WSL2-Linux-Kernel/arch/i386/kernel/dmi_scan.c

243 строки
5.7 KiB
C

#include <linux/types.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/dmi.h>
#include <linux/bootmem.h>
struct dmi_header {
u8 type;
u8 length;
u16 handle;
};
#undef DMI_DEBUG
#ifdef DMI_DEBUG
#define dmi_printk(x) printk x
#else
#define dmi_printk(x)
#endif
static char * __init dmi_string(struct dmi_header *dm, u8 s)
{
u8 *bp = ((u8 *) dm) + dm->length;
if (!s)
return "";
s--;
while (s > 0 && *bp) {
bp += strlen(bp) + 1;
s--;
}
return bp;
}
/*
* We have to be cautious here. We have seen BIOSes with DMI pointers
* pointing to completely the wrong place for example
*/
static int __init dmi_table(u32 base, int len, int num,
void (*decode)(struct dmi_header *))
{
u8 *buf, *data;
int i = 0;
buf = bt_ioremap(base, len);
if (buf == NULL)
return -1;
data = buf;
/*
* Stop when we see all the items the table claimed to have
* OR we run off the end of the table (also happens)
*/
while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
struct dmi_header *dm = (struct dmi_header *)data;
/*
* We want to know the total length (formated area and strings)
* before decoding to make sure we won't run off the table in
* dmi_decode or dmi_string
*/
data += dm->length;
while ((data - buf < len - 1) && (data[0] || data[1]))
data++;
if (data - buf < len - 1)
decode(dm);
data += 2;
i++;
}
bt_iounmap(buf, len);
return 0;
}
static int __init dmi_checksum(u8 *buf)
{
u8 sum = 0;
int a;
for (a = 0; a < 15; a++)
sum += buf[a];
return sum == 0;
}
static int __init dmi_iterate(void (*decode)(struct dmi_header *))
{
u8 buf[15];
char __iomem *p, *q;
/*
* no iounmap() for that ioremap(); it would be a no-op, but it's
* so early in setup that sucker gets confused into doing what
* it shouldn't if we actually call it.
*/
p = ioremap(0xF0000, 0x10000);
if (p == NULL)
return -1;
for (q = p; q < p + 0x10000; q += 16) {
memcpy_fromio(buf, q, 15);
if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
u16 num = (buf[13] << 8) | buf[12];
u16 len = (buf[7] << 8) | buf[6];
u32 base = (buf[11] << 24) | (buf[10] << 16) |
(buf[9] << 8) | buf[8];
/*
* DMI version 0.0 means that the real version is taken from
* the SMBIOS version, which we don't know at this point.
*/
if (buf[14] != 0)
printk(KERN_INFO "DMI %d.%d present.\n",
buf[14] >> 4, buf[14] & 0xF);
else
printk(KERN_INFO "DMI present.\n");
dmi_printk((KERN_INFO "%d structures occupying %d bytes.\n",
num, len));
dmi_printk((KERN_INFO "DMI table at 0x%08X.\n", base));
if (dmi_table(base,len, num, decode) == 0)
return 0;
}
}
return -1;
}
static char *dmi_ident[DMI_STRING_MAX];
/*
* Save a DMI string
*/
static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string)
{
char *d = (char*)dm;
char *p = dmi_string(dm, d[string]);
if (p == NULL || *p == 0)
return;
if (dmi_ident[slot])
return;
dmi_ident[slot] = alloc_bootmem(strlen(p) + 1);
if(dmi_ident[slot])
strcpy(dmi_ident[slot], p);
else
printk(KERN_ERR "dmi_save_ident: out of memory.\n");
}
/*
* Process a DMI table entry. Right now all we care about are the BIOS
* and machine entries. For 2.5 we should pull the smbus controller info
* out of here.
*/
static void __init dmi_decode(struct dmi_header *dm)
{
u8 *data __attribute__((__unused__)) = (u8 *)dm;
switch(dm->type) {
case 0:
dmi_printk(("BIOS Vendor: %s\n", dmi_string(dm, data[4])));
dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
dmi_printk(("BIOS Version: %s\n", dmi_string(dm, data[5])));
dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
dmi_printk(("BIOS Release: %s\n", dmi_string(dm, data[8])));
dmi_save_ident(dm, DMI_BIOS_DATE, 8);
break;
case 1:
dmi_printk(("System Vendor: %s\n", dmi_string(dm, data[4])));
dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
dmi_printk(("Product Name: %s\n", dmi_string(dm, data[5])));
dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
dmi_printk(("Version: %s\n", dmi_string(dm, data[6])));
dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
dmi_printk(("Serial Number: %s\n", dmi_string(dm, data[7])));
dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
break;
case 2:
dmi_printk(("Board Vendor: %s\n", dmi_string(dm, data[4])));
dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
dmi_printk(("Board Name: %s\n", dmi_string(dm, data[5])));
dmi_save_ident(dm, DMI_BOARD_NAME, 5);
dmi_printk(("Board Version: %s\n", dmi_string(dm, data[6])));
dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
break;
}
}
void __init dmi_scan_machine(void)
{
if (dmi_iterate(dmi_decode))
printk(KERN_INFO "DMI not present.\n");
}
/**
* dmi_check_system - check system DMI data
* @list: array of dmi_system_id structures to match against
*
* Walk the blacklist table running matching functions until someone
* returns non zero or we hit the end. Callback function is called for
* each successfull match. Returns the number of matches.
*/
int dmi_check_system(struct dmi_system_id *list)
{
int i, count = 0;
struct dmi_system_id *d = list;
while (d->ident) {
for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
int s = d->matches[i].slot;
if (s == DMI_NONE)
continue;
if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
continue;
/* No match */
goto fail;
}
if (d->callback && d->callback(d))
break;
count++;
fail: d++;
}
return count;
}
EXPORT_SYMBOL(dmi_check_system);
/**
* dmi_get_system_info - return DMI data value
* @field: data index (see enum dmi_filed)
*
* Returns one DMI data value, can be used to perform
* complex DMI data checks.
*/
char *dmi_get_system_info(int field)
{
return dmi_ident[field];
}
EXPORT_SYMBOL(dmi_get_system_info);