856 строки
23 KiB
C
856 строки
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Dynamic DMA mapping support.
|
|
*
|
|
* This implementation is a fallback for platforms that do not support
|
|
* I/O TLBs (aka DMA address translation hardware).
|
|
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
|
|
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
|
|
* Copyright (C) 2000, 2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
|
|
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
|
|
* unnecessary i-cache flushing.
|
|
* 04/07/.. ak Better overflow handling. Assorted fixes.
|
|
* 05/09/10 linville Add support for syncing ranges, support syncing for
|
|
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
|
|
* 08/12/11 beckyb Add highmem support
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "software IO TLB: " fmt
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <linux/set_memory.h>
|
|
#ifdef CONFIG_DEBUG_FS
|
|
#include <linux/debugfs.h>
|
|
#endif
|
|
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/slab.h>
|
|
#endif
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/iommu-helper.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/swiotlb.h>
|
|
|
|
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
|
|
|
|
/*
|
|
* Minimum IO TLB size to bother booting with. Systems with mainly
|
|
* 64bit capable cards will only lightly use the swiotlb. If we can't
|
|
* allocate a contiguous 1MB, we're probably in trouble anyway.
|
|
*/
|
|
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
|
|
|
|
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
|
|
|
|
enum swiotlb_force swiotlb_force;
|
|
|
|
struct io_tlb_mem io_tlb_default_mem;
|
|
|
|
/*
|
|
* Max segment that we can provide which (if pages are contingous) will
|
|
* not be bounced (unless SWIOTLB_FORCE is set).
|
|
*/
|
|
static unsigned int max_segment;
|
|
|
|
static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
|
|
|
|
static int __init
|
|
setup_io_tlb_npages(char *str)
|
|
{
|
|
if (isdigit(*str)) {
|
|
/* avoid tail segment of size < IO_TLB_SEGSIZE */
|
|
default_nslabs =
|
|
ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
|
|
}
|
|
if (*str == ',')
|
|
++str;
|
|
if (!strcmp(str, "force"))
|
|
swiotlb_force = SWIOTLB_FORCE;
|
|
else if (!strcmp(str, "noforce"))
|
|
swiotlb_force = SWIOTLB_NO_FORCE;
|
|
|
|
return 0;
|
|
}
|
|
early_param("swiotlb", setup_io_tlb_npages);
|
|
|
|
unsigned int swiotlb_max_segment(void)
|
|
{
|
|
return io_tlb_default_mem.nslabs ? max_segment : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(swiotlb_max_segment);
|
|
|
|
void swiotlb_set_max_segment(unsigned int val)
|
|
{
|
|
if (swiotlb_force == SWIOTLB_FORCE)
|
|
max_segment = 1;
|
|
else
|
|
max_segment = rounddown(val, PAGE_SIZE);
|
|
}
|
|
|
|
unsigned long swiotlb_size_or_default(void)
|
|
{
|
|
return default_nslabs << IO_TLB_SHIFT;
|
|
}
|
|
|
|
void __init swiotlb_adjust_size(unsigned long size)
|
|
{
|
|
/*
|
|
* If swiotlb parameter has not been specified, give a chance to
|
|
* architectures such as those supporting memory encryption to
|
|
* adjust/expand SWIOTLB size for their use.
|
|
*/
|
|
if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
|
|
return;
|
|
size = ALIGN(size, IO_TLB_SIZE);
|
|
default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
|
|
pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
|
|
}
|
|
|
|
void swiotlb_print_info(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
|
|
if (!mem->nslabs) {
|
|
pr_warn("No low mem\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
|
|
(mem->nslabs << IO_TLB_SHIFT) >> 20);
|
|
}
|
|
|
|
static inline unsigned long io_tlb_offset(unsigned long val)
|
|
{
|
|
return val & (IO_TLB_SEGSIZE - 1);
|
|
}
|
|
|
|
static inline unsigned long nr_slots(u64 val)
|
|
{
|
|
return DIV_ROUND_UP(val, IO_TLB_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Early SWIOTLB allocation may be too early to allow an architecture to
|
|
* perform the desired operations. This function allows the architecture to
|
|
* call SWIOTLB when the operations are possible. It needs to be called
|
|
* before the SWIOTLB memory is used.
|
|
*/
|
|
void __init swiotlb_update_mem_attributes(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
void *vaddr;
|
|
unsigned long bytes;
|
|
|
|
if (!mem->nslabs || mem->late_alloc)
|
|
return;
|
|
vaddr = phys_to_virt(mem->start);
|
|
bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
|
|
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
|
|
memset(vaddr, 0, bytes);
|
|
}
|
|
|
|
static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
|
|
unsigned long nslabs, bool late_alloc)
|
|
{
|
|
void *vaddr = phys_to_virt(start);
|
|
unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
|
|
|
|
mem->nslabs = nslabs;
|
|
mem->start = start;
|
|
mem->end = mem->start + bytes;
|
|
mem->index = 0;
|
|
mem->late_alloc = late_alloc;
|
|
|
|
if (swiotlb_force == SWIOTLB_FORCE)
|
|
mem->force_bounce = true;
|
|
|
|
spin_lock_init(&mem->lock);
|
|
for (i = 0; i < mem->nslabs; i++) {
|
|
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
|
|
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
|
mem->slots[i].alloc_size = 0;
|
|
}
|
|
memset(vaddr, 0, bytes);
|
|
}
|
|
|
|
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
size_t alloc_size;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return 0;
|
|
|
|
/* protect against double initialization */
|
|
if (WARN_ON_ONCE(mem->nslabs))
|
|
return -ENOMEM;
|
|
|
|
alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
|
|
mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
|
|
if (!mem->slots)
|
|
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
|
|
__func__, alloc_size, PAGE_SIZE);
|
|
|
|
swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
|
|
|
|
if (verbose)
|
|
swiotlb_print_info();
|
|
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Statically reserve bounce buffer space and initialize bounce buffer data
|
|
* structures for the software IO TLB used to implement the DMA API.
|
|
*/
|
|
void __init
|
|
swiotlb_init(int verbose)
|
|
{
|
|
size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
|
|
void *tlb;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return;
|
|
|
|
/* Get IO TLB memory from the low pages */
|
|
tlb = memblock_alloc_low(bytes, PAGE_SIZE);
|
|
if (!tlb)
|
|
goto fail;
|
|
if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
|
|
goto fail_free_mem;
|
|
return;
|
|
|
|
fail_free_mem:
|
|
memblock_free_early(__pa(tlb), bytes);
|
|
fail:
|
|
pr_warn("Cannot allocate buffer");
|
|
}
|
|
|
|
/*
|
|
* Systems with larger DMA zones (those that don't support ISA) can
|
|
* initialize the swiotlb later using the slab allocator if needed.
|
|
* This should be just like above, but with some error catching.
|
|
*/
|
|
int
|
|
swiotlb_late_init_with_default_size(size_t default_size)
|
|
{
|
|
unsigned long nslabs =
|
|
ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
|
|
unsigned long bytes;
|
|
unsigned char *vstart = NULL;
|
|
unsigned int order;
|
|
int rc = 0;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return 0;
|
|
|
|
/*
|
|
* Get IO TLB memory from the low pages
|
|
*/
|
|
order = get_order(nslabs << IO_TLB_SHIFT);
|
|
nslabs = SLABS_PER_PAGE << order;
|
|
bytes = nslabs << IO_TLB_SHIFT;
|
|
|
|
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
|
|
vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
|
|
order);
|
|
if (vstart)
|
|
break;
|
|
order--;
|
|
}
|
|
|
|
if (!vstart)
|
|
return -ENOMEM;
|
|
|
|
if (order != get_order(bytes)) {
|
|
pr_warn("only able to allocate %ld MB\n",
|
|
(PAGE_SIZE << order) >> 20);
|
|
nslabs = SLABS_PER_PAGE << order;
|
|
}
|
|
rc = swiotlb_late_init_with_tbl(vstart, nslabs);
|
|
if (rc)
|
|
free_pages((unsigned long)vstart, order);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long bytes = nslabs << IO_TLB_SHIFT;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return 0;
|
|
|
|
/* protect against double initialization */
|
|
if (WARN_ON_ONCE(mem->nslabs))
|
|
return -ENOMEM;
|
|
|
|
mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(array_size(sizeof(*mem->slots), nslabs)));
|
|
if (!mem->slots)
|
|
return -ENOMEM;
|
|
|
|
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
|
|
swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
|
|
|
|
swiotlb_print_info();
|
|
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
void __init swiotlb_exit(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long tbl_vaddr;
|
|
size_t tbl_size, slots_size;
|
|
|
|
if (!mem->nslabs)
|
|
return;
|
|
|
|
pr_info("tearing down default memory pool\n");
|
|
tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
|
|
tbl_size = PAGE_ALIGN(mem->end - mem->start);
|
|
slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
|
|
|
|
set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
|
|
if (mem->late_alloc) {
|
|
free_pages(tbl_vaddr, get_order(tbl_size));
|
|
free_pages((unsigned long)mem->slots, get_order(slots_size));
|
|
} else {
|
|
memblock_free_late(mem->start, tbl_size);
|
|
memblock_free_late(__pa(mem->slots), slots_size);
|
|
}
|
|
|
|
memset(mem, 0, sizeof(*mem));
|
|
}
|
|
|
|
/*
|
|
* Return the offset into a iotlb slot required to keep the device happy.
|
|
*/
|
|
static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
|
|
{
|
|
return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* Bounce: copy the swiotlb buffer from or back to the original dma location
|
|
*/
|
|
static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
|
|
phys_addr_t orig_addr = mem->slots[index].orig_addr;
|
|
size_t alloc_size = mem->slots[index].alloc_size;
|
|
unsigned long pfn = PFN_DOWN(orig_addr);
|
|
unsigned char *vaddr = phys_to_virt(tlb_addr);
|
|
unsigned int tlb_offset, orig_addr_offset;
|
|
|
|
if (orig_addr == INVALID_PHYS_ADDR)
|
|
return;
|
|
|
|
tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
|
|
orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
|
|
if (tlb_offset < orig_addr_offset) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Access before mapping start detected. orig offset %u, requested offset %u.\n",
|
|
orig_addr_offset, tlb_offset);
|
|
return;
|
|
}
|
|
|
|
tlb_offset -= orig_addr_offset;
|
|
if (tlb_offset > alloc_size) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
|
|
alloc_size, size, tlb_offset);
|
|
return;
|
|
}
|
|
|
|
orig_addr += tlb_offset;
|
|
alloc_size -= tlb_offset;
|
|
|
|
if (size > alloc_size) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
|
|
alloc_size, size);
|
|
size = alloc_size;
|
|
}
|
|
|
|
if (PageHighMem(pfn_to_page(pfn))) {
|
|
/* The buffer does not have a mapping. Map it in and copy */
|
|
unsigned int offset = orig_addr & ~PAGE_MASK;
|
|
char *buffer;
|
|
unsigned int sz = 0;
|
|
unsigned long flags;
|
|
|
|
while (size) {
|
|
sz = min_t(size_t, PAGE_SIZE - offset, size);
|
|
|
|
local_irq_save(flags);
|
|
buffer = kmap_atomic(pfn_to_page(pfn));
|
|
if (dir == DMA_TO_DEVICE)
|
|
memcpy(vaddr, buffer + offset, sz);
|
|
else
|
|
memcpy(buffer + offset, vaddr, sz);
|
|
kunmap_atomic(buffer);
|
|
local_irq_restore(flags);
|
|
|
|
size -= sz;
|
|
pfn++;
|
|
vaddr += sz;
|
|
offset = 0;
|
|
}
|
|
} else if (dir == DMA_TO_DEVICE) {
|
|
memcpy(vaddr, phys_to_virt(orig_addr), size);
|
|
} else {
|
|
memcpy(phys_to_virt(orig_addr), vaddr, size);
|
|
}
|
|
}
|
|
|
|
#define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT))
|
|
|
|
/*
|
|
* Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
|
|
*/
|
|
static inline unsigned long get_max_slots(unsigned long boundary_mask)
|
|
{
|
|
if (boundary_mask == ~0UL)
|
|
return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
|
|
return nr_slots(boundary_mask + 1);
|
|
}
|
|
|
|
static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
|
|
{
|
|
if (index >= mem->nslabs)
|
|
return 0;
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Find a suitable number of IO TLB entries size that will fit this request and
|
|
* allocate a buffer from that IO TLB pool.
|
|
*/
|
|
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
|
|
size_t alloc_size)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned long boundary_mask = dma_get_seg_boundary(dev);
|
|
dma_addr_t tbl_dma_addr =
|
|
phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
|
|
unsigned long max_slots = get_max_slots(boundary_mask);
|
|
unsigned int iotlb_align_mask =
|
|
dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
|
|
unsigned int nslots = nr_slots(alloc_size), stride;
|
|
unsigned int index, wrap, count = 0, i;
|
|
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!nslots);
|
|
|
|
/*
|
|
* For mappings with an alignment requirement don't bother looping to
|
|
* unaligned slots once we found an aligned one. For allocations of
|
|
* PAGE_SIZE or larger only look for page aligned allocations.
|
|
*/
|
|
stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
|
|
if (alloc_size >= PAGE_SIZE)
|
|
stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
|
|
|
|
spin_lock_irqsave(&mem->lock, flags);
|
|
if (unlikely(nslots > mem->nslabs - mem->used))
|
|
goto not_found;
|
|
|
|
index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
|
|
do {
|
|
if (orig_addr &&
|
|
(slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
|
|
(orig_addr & iotlb_align_mask)) {
|
|
index = wrap_index(mem, index + 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we find a slot that indicates we have 'nslots' number of
|
|
* contiguous buffers, we allocate the buffers from that slot
|
|
* and mark the entries as '0' indicating unavailable.
|
|
*/
|
|
if (!iommu_is_span_boundary(index, nslots,
|
|
nr_slots(tbl_dma_addr),
|
|
max_slots)) {
|
|
if (mem->slots[index].list >= nslots)
|
|
goto found;
|
|
}
|
|
index = wrap_index(mem, index + stride);
|
|
} while (index != wrap);
|
|
|
|
not_found:
|
|
spin_unlock_irqrestore(&mem->lock, flags);
|
|
return -1;
|
|
|
|
found:
|
|
for (i = index; i < index + nslots; i++) {
|
|
mem->slots[i].list = 0;
|
|
mem->slots[i].alloc_size =
|
|
alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
|
|
}
|
|
for (i = index - 1;
|
|
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
|
|
mem->slots[i].list; i--)
|
|
mem->slots[i].list = ++count;
|
|
|
|
/*
|
|
* Update the indices to avoid searching in the next round.
|
|
*/
|
|
if (index + nslots < mem->nslabs)
|
|
mem->index = index + nslots;
|
|
else
|
|
mem->index = 0;
|
|
mem->used += nslots;
|
|
|
|
spin_unlock_irqrestore(&mem->lock, flags);
|
|
return index;
|
|
}
|
|
|
|
phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|
size_t mapping_size, size_t alloc_size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
|
unsigned int i;
|
|
int index;
|
|
phys_addr_t tlb_addr;
|
|
|
|
if (!mem)
|
|
panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
|
|
|
|
if (mem_encrypt_active())
|
|
pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
|
|
|
|
if (mapping_size > alloc_size) {
|
|
dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
|
|
mapping_size, alloc_size);
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
index = swiotlb_find_slots(dev, orig_addr, alloc_size + offset);
|
|
if (index == -1) {
|
|
if (!(attrs & DMA_ATTR_NO_WARN))
|
|
dev_warn_ratelimited(dev,
|
|
"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
|
|
alloc_size, mem->nslabs, mem->used);
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Save away the mapping from the original address to the DMA address.
|
|
* This is needed when we sync the memory. Then we sync the buffer if
|
|
* needed.
|
|
*/
|
|
for (i = 0; i < nr_slots(alloc_size + offset); i++)
|
|
mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
|
|
tlb_addr = slot_addr(mem->start, index) + offset;
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
|
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
|
|
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
|
|
return tlb_addr;
|
|
}
|
|
|
|
static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned long flags;
|
|
unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
|
|
int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
|
|
int nslots = nr_slots(mem->slots[index].alloc_size + offset);
|
|
int count, i;
|
|
|
|
/*
|
|
* Return the buffer to the free list by setting the corresponding
|
|
* entries to indicate the number of contiguous entries available.
|
|
* While returning the entries to the free list, we merge the entries
|
|
* with slots below and above the pool being returned.
|
|
*/
|
|
spin_lock_irqsave(&mem->lock, flags);
|
|
if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
|
|
count = mem->slots[index + nslots].list;
|
|
else
|
|
count = 0;
|
|
|
|
/*
|
|
* Step 1: return the slots to the free list, merging the slots with
|
|
* superceeding slots
|
|
*/
|
|
for (i = index + nslots - 1; i >= index; i--) {
|
|
mem->slots[i].list = ++count;
|
|
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
|
mem->slots[i].alloc_size = 0;
|
|
}
|
|
|
|
/*
|
|
* Step 2: merge the returned slots with the preceding slots, if
|
|
* available (non zero)
|
|
*/
|
|
for (i = index - 1;
|
|
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
|
|
i--)
|
|
mem->slots[i].list = ++count;
|
|
mem->used -= nslots;
|
|
spin_unlock_irqrestore(&mem->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* tlb_addr is the physical address of the bounce buffer to unmap.
|
|
*/
|
|
void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t mapping_size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
/*
|
|
* First, sync the memory before unmapping the entry
|
|
*/
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
|
(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
|
|
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
|
|
|
|
swiotlb_release_slots(dev, tlb_addr);
|
|
}
|
|
|
|
void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
|
|
else
|
|
BUG_ON(dir != DMA_FROM_DEVICE);
|
|
}
|
|
|
|
void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
|
|
else
|
|
BUG_ON(dir != DMA_TO_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
|
|
* to the device copy the data into it as well.
|
|
*/
|
|
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
phys_addr_t swiotlb_addr;
|
|
dma_addr_t dma_addr;
|
|
|
|
trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
|
|
swiotlb_force);
|
|
|
|
swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, dir,
|
|
attrs);
|
|
if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
/* Ensure that the address returned is DMA'ble */
|
|
dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
|
|
if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
|
|
swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
|
|
attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
dev_WARN_ONCE(dev, 1,
|
|
"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
|
|
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
arch_sync_dma_for_device(swiotlb_addr, size, dir);
|
|
return dma_addr;
|
|
}
|
|
|
|
size_t swiotlb_max_mapping_size(struct device *dev)
|
|
{
|
|
return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
|
|
}
|
|
|
|
bool is_swiotlb_active(struct device *dev)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
|
|
return mem && mem->nslabs;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_swiotlb_active);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static struct dentry *debugfs_dir;
|
|
|
|
static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
|
|
{
|
|
debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
|
|
debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
|
|
}
|
|
|
|
static int __init swiotlb_create_default_debugfs(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
|
|
debugfs_dir = debugfs_create_dir("swiotlb", NULL);
|
|
if (mem->nslabs) {
|
|
mem->debugfs = debugfs_dir;
|
|
swiotlb_create_debugfs_files(mem);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(swiotlb_create_default_debugfs);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
|
|
{
|
|
struct io_tlb_mem *mem = rmem->priv;
|
|
|
|
mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
|
|
swiotlb_create_debugfs_files(mem);
|
|
}
|
|
#else
|
|
static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
struct page *swiotlb_alloc(struct device *dev, size_t size)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
phys_addr_t tlb_addr;
|
|
int index;
|
|
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
index = swiotlb_find_slots(dev, 0, size);
|
|
if (index == -1)
|
|
return NULL;
|
|
|
|
tlb_addr = slot_addr(mem->start, index);
|
|
|
|
return pfn_to_page(PFN_DOWN(tlb_addr));
|
|
}
|
|
|
|
bool swiotlb_free(struct device *dev, struct page *page, size_t size)
|
|
{
|
|
phys_addr_t tlb_addr = page_to_phys(page);
|
|
|
|
if (!is_swiotlb_buffer(dev, tlb_addr))
|
|
return false;
|
|
|
|
swiotlb_release_slots(dev, tlb_addr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
struct io_tlb_mem *mem = rmem->priv;
|
|
unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
|
|
|
|
/*
|
|
* Since multiple devices can share the same pool, the private data,
|
|
* io_tlb_mem struct, will be initialized by the first device attached
|
|
* to it.
|
|
*/
|
|
if (!mem) {
|
|
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
|
|
GFP_KERNEL);
|
|
if (!mem->slots) {
|
|
kfree(mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
|
|
rmem->size >> PAGE_SHIFT);
|
|
swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
|
|
mem->force_bounce = true;
|
|
mem->for_alloc = true;
|
|
|
|
rmem->priv = mem;
|
|
|
|
rmem_swiotlb_debugfs_init(rmem);
|
|
}
|
|
|
|
dev->dma_io_tlb_mem = mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
dev->dma_io_tlb_mem = &io_tlb_default_mem;
|
|
}
|
|
|
|
static const struct reserved_mem_ops rmem_swiotlb_ops = {
|
|
.device_init = rmem_swiotlb_device_init,
|
|
.device_release = rmem_swiotlb_device_release,
|
|
};
|
|
|
|
static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
|
|
{
|
|
unsigned long node = rmem->fdt_node;
|
|
|
|
if (of_get_flat_dt_prop(node, "reusable", NULL) ||
|
|
of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
|
|
of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
|
|
of_get_flat_dt_prop(node, "no-map", NULL))
|
|
return -EINVAL;
|
|
|
|
if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
|
|
pr_err("Restricted DMA pool must be accessible within the linear mapping.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rmem->ops = &rmem_swiotlb_ops;
|
|
pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
|
|
&rmem->base, (unsigned long)rmem->size / SZ_1M);
|
|
return 0;
|
|
}
|
|
|
|
RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
|
|
#endif /* CONFIG_DMA_RESTRICTED_POOL */
|