp = &vcpu->wq;
kvmppc_create_vcpu_debugfs(vcpu, id);
}
return vcpu;
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
/* Make sure we're not using the vcpu anymore */
hrtimer_cancel(&vcpu->arch.dec_timer);
kvmppc_remove_vcpu_debugfs(vcpu);
switch (vcpu->arch.irq_type) {
case KVMPPC_IRQ_MPIC:
kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
break;
case KVMPPC_IRQ_XICS:
if (xics_on_xive())
kvmppc_xive_cleanup_vcpu(vcpu);
else
kvmppc_xics_free_icp(vcpu);
break;
case KVMPPC_IRQ_XIVE:
kvmppc_xive_native_cleanup_vcpu(vcpu);
break;
}
kvmppc_core_vcpu_free(vcpu);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_free(vcpu);
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvmppc_core_pending_dec(vcpu);
}
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
kvmppc_decrementer_func(vcpu);
return HRTIMER_NORESTART;
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
int ret;
hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
vcpu->arch.dec_expires = get_tb();
#ifdef CONFIG_KVM_EXIT_TIMING
mutex_init(&vcpu->arch.exit_timing_lock);
#endif
ret = kvmppc_subarch_vcpu_init(vcpu);
return ret;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kvmppc_mmu_destroy(vcpu);
kvmppc_subarch_vcpu_uninit(vcpu);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_BOOKE
/*
* vrsave (formerly usprg0) isn't used by Linux, but may
* be used by the guest.
*
* On non-booke this is associated with Altivec and
* is handled by code in book3s.c.
*/
mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
kvmppc_core_vcpu_load(vcpu, cpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvmppc_core_vcpu_put(vcpu);
#ifdef CONFIG_BOOKE
vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
}
/*
* irq_bypass_add_producer and irq_bypass_del_producer are only
* useful if the architecture supports PCI passthrough.
* irq_bypass_stop and irq_bypass_start are not needed and so
* kvm_ops are not defined for them.
*/
bool kvm_arch_has_irq_bypass(void)
{
return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
struct kvm *kvm = irqfd->kvm;
if (kvm->arch.kvm_ops->irq_bypass_add_producer)
return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
return 0;
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
struct kvm *kvm = irqfd->kvm;
if (kvm->arch.kvm_ops->irq_bypass_del_producer)
kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
int offset;
if ((index != 0) && (index != 1))
return -1;
#ifdef __BIG_ENDIAN
offset = index;
#else
offset = 1 - index;
#endif
return offset;
}
static inline int kvmppc_get_vsr_word_offset(int index)
{
int offset;
if ((index > 3) || (index < 0))
return -1;
#ifdef __BIG_ENDIAN
offset = index;
#else
offset = 3 - index;
#endif
return offset;
}
static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
u64 gpr)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
if (index >= 32) {
val.vval = VCPU_VSX_VR(vcpu, index - 32);
val.vsxval[offset] = gpr;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
VCPU_VSX_FPR(vcpu, index, offset) = gpr;
}
}
static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
u64 gpr)
{
union kvmppc_one_reg val;
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (index >= 32) {
val.vval = VCPU_VSX_VR(vcpu, index - 32);
val.vsxval[0] = gpr;
val.vsxval[1] = gpr;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
VCPU_VSX_FPR(vcpu, index, 0) = gpr;
VCPU_VSX_FPR(vcpu, index, 1) = gpr;
}
}
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
u32 gpr)
{
union kvmppc_one_reg val;
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (index >= 32) {
val.vsx32val[0] = gpr;
val.vsx32val[1] = gpr;
val.vsx32val[2] = gpr;
val.vsx32val[3] = gpr;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
val.vsx32val[0] = gpr;
val.vsx32val[1] = gpr;
VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
}
}
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
u32 gpr32)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
int dword_offset, word_offset;
if (offset == -1)
return;
if (index >= 32) {
val.vval = VCPU_VSX_VR(vcpu, index - 32);
val.vsx32val[offset] = gpr32;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
dword_offset = offset / 2;
word_offset = offset % 2;
val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
val.vsx32val[word_offset] = gpr32;
VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
}
}
#endif /* CONFIG_VSX */
#ifdef CONFIG_ALTIVEC
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
int index, int element_size)
{
int offset;
int elts = sizeof(vector128)/element_size;
if ((index < 0) || (index >= elts))
return -1;
if (kvmppc_need_byteswap(vcpu))
offset = elts - index - 1;
else
offset = index;
return offset;
}
static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}
static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}
static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}
static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
u64 gpr)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_dword_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsxval[offset] = gpr;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
u32 gpr32)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_word_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsx32val[offset] = gpr32;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
u16 gpr16)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_hword_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsx16val[offset] = gpr16;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
u8 gpr8)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_byte_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsx8val[offset] = gpr8;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
u64 fprd;
preempt_disable();
enable_kernel_fp();
asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
: "fr0");
preempt_enable();
return fprd;
}
static inline u32 dp_to_sp(u64 fprd)
{
u32 fprs;
preempt_disable();
enable_kernel_fp();
asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
: "fr0");
preempt_enable();
return fprs;
}
#else
#define sp_to_dp(x) (x)
#define dp_to_sp(x) (x)
#endif /* CONFIG_PPC_FPU */
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
struct kvm_run *run)
{
u64 uninitialized_var(gpr);
if (run->mmio.len > sizeof(gpr)) {
printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
return;
}
if (!vcpu->arch.mmio_host_swabbed) {
switch (run->mmio.len) {
case 8: gpr = *(u64 *)run->mmio.data; break;
case 4: gpr = *(u32 *)run->mmio.data; break;
case 2: gpr = *(u16 *)run->mmio.data; break;
case 1: gpr = *(u8 *)run->mmio.data; break;
}
} else {
switch (run->mmio.len) {
case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
case 1: gpr = *(u8 *)run->mmio.data; break;
}
}
/* conversion between single and double precision */
if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
gpr = sp_to_dp(gpr);
if (vcpu->arch.mmio_sign_extend) {
switch (run->mmio.len) {
#ifdef CONFIG_PPC64
case 4:
gpr = (s64)(s32)gpr;
break;
#endif
case 2:
gpr = (s64)(s16)gpr;
break;
case 1:
gpr = (s64)(s8)gpr;
break;
}
}
switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
case KVM_MMIO_REG_GPR:
kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
break;
case KVM_MMIO_REG_FPR:
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
break;
#ifdef CONFIG_PPC_BOOK3S
case KVM_MMIO_REG_QPR:
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
break;
case KVM_MMIO_REG_FQPR:
VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
break;
#endif
#ifdef CONFIG_VSX
case KVM_MMIO_REG_VSX:
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
kvmppc_set_vsr_dword(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
kvmppc_set_vsr_word(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
kvmppc_set_vsr_dword_dump(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
kvmppc_set_vsr_word_dump(vcpu, gpr);
break;
#endif
#ifdef CONFIG_ALTIVEC
case KVM_MMIO_REG_VMX:
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
kvmppc_set_vmx_dword(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
kvmppc_set_vmx_word(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VMX_COPY_HWORD)
kvmppc_set_vmx_hword(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VMX_COPY_BYTE)
kvmppc_set_vmx_byte(vcpu, gpr);
break;
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_MMIO_REG_NESTED_GPR:
if (kvmppc_need_byteswap(vcpu))
gpr = swab64(gpr);
kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
sizeof(gpr));
break;
#endif
default:
BUG();
}
}
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian, int sign_extend)
{
int idx, ret;
bool host_swabbed;
/* Pity C doesn't have a logical XOR operator */
if (kvmppc_need_byteswap(vcpu)) {
host_swabbed = is_default_endian;
} else {
host_swabbed = !is_default_endian;
}
if (bytes > sizeof(run->mmio.data)) {
printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
run->mmio.len);
}
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
run->mmio.len = bytes;
run->mmio.is_write = 0;
vcpu->arch.io_gpr = rt;
vcpu->arch.mmio_host_swabbed = host_swabbed;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 0;
vcpu->arch.mmio_sign_extend = sign_extend;
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
bytes, &run->mmio.data);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (!ret) {
kvmppc_complete_mmio_load(vcpu, run);
vcpu->mmio_needed = 0;
return EMULATE_DONE;
}
return EMULATE_DO_MMIO;
}
int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian)
{
return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian)
{
return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
}
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian, int mmio_sign_extend)
{
enum emulation_result emulated = EMULATE_DONE;
/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
if (vcpu->arch.mmio_vsx_copy_nums > 4)
return EMULATE_FAIL;
while (vcpu->arch.mmio_vsx_copy_nums) {
emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
is_default_endian, mmio_sign_extend);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += run->mmio.len;
vcpu->arch.mmio_vsx_copy_nums--;
vcpu->arch.mmio_vsx_offset++;
}
return emulated;
}
#endif /* CONFIG_VSX */
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
u64 val, unsigned int bytes, int is_default_endian)
{
void *data = run->mmio.data;
int idx, ret;
bool host_swabbed;
/* Pity C doesn't have a logical XOR operator */
if (kvmppc_need_byteswap(vcpu)) {
host_swabbed = is_default_endian;
} else {
host_swabbed = !is_default_endian;
}
if (bytes > sizeof(run->mmio.data)) {
printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
run->mmio.len);
}
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
run->mmio.len = bytes;
run->mmio.is_write = 1;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 1;
if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
val = dp_to_sp(val);
/* Store the value at the lowest bytes in 'data'. */
if (!host_swabbed) {
switch (bytes) {
case 8: *(u64 *)data = val; break;
case 4: *(u32 *)data = val; break;
case 2: *(u16 *)data = val; break;
case 1: *(u8 *)data = val; break;
}
} else {
switch (bytes) {
case 8: *(u64 *)data = swab64(val); break;
case 4: *(u32 *)data = swab32(val); break;
case 2: *(u16 *)data = swab16(val); break;
case 1: *(u8 *)data = val; break;
}
}
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
bytes, &run->mmio.data);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (!ret) {
vcpu->mmio_needed = 0;
return EMULATE_DONE;
}
return EMULATE_DO_MMIO;
}
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
u32 dword_offset, word_offset;
union kvmppc_one_reg reg;
int vsx_offset = 0;
int copy_type = vcpu->arch.mmio_copy_type;
int result = 0;
switch (copy_type) {
case KVMPPC_VSX_COPY_DWORD:
vsx_offset =
kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
if (vsx_offset == -1) {
result = -1;
break;
}
if (rs < 32) {
*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
} else {
reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
*val = reg.vsxval[vsx_offset];
}
break;
case KVMPPC_VSX_COPY_WORD:
vsx_offset =
kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
if (vsx_offset == -1) {
result = -1;
break;
}
if (rs < 32) {
dword_offset = vsx_offset / 2;
word_offset = vsx_offset % 2;
reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
*val = reg.vsx32val[word_offset];
} else {
reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
*val = reg.vsx32val[vsx_offset];
}
break;
default:
result = -1;
break;
}
return result;
}
int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
int rs, unsigned int bytes, int is_default_endian)
{
u64 val;
enum emulation_result emulated = EMULATE_DONE;
vcpu->arch.io_gpr = rs;
/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
if (vcpu->arch.mmio_vsx_copy_nums > 4)
return EMULATE_FAIL;
while (vcpu->arch.mmio_vsx_copy_nums) {
if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
return EMULATE_FAIL;
emulated = kvmppc_handle_store(run, vcpu,
val, bytes, is_default_endian);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += run->mmio.len;
vcpu->arch.mmio_vsx_copy_nums--;
vcpu->arch.mmio_vsx_offset++;
}
return emulated;
}
static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
struct kvm_run *run)
{
enum emulation_result emulated = EMULATE_FAIL;
int r;
vcpu->arch.paddr_accessed += run->mmio.len;
if (!vcpu->mmio_is_write) {
emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
} else {
emulated = kvmppc_handle_vsx_store(run, vcpu,
vcpu->arch.io_gpr, run->mmio.len, 1);
}
switch (emulated) {
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST;
break;
case EMULATE_FAIL:
pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
r = RESUME_HOST;
break;
default:
r = RESUME_GUEST;
break;
}
return r;
}
#endif /* CONFIG_VSX */
#ifdef CONFIG_ALTIVEC
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes, int is_default_endian)
{
enum emulation_result emulated = EMULATE_DONE;
if (vcpu->arch.mmio_vsx_copy_nums > 2)
return EMULATE_FAIL;
while (vcpu->arch.mmio_vmx_copy_nums) {
emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
is_default_endian, 0);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += run->mmio.len;
vcpu->arch.mmio_vmx_copy_nums--;
vcpu->arch.mmio_vmx_offset++;
}
return emulated;
}
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsxval[vmx_offset];
return result;
}
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsx32val[vmx_offset];
return result;
}
int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsx16val[vmx_offset];
return result;
}
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsx8val[vmx_offset];
return result;
}
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rs, unsigned int bytes, int is_default_endian)
{
u64 val = 0;
unsigned int index = rs & KVM_MMIO_REG_MASK;
enum emulation_result emulated = EMULATE_DONE;
if (vcpu->arch.mmio_vsx_copy_nums > 2)
return EMULATE_FAIL;
vcpu->arch.io_gpr = rs;
while (vcpu->arch.mmio_vmx_copy_nums) {
switch (vcpu->arch.mmio_copy_type) {
case KVMPPC_VMX_COPY_DWORD:
if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
case KVMPPC_VMX_COPY_WORD:
if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
case KVMPPC_VMX_COPY_HWORD:
if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
case KVMPPC_VMX_COPY_BYTE:
if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
default:
return EMULATE_FAIL;
}
emulated = kvmppc_handle_store(run, vcpu, val, bytes,
is_default_endian);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += run->mmio.len;
vcpu->arch.mmio_vmx_copy_nums--;
vcpu->arch.mmio_vmx_offset++;
}
return emulated;
}
static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
struct kvm_run *run)
{
enum emulation_result emulated = EMULATE_FAIL;
int r;
vcpu->arch.paddr_accessed += run->mmio.len;
if (!vcpu->mmio_is_write) {
emulated = kvmppc_handle_vmx_load(run, vcpu,
vcpu->arch.io_gpr, run->mmio.len, 1);
} else {
emulated = kvmppc_handle_vmx_store(run, vcpu,
vcpu->arch.io_gpr, run->mmio.len, 1);
}
switch (emulated) {
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST;
break;
case EMULATE_FAIL:
pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
r = RESUME_HOST;
break;
default:
r = RESUME_GUEST;
break;
}
return r;
}
#endif /* CONFIG_ALTIVEC */
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r = 0;
union kvmppc_one_reg val;
int size;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
r = kvmppc_get_one_reg(vcpu, reg->id, &val);
if (r == -EINVAL) {
r = 0;
switch (reg->id) {
#ifdef CONFIG_ALTIVEC
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
break;
case KVM_REG_PPC_VSCR:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
break;
case KVM_REG_PPC_VRSAVE:
val = get_reg_val(reg->id, vcpu->arch.vrsave);
break;
#endif /* CONFIG_ALTIVEC */
default:
r = -EINVAL;
break;
}
}
if (r)
return r;
if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
r = -EFAULT;
return r;
}
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r;
union kvmppc_one_reg val;
int size;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
return -EFAULT;
r = kvmppc_set_one_reg(vcpu, reg->id, &val);
if (r == -EINVAL) {
r = 0;
switch (reg->id) {
#ifdef CONFIG_ALTIVEC
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
break;
case KVM_REG_PPC_VSCR:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_VRSAVE:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vrsave = set_reg_val(reg->id, val);
break;
#endif /* CONFIG_ALTIVEC */
default:
r = -EINVAL;
break;
}
}
return r;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int r;
vcpu_load(vcpu);
if (vcpu->mmio_needed) {
vcpu->mmio_needed = 0;
if (!vcpu->mmio_is_write)
kvmppc_complete_mmio_load(vcpu, run);
#ifdef CONFIG_VSX
if (vcpu->arch.mmio_vsx_copy_nums > 0) {
vcpu->arch.mmio_vsx_copy_nums--;
vcpu->arch.mmio_vsx_offset++;
}
if (vcpu->arch.mmio_vsx_copy_nums > 0) {
r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
if (r == RESUME_HOST) {
vcpu->mmio_needed = 1;
goto out;
}
}
#endif
#ifdef CONFIG_ALTIVEC
if (vcpu->arch.mmio_vmx_copy_nums > 0) {
vcpu->arch.mmio_vmx_copy_nums--;
vcpu->arch.mmio_vmx_offset++;
}
if (vcpu->arch.mmio_vmx_copy_nums > 0) {
r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
if (r == RESUME_HOST) {
vcpu->mmio_needed = 1;
goto out;
}
}
#endif
} else if (vcpu->arch.osi_needed) {
u64 *gprs = run->osi.gprs;
int i;
for (i = 0; i < 32; i++)
kvmppc_set_gpr(vcpu, i, gprs[i]);
vcpu->arch.osi_needed = 0;
} else if (vcpu->arch.hcall_needed) {
int i;
kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
for (i = 0; i < 9; ++i)
kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
vcpu->arch.hcall_needed = 0;
#ifdef CONFIG_BOOKE
} else if (vcpu->arch.epr_needed) {
kvmppc_set_epr(vcpu, run->epr.epr);
vcpu->arch.epr_needed = 0;
#endif
}
kvm_sigset_activate(vcpu);
if (run->immediate_exit)
r = -EINTR;
else
r = kvmppc_vcpu_run(run, vcpu);
kvm_sigset_deactivate(vcpu);
#ifdef CONFIG_ALTIVEC
out:
#endif
vcpu_put(vcpu);
return r;
}
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
if (irq->irq == KVM_INTERRUPT_UNSET) {
kvmppc_core_dequeue_external(vcpu);
return 0;
}
kvmppc_core_queue_external(vcpu, irq);
kvm_vcpu_kick(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_PPC_OSI:
r = 0;
vcpu->arch.osi_enabled = true;
break;
case KVM_CAP_PPC_PAPR:
r = 0;
vcpu->arch.papr_enabled = true;
break;
case KVM_CAP_PPC_EPR:
r = 0;
if (cap->args[0])
vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
else
vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
break;
#ifdef CONFIG_BOOKE
case KVM_CAP_PPC_BOOKE_WATCHDOG:
r = 0;
vcpu->arch.watchdog_enabled = true;
break;
#endif
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
case KVM_CAP_SW_TLB: {
struct kvm_config_tlb cfg;
void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
r = -EFAULT;
if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
break;
r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
break;
}
#endif
#ifdef CONFIG_KVM_MPIC
case KVM_CAP_IRQ_MPIC: {
struct fd f;
struct kvm_device *dev;
r = -EBADF;
f = fdget(cap->args[0]);
if (!f.file)
break;
r = -EPERM;
dev = kvm_device_from_filp(f.file);
if (dev)
r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
fdput(f);
break;
}
#endif
#ifdef CONFIG_KVM_XICS
case KVM_CAP_IRQ_XICS: {
struct fd f;
struct kvm_device *dev;
r = -EBADF;
f = fdget(cap->args[0]);
if (!f.file)
break;
r = -EPERM;
dev = kvm_device_from_filp(f.file);
if (dev) {
if (xics_on_xive())
r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
else
r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
}
fdput(f);
break;
}
#endif /* CONFIG_KVM_XICS */
#ifdef CONFIG_KVM_XIVE
case KVM_CAP_PPC_IRQ_XIVE: {
struct fd f;
struct kvm_device *dev;
r = -EBADF;
f = fdget(cap->args[0]);
if (!f.file)
break;
r = -ENXIO;
if (!xive_enabled())
break;
r = -EPERM;
dev = kvm_device_from_filp(f.file);
if (dev)
r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
cap->args[1]);
fdput(f);
break;
}
#endif /* CONFIG_KVM_XIVE */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_FWNMI:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(vcpu->kvm))
break;
r = 0;
vcpu->kvm->arch.fwnmi_enabled = true;
break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
default:
r = -EINVAL;
break;
}
if (!r)
r = kvmppc_sanity_check(vcpu);
return r;
}
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
if (kvm->arch.mpic)
return true;
#endif
#ifdef CONFIG_KVM_XICS
if (kvm->arch.xics || kvm->arch.xive)
return true;
#endif
return false;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
if (ioctl == KVM_INTERRUPT) {
struct kvm_interrupt irq;
if (copy_from_user(&irq, argp, sizeof(irq)))
return -EFAULT;
return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
}
return -ENOIOCTLCMD;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_ENABLE_CAP:
{
struct kvm_enable_cap cap;
r = -EFAULT;
vcpu_load(vcpu);
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
vcpu_put(vcpu);
break;
}
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG:
{
struct kvm_one_reg reg;
r = -EFAULT;
if (copy_from_user(&reg, argp, sizeof(reg)))
goto out;
if (ioctl == KVM_SET_ONE_REG)
r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
else
r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
break;
}
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
case KVM_DIRTY_TLB: {
struct kvm_dirty_tlb dirty;
r = -EFAULT;
vcpu_load(vcpu);
if (copy_from_user(&dirty, argp, sizeof(dirty)))
goto out;
r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
vcpu_put(vcpu);
break;
}
#endif
default:
r = -EINVAL;
}
out:
return r;
}
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
u32 inst_sc1 = 0x44000022;
pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
pvinfo->hcall[1] = cpu_to_be32(inst_nop);
pvinfo->hcall[2] = cpu_to_be32(inst_nop);
pvinfo->hcall[3] = cpu_to_be32(inst_nop);
#else
u32 inst_lis = 0x3c000000;
u32 inst_ori = 0x60000000;
u32 inst_sc = 0x44000002;
u32 inst_imm_mask = 0xffff;
/*
* The hypercall to get into KVM from within guest context is as
* follows:
*
* lis r0, r0, KVM_SC_MAGIC_R0@h
* ori r0, KVM_SC_MAGIC_R0@l
* sc
* nop
*/
pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
pvinfo->hcall[2] = cpu_to_be32(inst_sc);
pvinfo->hcall[3] = cpu_to_be32(inst_nop);
#endif
pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
return 0;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
bool line_status)
{
if (!irqchip_in_kernel(kvm))
return -ENXIO;
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event->irq, irq_event->level,
line_status);
return 0;
}
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
case KVM_CAP_PPC_ENABLE_HCALL: {
unsigned long hcall = cap->args[0];
r = -EINVAL;
if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
cap->args[1] > 1)
break;
if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
break;
if (cap->args[1])
set_bit(hcall / 4, kvm->arch.enabled_hcalls);
else
clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
r = 0;
break;
}
case KVM_CAP_PPC_SMT: {
unsigned long mode = cap->args[0];
unsigned long flags = cap->args[1];
r = -EINVAL;
if (kvm->arch.kvm_ops->set_smt_mode)
r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
break;
}
case KVM_CAP_PPC_NESTED_HV:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(kvm) ||
!kvm->arch.kvm_ops->enable_nested)
break;
r = kvm->arch.kvm_ops->enable_nested(kvm);
break;
#endif
default:
r = -EINVAL;
break;
}
return r;
}
#ifdef CONFIG_PPC_BOOK3S_64
/*
* These functions check whether the underlying hardware is safe
* against attacks based on observing the effects of speculatively
* executed instructions, and whether it supplies instructions for
* use in workarounds. The information comes from firmware, either
* via the device tree on powernv platforms or from an hcall on
* pseries platforms.
*/
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
struct h_cpu_char_result c;
unsigned long rc;
if (!machine_is(pseries))
return -ENOTTY;
rc = plpar_get_cpu_characteristics(&c);
if (rc == H_SUCCESS) {
cp->character = c.character;
cp->behaviour = c.behaviour;
cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
}
return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
return -ENOTTY;
}
#endif
static inline bool have_fw_feat(struct device_node *fw_features,
const char *state, const char *name)
{
struct device_node *np;
bool r = false;
np = of_get_child_by_name(fw_features, name);
if (np) {
r = of_property_read_bool(np, state);
of_node_put(np);
}
return r;
}
static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
struct device_node *np, *fw_features;
int r;
memset(cp, 0, sizeof(*cp));
r = pseries_get_cpu_char(cp);
if (r != -ENOTTY)
return r;
np = of_find_node_by_name(NULL, "ibm,opal");
if (np) {
fw_features = of_get_child_by_name(np, "fw-features");
of_node_put(np);
if (!fw_features)
return 0;
if (have_fw_feat(fw_features, "enabled",
"inst-spec-barrier-ori31,31,0"))
cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
if (have_fw_feat(fw_features, "enabled",
"fw-bcctrl-serialized"))
cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
if (have_fw_feat(fw_features, "enabled",
"inst-l1d-flush-ori30,30,0"))
cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
if (have_fw_feat(fw_features, "enabled",
"inst-l1d-flush-trig2"))
cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
if (have_fw_feat(fw_features, "enabled",
"fw-l1d-thread-split"))
cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
if (have_fw_feat(fw_features, "enabled",
"fw-count-cache-disabled"))
cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
if (have_fw_feat(fw_features, "enabled",
"fw-count-cache-flush-bcctr2,0,0"))
cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
if (have_fw_feat(fw_features, "enabled",
"speculation-policy-favor-security"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
if (!have_fw_feat(fw_features, "disabled",
"needs-l1d-flush-msr-pr-0-to-1"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
if (!have_fw_feat(fw_features, "disabled",
"needs-spec-barrier-for-bound-checks"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
if (have_fw_feat(fw_features, "enabled",
"needs-count-cache-flush-on-context-switch"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
of_node_put(fw_features);
}
return 0;
}
#endif
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm __maybe_unused = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_PPC_GET_PVINFO: {
struct kvm_ppc_pvinfo pvinfo;
memset(&pvinfo, 0, sizeof(pvinfo));
r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
r = -EFAULT;
goto out;
}
break;
}
#ifdef CONFIG_SPAPR_TCE_IOMMU
case KVM_CREATE_SPAPR_TCE_64: {
struct kvm_create_spapr_tce_64 create_tce_64;
r = -EFAULT;
if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
goto out;
if (create_tce_64.flags) {
r = -EINVAL;
goto out;
}
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
goto out;
}
case KVM_CREATE_SPAPR_TCE: {
struct kvm_create_spapr_tce create_tce;
struct kvm_create_spapr_tce_64 create_tce_64;
r = -EFAULT;
if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
goto out;
create_tce_64.liobn = create_tce.liobn;
create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
create_tce_64.offset = 0;
create_tce_64.size = create_tce.window_size >>
IOMMU_PAGE_SHIFT_4K;
create_tce_64.flags = 0;
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
goto out;
}
#endif
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_PPC_GET_SMMU_INFO: {
struct kvm_ppc_smmu_info info;
struct kvm *kvm = filp->private_data;
memset(&info, 0, sizeof(info));
r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
r = -EFAULT;
break;
}
case KVM_PPC_RTAS_DEFINE_TOKEN: {
struct kvm *kvm = filp->private_data;
r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
break;
}
case KVM_PPC_CONFIGURE_V3_MMU: {
struct kvm *kvm = filp->private_data;
struct kvm_ppc_mmuv3_cfg cfg;
r = -EINVAL;
if (!kvm->arch.kvm_ops->configure_mmu)
goto out;
r = -EFAULT;
if (copy_from_user(&cfg, argp, sizeof(cfg)))
goto out;
r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
break;
}
case KVM_PPC_GET_RMMU_INFO: {
struct kvm *kvm = filp->private_data;
struct kvm_ppc_rmmu_info info;
r = -EINVAL;
if (!kvm->arch.kvm_ops->get_rmmu_info)
goto out;
r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
r = -EFAULT;
break;
}
case KVM_PPC_GET_CPU_CHAR: {
struct kvm_ppc_cpu_char cpuchar;
r = kvmppc_get_cpu_char(&cpuchar);
if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
r = -EFAULT;
break;
}
case KVM_PPC_SVM_OFF: {
struct kvm *kvm = filp->private_data;
r = 0;
if (!kvm->arch.kvm_ops->svm_off)
goto out;
r = kvm->arch.kvm_ops->svm_off(kvm);
break;
}
default: {
struct kvm *kvm = filp->private_data;
r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
}
#else /* CONFIG_PPC_BOOK3S_64 */
default:
r = -ENOTTY;
#endif
}
out:
return r;
}
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;
long kvmppc_alloc_lpid(void)
{
long lpid;
do {
lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
if (lpid >= nr_lpids) {
pr_err("%s: No LPIDs free\n", __func__);
return -ENOMEM;
}
} while (test_and_set_bit(lpid, lpid_inuse));
return lpid;
}
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
void kvmppc_claim_lpid(long lpid)
{
set_bit(lpid, lpid_inuse);
}
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
void kvmppc_free_lpid(long lpid)
{
clear_bit(lpid, lpid_inuse);
}
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
int kvm_arch_init(void *opaque)
{
return 0;
}
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);