1421 строка
36 KiB
C
1421 строка
36 KiB
C
/************************************************************************
|
|
* Copyright 2003 Digi International (www.digi.com)
|
|
*
|
|
* Copyright (C) 2004 IBM Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
|
|
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
|
|
* MA 02111-1307, USA.
|
|
*
|
|
* Contact Information:
|
|
* Scott H Kilau <Scott_Kilau@digi.com>
|
|
* Wendy Xiong <wendyx@us.ibm.com>
|
|
*
|
|
***********************************************************************/
|
|
#include <linux/delay.h> /* For udelay */
|
|
#include <linux/serial_reg.h> /* For the various UART offsets */
|
|
#include <linux/tty.h>
|
|
#include <linux/pci.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "jsm.h" /* Driver main header file */
|
|
|
|
static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
|
|
|
|
/*
|
|
* This function allows calls to ensure that all outstanding
|
|
* PCI writes have been completed, by doing a PCI read against
|
|
* a non-destructive, read-only location on the Neo card.
|
|
*
|
|
* In this case, we are reading the DVID (Read-only Device Identification)
|
|
* value of the Neo card.
|
|
*/
|
|
static inline void neo_pci_posting_flush(struct jsm_board *bd)
|
|
{
|
|
readb(bd->re_map_membase + 0x8D);
|
|
}
|
|
|
|
static void neo_set_cts_flow_control(struct jsm_channel *ch)
|
|
{
|
|
u8 ier, efr;
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
efr = readb(&ch->ch_neo_uart->efr);
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
|
|
|
|
/* Turn on auto CTS flow control */
|
|
ier |= (UART_17158_IER_CTSDSR);
|
|
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
|
|
|
|
/* Turn off auto Xon flow control */
|
|
efr &= ~(UART_17158_EFR_IXON);
|
|
|
|
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on UART enhanced bits */
|
|
writeb(efr, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on table D, with 8 char hi/low watermarks */
|
|
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
|
|
|
|
/* Feed the UART our trigger levels */
|
|
writeb(8, &ch->ch_neo_uart->tfifo);
|
|
ch->ch_t_tlevel = 8;
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
}
|
|
|
|
static void neo_set_rts_flow_control(struct jsm_channel *ch)
|
|
{
|
|
u8 ier, efr;
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
efr = readb(&ch->ch_neo_uart->efr);
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
|
|
|
|
/* Turn on auto RTS flow control */
|
|
ier |= (UART_17158_IER_RTSDTR);
|
|
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
|
|
|
|
/* Turn off auto Xoff flow control */
|
|
ier &= ~(UART_17158_IER_XOFF);
|
|
efr &= ~(UART_17158_EFR_IXOFF);
|
|
|
|
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on UART enhanced bits */
|
|
writeb(efr, &ch->ch_neo_uart->efr);
|
|
|
|
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
|
|
ch->ch_r_watermark = 4;
|
|
|
|
writeb(56, &ch->ch_neo_uart->rfifo);
|
|
ch->ch_r_tlevel = 56;
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
|
|
/*
|
|
* From the Neo UART spec sheet:
|
|
* The auto RTS/DTR function must be started by asserting
|
|
* RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
|
|
* it is enabled.
|
|
*/
|
|
ch->ch_mostat |= (UART_MCR_RTS);
|
|
}
|
|
|
|
|
|
static void neo_set_ixon_flow_control(struct jsm_channel *ch)
|
|
{
|
|
u8 ier, efr;
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
efr = readb(&ch->ch_neo_uart->efr);
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
|
|
|
|
/* Turn off auto CTS flow control */
|
|
ier &= ~(UART_17158_IER_CTSDSR);
|
|
efr &= ~(UART_17158_EFR_CTSDSR);
|
|
|
|
/* Turn on auto Xon flow control */
|
|
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
|
|
|
|
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on UART enhanced bits */
|
|
writeb(efr, &ch->ch_neo_uart->efr);
|
|
|
|
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
|
|
ch->ch_r_watermark = 4;
|
|
|
|
writeb(32, &ch->ch_neo_uart->rfifo);
|
|
ch->ch_r_tlevel = 32;
|
|
|
|
/* Tell UART what start/stop chars it should be looking for */
|
|
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
|
|
writeb(0, &ch->ch_neo_uart->xonchar2);
|
|
|
|
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
|
|
writeb(0, &ch->ch_neo_uart->xoffchar2);
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
}
|
|
|
|
static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
|
|
{
|
|
u8 ier, efr;
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
efr = readb(&ch->ch_neo_uart->efr);
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
|
|
|
|
/* Turn off auto RTS flow control */
|
|
ier &= ~(UART_17158_IER_RTSDTR);
|
|
efr &= ~(UART_17158_EFR_RTSDTR);
|
|
|
|
/* Turn on auto Xoff flow control */
|
|
ier |= (UART_17158_IER_XOFF);
|
|
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
|
|
|
|
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on UART enhanced bits */
|
|
writeb(efr, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on table D, with 8 char hi/low watermarks */
|
|
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
|
|
|
|
writeb(8, &ch->ch_neo_uart->tfifo);
|
|
ch->ch_t_tlevel = 8;
|
|
|
|
/* Tell UART what start/stop chars it should be looking for */
|
|
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
|
|
writeb(0, &ch->ch_neo_uart->xonchar2);
|
|
|
|
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
|
|
writeb(0, &ch->ch_neo_uart->xoffchar2);
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
}
|
|
|
|
static void neo_set_no_input_flow_control(struct jsm_channel *ch)
|
|
{
|
|
u8 ier, efr;
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
efr = readb(&ch->ch_neo_uart->efr);
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
|
|
|
|
/* Turn off auto RTS flow control */
|
|
ier &= ~(UART_17158_IER_RTSDTR);
|
|
efr &= ~(UART_17158_EFR_RTSDTR);
|
|
|
|
/* Turn off auto Xoff flow control */
|
|
ier &= ~(UART_17158_IER_XOFF);
|
|
if (ch->ch_c_iflag & IXON)
|
|
efr &= ~(UART_17158_EFR_IXOFF);
|
|
else
|
|
efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
|
|
|
|
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on UART enhanced bits */
|
|
writeb(efr, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on table D, with 8 char hi/low watermarks */
|
|
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
|
|
|
|
ch->ch_r_watermark = 0;
|
|
|
|
writeb(16, &ch->ch_neo_uart->tfifo);
|
|
ch->ch_t_tlevel = 16;
|
|
|
|
writeb(16, &ch->ch_neo_uart->rfifo);
|
|
ch->ch_r_tlevel = 16;
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
}
|
|
|
|
static void neo_set_no_output_flow_control(struct jsm_channel *ch)
|
|
{
|
|
u8 ier, efr;
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
efr = readb(&ch->ch_neo_uart->efr);
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
|
|
|
|
/* Turn off auto CTS flow control */
|
|
ier &= ~(UART_17158_IER_CTSDSR);
|
|
efr &= ~(UART_17158_EFR_CTSDSR);
|
|
|
|
/* Turn off auto Xon flow control */
|
|
if (ch->ch_c_iflag & IXOFF)
|
|
efr &= ~(UART_17158_EFR_IXON);
|
|
else
|
|
efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
|
|
|
|
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on UART enhanced bits */
|
|
writeb(efr, &ch->ch_neo_uart->efr);
|
|
|
|
/* Turn on table D, with 8 char hi/low watermarks */
|
|
writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
|
|
|
|
ch->ch_r_watermark = 0;
|
|
|
|
writeb(16, &ch->ch_neo_uart->tfifo);
|
|
ch->ch_t_tlevel = 16;
|
|
|
|
writeb(16, &ch->ch_neo_uart->rfifo);
|
|
ch->ch_r_tlevel = 16;
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
}
|
|
|
|
static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
|
|
{
|
|
|
|
/* if hardware flow control is set, then skip this whole thing */
|
|
if (ch->ch_c_cflag & CRTSCTS)
|
|
return;
|
|
|
|
jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
|
|
|
|
/* Tell UART what start/stop chars it should be looking for */
|
|
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
|
|
writeb(0, &ch->ch_neo_uart->xonchar2);
|
|
|
|
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
|
|
writeb(0, &ch->ch_neo_uart->xoffchar2);
|
|
}
|
|
|
|
static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
|
|
{
|
|
int qleft = 0;
|
|
u8 linestatus = 0;
|
|
u8 error_mask = 0;
|
|
int n = 0;
|
|
int total = 0;
|
|
u16 head;
|
|
u16 tail;
|
|
|
|
if (!ch)
|
|
return;
|
|
|
|
/* cache head and tail of queue */
|
|
head = ch->ch_r_head & RQUEUEMASK;
|
|
tail = ch->ch_r_tail & RQUEUEMASK;
|
|
|
|
/* Get our cached LSR */
|
|
linestatus = ch->ch_cached_lsr;
|
|
ch->ch_cached_lsr = 0;
|
|
|
|
/* Store how much space we have left in the queue */
|
|
if ((qleft = tail - head - 1) < 0)
|
|
qleft += RQUEUEMASK + 1;
|
|
|
|
/*
|
|
* If the UART is not in FIFO mode, force the FIFO copy to
|
|
* NOT be run, by setting total to 0.
|
|
*
|
|
* On the other hand, if the UART IS in FIFO mode, then ask
|
|
* the UART to give us an approximation of data it has RX'ed.
|
|
*/
|
|
if (!(ch->ch_flags & CH_FIFO_ENABLED))
|
|
total = 0;
|
|
else {
|
|
total = readb(&ch->ch_neo_uart->rfifo);
|
|
|
|
/*
|
|
* EXAR chip bug - RX FIFO COUNT - Fudge factor.
|
|
*
|
|
* This resolves a problem/bug with the Exar chip that sometimes
|
|
* returns a bogus value in the rfifo register.
|
|
* The count can be any where from 0-3 bytes "off".
|
|
* Bizarre, but true.
|
|
*/
|
|
total -= 3;
|
|
}
|
|
|
|
/*
|
|
* Finally, bound the copy to make sure we don't overflow
|
|
* our own queue...
|
|
* The byte by byte copy loop below this loop this will
|
|
* deal with the queue overflow possibility.
|
|
*/
|
|
total = min(total, qleft);
|
|
|
|
while (total > 0) {
|
|
/*
|
|
* Grab the linestatus register, we need to check
|
|
* to see if there are any errors in the FIFO.
|
|
*/
|
|
linestatus = readb(&ch->ch_neo_uart->lsr);
|
|
|
|
/*
|
|
* Break out if there is a FIFO error somewhere.
|
|
* This will allow us to go byte by byte down below,
|
|
* finding the exact location of the error.
|
|
*/
|
|
if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
|
|
break;
|
|
|
|
/* Make sure we don't go over the end of our queue */
|
|
n = min(((u32) total), (RQUEUESIZE - (u32) head));
|
|
|
|
/*
|
|
* Cut down n even further if needed, this is to fix
|
|
* a problem with memcpy_fromio() with the Neo on the
|
|
* IBM pSeries platform.
|
|
* 15 bytes max appears to be the magic number.
|
|
*/
|
|
n = min((u32) n, (u32) 12);
|
|
|
|
/*
|
|
* Since we are grabbing the linestatus register, which
|
|
* will reset some bits after our read, we need to ensure
|
|
* we don't miss our TX FIFO emptys.
|
|
*/
|
|
if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
|
|
linestatus = 0;
|
|
|
|
/* Copy data from uart to the queue */
|
|
memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
|
|
/*
|
|
* Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
|
|
* that all the data currently in the FIFO is free of
|
|
* breaks and parity/frame/orun errors.
|
|
*/
|
|
memset(ch->ch_equeue + head, 0, n);
|
|
|
|
/* Add to and flip head if needed */
|
|
head = (head + n) & RQUEUEMASK;
|
|
total -= n;
|
|
qleft -= n;
|
|
ch->ch_rxcount += n;
|
|
}
|
|
|
|
/*
|
|
* Create a mask to determine whether we should
|
|
* insert the character (if any) into our queue.
|
|
*/
|
|
if (ch->ch_c_iflag & IGNBRK)
|
|
error_mask |= UART_LSR_BI;
|
|
|
|
/*
|
|
* Now cleanup any leftover bytes still in the UART.
|
|
* Also deal with any possible queue overflow here as well.
|
|
*/
|
|
while (1) {
|
|
|
|
/*
|
|
* Its possible we have a linestatus from the loop above
|
|
* this, so we "OR" on any extra bits.
|
|
*/
|
|
linestatus |= readb(&ch->ch_neo_uart->lsr);
|
|
|
|
/*
|
|
* If the chip tells us there is no more data pending to
|
|
* be read, we can then leave.
|
|
* But before we do, cache the linestatus, just in case.
|
|
*/
|
|
if (!(linestatus & UART_LSR_DR)) {
|
|
ch->ch_cached_lsr = linestatus;
|
|
break;
|
|
}
|
|
|
|
/* No need to store this bit */
|
|
linestatus &= ~UART_LSR_DR;
|
|
|
|
/*
|
|
* Since we are grabbing the linestatus register, which
|
|
* will reset some bits after our read, we need to ensure
|
|
* we don't miss our TX FIFO emptys.
|
|
*/
|
|
if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
|
|
linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
}
|
|
|
|
/*
|
|
* Discard character if we are ignoring the error mask.
|
|
*/
|
|
if (linestatus & error_mask) {
|
|
u8 discard;
|
|
linestatus = 0;
|
|
memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If our queue is full, we have no choice but to drop some data.
|
|
* The assumption is that HWFLOW or SWFLOW should have stopped
|
|
* things way way before we got to this point.
|
|
*
|
|
* I decided that I wanted to ditch the oldest data first,
|
|
* I hope thats okay with everyone? Yes? Good.
|
|
*/
|
|
while (qleft < 1) {
|
|
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
|
|
"Queue full, dropping DATA:%x LSR:%x\n",
|
|
ch->ch_rqueue[tail], ch->ch_equeue[tail]);
|
|
|
|
ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
|
|
ch->ch_err_overrun++;
|
|
qleft++;
|
|
}
|
|
|
|
memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
|
|
ch->ch_equeue[head] = (u8) linestatus;
|
|
|
|
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
|
|
"DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
|
|
|
|
/* Ditch any remaining linestatus value. */
|
|
linestatus = 0;
|
|
|
|
/* Add to and flip head if needed */
|
|
head = (head + 1) & RQUEUEMASK;
|
|
|
|
qleft--;
|
|
ch->ch_rxcount++;
|
|
}
|
|
|
|
/*
|
|
* Write new final heads to channel structure.
|
|
*/
|
|
ch->ch_r_head = head & RQUEUEMASK;
|
|
ch->ch_e_head = head & EQUEUEMASK;
|
|
jsm_input(ch);
|
|
}
|
|
|
|
static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
|
|
{
|
|
u16 head;
|
|
u16 tail;
|
|
int n;
|
|
int s;
|
|
int qlen;
|
|
u32 len_written = 0;
|
|
|
|
if (!ch)
|
|
return;
|
|
|
|
/* No data to write to the UART */
|
|
if (ch->ch_w_tail == ch->ch_w_head)
|
|
return;
|
|
|
|
/* If port is "stopped", don't send any data to the UART */
|
|
if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
|
|
return;
|
|
/*
|
|
* If FIFOs are disabled. Send data directly to txrx register
|
|
*/
|
|
if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
|
|
u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
|
|
|
|
ch->ch_cached_lsr |= lsrbits;
|
|
if (ch->ch_cached_lsr & UART_LSR_THRE) {
|
|
ch->ch_cached_lsr &= ~(UART_LSR_THRE);
|
|
|
|
writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
|
|
jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
|
|
"Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
|
|
ch->ch_w_tail++;
|
|
ch->ch_w_tail &= WQUEUEMASK;
|
|
ch->ch_txcount++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We have to do it this way, because of the EXAR TXFIFO count bug.
|
|
*/
|
|
if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
|
|
return;
|
|
|
|
n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
|
|
|
|
/* cache head and tail of queue */
|
|
head = ch->ch_w_head & WQUEUEMASK;
|
|
tail = ch->ch_w_tail & WQUEUEMASK;
|
|
qlen = (head - tail) & WQUEUEMASK;
|
|
|
|
/* Find minimum of the FIFO space, versus queue length */
|
|
n = min(n, qlen);
|
|
|
|
while (n > 0) {
|
|
|
|
s = ((head >= tail) ? head : WQUEUESIZE) - tail;
|
|
s = min(s, n);
|
|
|
|
if (s <= 0)
|
|
break;
|
|
|
|
memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
|
|
/* Add and flip queue if needed */
|
|
tail = (tail + s) & WQUEUEMASK;
|
|
n -= s;
|
|
ch->ch_txcount += s;
|
|
len_written += s;
|
|
}
|
|
|
|
/* Update the final tail */
|
|
ch->ch_w_tail = tail & WQUEUEMASK;
|
|
|
|
if (len_written >= ch->ch_t_tlevel)
|
|
ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
|
|
if (!jsm_tty_write(&ch->uart_port))
|
|
uart_write_wakeup(&ch->uart_port);
|
|
}
|
|
|
|
static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
|
|
{
|
|
u8 msignals = signals;
|
|
|
|
jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
|
|
"neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
|
|
|
|
/* Scrub off lower bits. They signify delta's, which I don't care about */
|
|
/* Keep DDCD and DDSR though */
|
|
msignals &= 0xf8;
|
|
|
|
if (msignals & UART_MSR_DDCD)
|
|
uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
|
|
if (msignals & UART_MSR_DDSR)
|
|
uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
|
|
if (msignals & UART_MSR_DCD)
|
|
ch->ch_mistat |= UART_MSR_DCD;
|
|
else
|
|
ch->ch_mistat &= ~UART_MSR_DCD;
|
|
|
|
if (msignals & UART_MSR_DSR)
|
|
ch->ch_mistat |= UART_MSR_DSR;
|
|
else
|
|
ch->ch_mistat &= ~UART_MSR_DSR;
|
|
|
|
if (msignals & UART_MSR_RI)
|
|
ch->ch_mistat |= UART_MSR_RI;
|
|
else
|
|
ch->ch_mistat &= ~UART_MSR_RI;
|
|
|
|
if (msignals & UART_MSR_CTS)
|
|
ch->ch_mistat |= UART_MSR_CTS;
|
|
else
|
|
ch->ch_mistat &= ~UART_MSR_CTS;
|
|
|
|
jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
|
|
"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
|
|
ch->ch_portnum,
|
|
!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
|
|
!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
|
|
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
|
|
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
|
|
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
|
|
!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
|
|
}
|
|
|
|
/* Make the UART raise any of the output signals we want up */
|
|
static void neo_assert_modem_signals(struct jsm_channel *ch)
|
|
{
|
|
if (!ch)
|
|
return;
|
|
|
|
writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
|
|
/*
|
|
* Flush the WRITE FIFO on the Neo.
|
|
*
|
|
* NOTE: Channel lock MUST be held before calling this function!
|
|
*/
|
|
static void neo_flush_uart_write(struct jsm_channel *ch)
|
|
{
|
|
u8 tmp = 0;
|
|
int i = 0;
|
|
|
|
if (!ch)
|
|
return;
|
|
|
|
writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
|
|
/* Check to see if the UART feels it completely flushed the FIFO. */
|
|
tmp = readb(&ch->ch_neo_uart->isr_fcr);
|
|
if (tmp & 4) {
|
|
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
|
|
"Still flushing TX UART... i: %d\n", i);
|
|
udelay(10);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
}
|
|
|
|
|
|
/*
|
|
* Flush the READ FIFO on the Neo.
|
|
*
|
|
* NOTE: Channel lock MUST be held before calling this function!
|
|
*/
|
|
static void neo_flush_uart_read(struct jsm_channel *ch)
|
|
{
|
|
u8 tmp = 0;
|
|
int i = 0;
|
|
|
|
if (!ch)
|
|
return;
|
|
|
|
writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
|
|
/* Check to see if the UART feels it completely flushed the FIFO. */
|
|
tmp = readb(&ch->ch_neo_uart->isr_fcr);
|
|
if (tmp & 2) {
|
|
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
|
|
"Still flushing RX UART... i: %d\n", i);
|
|
udelay(10);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No locks are assumed to be held when calling this function.
|
|
*/
|
|
static void neo_clear_break(struct jsm_channel *ch, int force)
|
|
{
|
|
unsigned long lock_flags;
|
|
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
|
|
/* Turn break off, and unset some variables */
|
|
if (ch->ch_flags & CH_BREAK_SENDING) {
|
|
u8 temp = readb(&ch->ch_neo_uart->lcr);
|
|
writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
|
|
|
|
ch->ch_flags &= ~(CH_BREAK_SENDING);
|
|
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
|
|
"clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
}
|
|
|
|
/*
|
|
* Parse the ISR register.
|
|
*/
|
|
static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
|
|
{
|
|
struct jsm_channel *ch;
|
|
u8 isr;
|
|
u8 cause;
|
|
unsigned long lock_flags;
|
|
|
|
if (!brd)
|
|
return;
|
|
|
|
if (port > brd->maxports)
|
|
return;
|
|
|
|
ch = brd->channels[port];
|
|
if (!ch)
|
|
return;
|
|
|
|
/* Here we try to figure out what caused the interrupt to happen */
|
|
while (1) {
|
|
|
|
isr = readb(&ch->ch_neo_uart->isr_fcr);
|
|
|
|
/* Bail if no pending interrupt */
|
|
if (isr & UART_IIR_NO_INT)
|
|
break;
|
|
|
|
/*
|
|
* Yank off the upper 2 bits, which just show that the FIFO's are enabled.
|
|
*/
|
|
isr &= ~(UART_17158_IIR_FIFO_ENABLED);
|
|
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"%s:%d isr: %x\n", __FILE__, __LINE__, isr);
|
|
|
|
if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
|
|
/* Read data from uart -> queue */
|
|
neo_copy_data_from_uart_to_queue(ch);
|
|
|
|
/* Call our tty layer to enforce queue flow control if needed. */
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
jsm_check_queue_flow_control(ch);
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
}
|
|
|
|
if (isr & UART_IIR_THRI) {
|
|
/* Transfer data (if any) from Write Queue -> UART. */
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
neo_copy_data_from_queue_to_uart(ch);
|
|
}
|
|
|
|
if (isr & UART_17158_IIR_XONXOFF) {
|
|
cause = readb(&ch->ch_neo_uart->xoffchar1);
|
|
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
|
|
|
|
/*
|
|
* Since the UART detected either an XON or
|
|
* XOFF match, we need to figure out which
|
|
* one it was, so we can suspend or resume data flow.
|
|
*/
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
if (cause == UART_17158_XON_DETECT) {
|
|
/* Is output stopped right now, if so, resume it */
|
|
if (brd->channels[port]->ch_flags & CH_STOP) {
|
|
ch->ch_flags &= ~(CH_STOP);
|
|
}
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"Port %d. XON detected in incoming data\n", port);
|
|
}
|
|
else if (cause == UART_17158_XOFF_DETECT) {
|
|
if (!(brd->channels[port]->ch_flags & CH_STOP)) {
|
|
ch->ch_flags |= CH_STOP;
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"Setting CH_STOP\n");
|
|
}
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"Port: %d. XOFF detected in incoming data\n", port);
|
|
}
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
}
|
|
|
|
if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
|
|
/*
|
|
* If we get here, this means the hardware is doing auto flow control.
|
|
* Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
|
|
*/
|
|
cause = readb(&ch->ch_neo_uart->mcr);
|
|
|
|
/* Which pin is doing auto flow? RTS or DTR? */
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
if ((cause & 0x4) == 0) {
|
|
if (cause & UART_MCR_RTS)
|
|
ch->ch_mostat |= UART_MCR_RTS;
|
|
else
|
|
ch->ch_mostat &= ~(UART_MCR_RTS);
|
|
} else {
|
|
if (cause & UART_MCR_DTR)
|
|
ch->ch_mostat |= UART_MCR_DTR;
|
|
else
|
|
ch->ch_mostat &= ~(UART_MCR_DTR);
|
|
}
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
}
|
|
|
|
/* Parse any modem signal changes */
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"MOD_STAT: sending to parse_modem_sigs\n");
|
|
neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
|
|
}
|
|
}
|
|
|
|
static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
|
|
{
|
|
struct jsm_channel *ch;
|
|
int linestatus;
|
|
unsigned long lock_flags;
|
|
|
|
if (!brd)
|
|
return;
|
|
|
|
if (port > brd->maxports)
|
|
return;
|
|
|
|
ch = brd->channels[port];
|
|
if (!ch)
|
|
return;
|
|
|
|
linestatus = readb(&ch->ch_neo_uart->lsr);
|
|
|
|
jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
|
|
"%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
|
|
|
|
ch->ch_cached_lsr |= linestatus;
|
|
|
|
if (ch->ch_cached_lsr & UART_LSR_DR) {
|
|
/* Read data from uart -> queue */
|
|
neo_copy_data_from_uart_to_queue(ch);
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
jsm_check_queue_flow_control(ch);
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
}
|
|
|
|
/*
|
|
* This is a special flag. It indicates that at least 1
|
|
* RX error (parity, framing, or break) has happened.
|
|
* Mark this in our struct, which will tell me that I have
|
|
*to do the special RX+LSR read for this FIFO load.
|
|
*/
|
|
if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
|
|
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
|
|
"%s:%d Port: %d Got an RX error, need to parse LSR\n",
|
|
__FILE__, __LINE__, port);
|
|
|
|
/*
|
|
* The next 3 tests should *NOT* happen, as the above test
|
|
* should encapsulate all 3... At least, thats what Exar says.
|
|
*/
|
|
|
|
if (linestatus & UART_LSR_PE) {
|
|
ch->ch_err_parity++;
|
|
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
|
|
"%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
|
|
}
|
|
|
|
if (linestatus & UART_LSR_FE) {
|
|
ch->ch_err_frame++;
|
|
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
|
|
"%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
|
|
}
|
|
|
|
if (linestatus & UART_LSR_BI) {
|
|
ch->ch_err_break++;
|
|
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
|
|
"%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
|
|
}
|
|
|
|
if (linestatus & UART_LSR_OE) {
|
|
/*
|
|
* Rx Oruns. Exar says that an orun will NOT corrupt
|
|
* the FIFO. It will just replace the holding register
|
|
* with this new data byte. So basically just ignore this.
|
|
* Probably we should eventually have an orun stat in our driver...
|
|
*/
|
|
ch->ch_err_overrun++;
|
|
jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
|
|
"%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
|
|
}
|
|
|
|
if (linestatus & UART_LSR_THRE) {
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
|
|
/* Transfer data (if any) from Write Queue -> UART. */
|
|
neo_copy_data_from_queue_to_uart(ch);
|
|
}
|
|
else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags);
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
|
|
|
|
/* Transfer data (if any) from Write Queue -> UART. */
|
|
neo_copy_data_from_queue_to_uart(ch);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* neo_param()
|
|
* Send any/all changes to the line to the UART.
|
|
*/
|
|
static void neo_param(struct jsm_channel *ch)
|
|
{
|
|
u8 lcr = 0;
|
|
u8 uart_lcr, ier;
|
|
u32 baud;
|
|
int quot;
|
|
struct jsm_board *bd;
|
|
|
|
bd = ch->ch_bd;
|
|
if (!bd)
|
|
return;
|
|
|
|
/*
|
|
* If baud rate is zero, flush queues, and set mval to drop DTR.
|
|
*/
|
|
if ((ch->ch_c_cflag & (CBAUD)) == 0) {
|
|
ch->ch_r_head = ch->ch_r_tail = 0;
|
|
ch->ch_e_head = ch->ch_e_tail = 0;
|
|
ch->ch_w_head = ch->ch_w_tail = 0;
|
|
|
|
neo_flush_uart_write(ch);
|
|
neo_flush_uart_read(ch);
|
|
|
|
ch->ch_flags |= (CH_BAUD0);
|
|
ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
|
|
neo_assert_modem_signals(ch);
|
|
ch->ch_old_baud = 0;
|
|
return;
|
|
|
|
} else if (ch->ch_custom_speed) {
|
|
baud = ch->ch_custom_speed;
|
|
if (ch->ch_flags & CH_BAUD0)
|
|
ch->ch_flags &= ~(CH_BAUD0);
|
|
} else {
|
|
int i;
|
|
unsigned int cflag;
|
|
static struct {
|
|
unsigned int rate;
|
|
unsigned int cflag;
|
|
} baud_rates[] = {
|
|
{ 921600, B921600 },
|
|
{ 460800, B460800 },
|
|
{ 230400, B230400 },
|
|
{ 115200, B115200 },
|
|
{ 57600, B57600 },
|
|
{ 38400, B38400 },
|
|
{ 19200, B19200 },
|
|
{ 9600, B9600 },
|
|
{ 4800, B4800 },
|
|
{ 2400, B2400 },
|
|
{ 1200, B1200 },
|
|
{ 600, B600 },
|
|
{ 300, B300 },
|
|
{ 200, B200 },
|
|
{ 150, B150 },
|
|
{ 134, B134 },
|
|
{ 110, B110 },
|
|
{ 75, B75 },
|
|
{ 50, B50 },
|
|
};
|
|
|
|
cflag = C_BAUD(ch->uart_port.state->port.tty);
|
|
baud = 9600;
|
|
for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
|
|
if (baud_rates[i].cflag == cflag) {
|
|
baud = baud_rates[i].rate;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ch->ch_flags & CH_BAUD0)
|
|
ch->ch_flags &= ~(CH_BAUD0);
|
|
}
|
|
|
|
if (ch->ch_c_cflag & PARENB)
|
|
lcr |= UART_LCR_PARITY;
|
|
|
|
if (!(ch->ch_c_cflag & PARODD))
|
|
lcr |= UART_LCR_EPAR;
|
|
|
|
/*
|
|
* Not all platforms support mark/space parity,
|
|
* so this will hide behind an ifdef.
|
|
*/
|
|
#ifdef CMSPAR
|
|
if (ch->ch_c_cflag & CMSPAR)
|
|
lcr |= UART_LCR_SPAR;
|
|
#endif
|
|
|
|
if (ch->ch_c_cflag & CSTOPB)
|
|
lcr |= UART_LCR_STOP;
|
|
|
|
switch (ch->ch_c_cflag & CSIZE) {
|
|
case CS5:
|
|
lcr |= UART_LCR_WLEN5;
|
|
break;
|
|
case CS6:
|
|
lcr |= UART_LCR_WLEN6;
|
|
break;
|
|
case CS7:
|
|
lcr |= UART_LCR_WLEN7;
|
|
break;
|
|
case CS8:
|
|
default:
|
|
lcr |= UART_LCR_WLEN8;
|
|
break;
|
|
}
|
|
|
|
ier = readb(&ch->ch_neo_uart->ier);
|
|
uart_lcr = readb(&ch->ch_neo_uart->lcr);
|
|
|
|
if (baud == 0)
|
|
baud = 9600;
|
|
|
|
quot = ch->ch_bd->bd_dividend / baud;
|
|
|
|
if (quot != 0) {
|
|
ch->ch_old_baud = baud;
|
|
writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
|
|
writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
|
|
writeb((quot >> 8), &ch->ch_neo_uart->ier);
|
|
writeb(lcr, &ch->ch_neo_uart->lcr);
|
|
}
|
|
|
|
if (uart_lcr != lcr)
|
|
writeb(lcr, &ch->ch_neo_uart->lcr);
|
|
|
|
if (ch->ch_c_cflag & CREAD)
|
|
ier |= (UART_IER_RDI | UART_IER_RLSI);
|
|
|
|
ier |= (UART_IER_THRI | UART_IER_MSI);
|
|
|
|
writeb(ier, &ch->ch_neo_uart->ier);
|
|
|
|
/* Set new start/stop chars */
|
|
neo_set_new_start_stop_chars(ch);
|
|
|
|
if (ch->ch_c_cflag & CRTSCTS)
|
|
neo_set_cts_flow_control(ch);
|
|
else if (ch->ch_c_iflag & IXON) {
|
|
/* If start/stop is set to disable, then we should disable flow control */
|
|
if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
|
|
neo_set_no_output_flow_control(ch);
|
|
else
|
|
neo_set_ixon_flow_control(ch);
|
|
}
|
|
else
|
|
neo_set_no_output_flow_control(ch);
|
|
|
|
if (ch->ch_c_cflag & CRTSCTS)
|
|
neo_set_rts_flow_control(ch);
|
|
else if (ch->ch_c_iflag & IXOFF) {
|
|
/* If start/stop is set to disable, then we should disable flow control */
|
|
if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
|
|
neo_set_no_input_flow_control(ch);
|
|
else
|
|
neo_set_ixoff_flow_control(ch);
|
|
}
|
|
else
|
|
neo_set_no_input_flow_control(ch);
|
|
/*
|
|
* Adjust the RX FIFO Trigger level if baud is less than 9600.
|
|
* Not exactly elegant, but this is needed because of the Exar chip's
|
|
* delay on firing off the RX FIFO interrupt on slower baud rates.
|
|
*/
|
|
if (baud < 9600) {
|
|
writeb(1, &ch->ch_neo_uart->rfifo);
|
|
ch->ch_r_tlevel = 1;
|
|
}
|
|
|
|
neo_assert_modem_signals(ch);
|
|
|
|
/* Get current status of the modem signals now */
|
|
neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* jsm_neo_intr()
|
|
*
|
|
* Neo specific interrupt handler.
|
|
*/
|
|
static irqreturn_t neo_intr(int irq, void *voidbrd)
|
|
{
|
|
struct jsm_board *brd = voidbrd;
|
|
struct jsm_channel *ch;
|
|
int port = 0;
|
|
int type = 0;
|
|
int current_port;
|
|
u32 tmp;
|
|
u32 uart_poll;
|
|
unsigned long lock_flags;
|
|
unsigned long lock_flags2;
|
|
int outofloop_count = 0;
|
|
|
|
brd->intr_count++;
|
|
|
|
/* Lock out the slow poller from running on this board. */
|
|
spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
|
|
|
|
/*
|
|
* Read in "extended" IRQ information from the 32bit Neo register.
|
|
* Bits 0-7: What port triggered the interrupt.
|
|
* Bits 8-31: Each 3bits indicate what type of interrupt occurred.
|
|
*/
|
|
uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
|
|
|
|
jsm_printk(INTR, INFO, &brd->pci_dev,
|
|
"%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
|
|
|
|
if (!uart_poll) {
|
|
jsm_printk(INTR, INFO, &brd->pci_dev,
|
|
"Kernel interrupted to me, but no pending interrupts...\n");
|
|
spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* At this point, we have at least SOMETHING to service, dig further... */
|
|
|
|
current_port = 0;
|
|
|
|
/* Loop on each port */
|
|
while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
|
|
|
|
tmp = uart_poll;
|
|
outofloop_count++;
|
|
|
|
/* Check current port to see if it has interrupt pending */
|
|
if ((tmp & jsm_offset_table[current_port]) != 0) {
|
|
port = current_port;
|
|
type = tmp >> (8 + (port * 3));
|
|
type &= 0x7;
|
|
} else {
|
|
current_port++;
|
|
continue;
|
|
}
|
|
|
|
jsm_printk(INTR, INFO, &brd->pci_dev,
|
|
"%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
|
|
|
|
/* Remove this port + type from uart_poll */
|
|
uart_poll &= ~(jsm_offset_table[port]);
|
|
|
|
if (!type) {
|
|
/* If no type, just ignore it, and move onto next port */
|
|
jsm_printk(INTR, ERR, &brd->pci_dev,
|
|
"Interrupt with no type! port: %d\n", port);
|
|
continue;
|
|
}
|
|
|
|
/* Switch on type of interrupt we have */
|
|
switch (type) {
|
|
|
|
case UART_17158_RXRDY_TIMEOUT:
|
|
/*
|
|
* RXRDY Time-out is cleared by reading data in the
|
|
* RX FIFO until it falls below the trigger level.
|
|
*/
|
|
|
|
/* Verify the port is in range. */
|
|
if (port > brd->nasync)
|
|
continue;
|
|
|
|
ch = brd->channels[port];
|
|
neo_copy_data_from_uart_to_queue(ch);
|
|
|
|
/* Call our tty layer to enforce queue flow control if needed. */
|
|
spin_lock_irqsave(&ch->ch_lock, lock_flags2);
|
|
jsm_check_queue_flow_control(ch);
|
|
spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
|
|
|
|
continue;
|
|
|
|
case UART_17158_RX_LINE_STATUS:
|
|
/*
|
|
* RXRDY and RX LINE Status (logic OR of LSR[4:1])
|
|
*/
|
|
neo_parse_lsr(brd, port);
|
|
continue;
|
|
|
|
case UART_17158_TXRDY:
|
|
/*
|
|
* TXRDY interrupt clears after reading ISR register for the UART channel.
|
|
*/
|
|
|
|
/*
|
|
* Yes, this is odd...
|
|
* Why would I check EVERY possibility of type of
|
|
* interrupt, when we know its TXRDY???
|
|
* Becuz for some reason, even tho we got triggered for TXRDY,
|
|
* it seems to be occassionally wrong. Instead of TX, which
|
|
* it should be, I was getting things like RXDY too. Weird.
|
|
*/
|
|
neo_parse_isr(brd, port);
|
|
continue;
|
|
|
|
case UART_17158_MSR:
|
|
/*
|
|
* MSR or flow control was seen.
|
|
*/
|
|
neo_parse_isr(brd, port);
|
|
continue;
|
|
|
|
default:
|
|
/*
|
|
* The UART triggered us with a bogus interrupt type.
|
|
* It appears the Exar chip, when REALLY bogged down, will throw
|
|
* these once and awhile.
|
|
* Its harmless, just ignore it and move on.
|
|
*/
|
|
jsm_printk(INTR, ERR, &brd->pci_dev,
|
|
"%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
|
|
|
|
jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Neo specific way of turning off the receiver.
|
|
* Used as a way to enforce queue flow control when in
|
|
* hardware flow control mode.
|
|
*/
|
|
static void neo_disable_receiver(struct jsm_channel *ch)
|
|
{
|
|
u8 tmp = readb(&ch->ch_neo_uart->ier);
|
|
tmp &= ~(UART_IER_RDI);
|
|
writeb(tmp, &ch->ch_neo_uart->ier);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
|
|
|
|
/*
|
|
* Neo specific way of turning on the receiver.
|
|
* Used as a way to un-enforce queue flow control when in
|
|
* hardware flow control mode.
|
|
*/
|
|
static void neo_enable_receiver(struct jsm_channel *ch)
|
|
{
|
|
u8 tmp = readb(&ch->ch_neo_uart->ier);
|
|
tmp |= (UART_IER_RDI);
|
|
writeb(tmp, &ch->ch_neo_uart->ier);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
|
|
static void neo_send_start_character(struct jsm_channel *ch)
|
|
{
|
|
if (!ch)
|
|
return;
|
|
|
|
if (ch->ch_startc != __DISABLED_CHAR) {
|
|
ch->ch_xon_sends++;
|
|
writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
}
|
|
|
|
static void neo_send_stop_character(struct jsm_channel *ch)
|
|
{
|
|
if (!ch)
|
|
return;
|
|
|
|
if (ch->ch_stopc != __DISABLED_CHAR) {
|
|
ch->ch_xoff_sends++;
|
|
writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* neo_uart_init
|
|
*/
|
|
static void neo_uart_init(struct jsm_channel *ch)
|
|
{
|
|
writeb(0, &ch->ch_neo_uart->ier);
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
|
|
|
|
/* Clear out UART and FIFO */
|
|
readb(&ch->ch_neo_uart->txrx);
|
|
writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
|
|
readb(&ch->ch_neo_uart->lsr);
|
|
readb(&ch->ch_neo_uart->msr);
|
|
|
|
ch->ch_flags |= CH_FIFO_ENABLED;
|
|
|
|
/* Assert any signals we want up */
|
|
writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
|
|
}
|
|
|
|
/*
|
|
* Make the UART completely turn off.
|
|
*/
|
|
static void neo_uart_off(struct jsm_channel *ch)
|
|
{
|
|
/* Turn off UART enhanced bits */
|
|
writeb(0, &ch->ch_neo_uart->efr);
|
|
|
|
/* Stop all interrupts from occurring. */
|
|
writeb(0, &ch->ch_neo_uart->ier);
|
|
}
|
|
|
|
static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
|
|
{
|
|
u8 left = 0;
|
|
u8 lsr = readb(&ch->ch_neo_uart->lsr);
|
|
|
|
/* We must cache the LSR as some of the bits get reset once read... */
|
|
ch->ch_cached_lsr |= lsr;
|
|
|
|
/* Determine whether the Transmitter is empty or not */
|
|
if (!(lsr & UART_LSR_TEMT))
|
|
left = 1;
|
|
else {
|
|
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
|
|
left = 0;
|
|
}
|
|
|
|
return left;
|
|
}
|
|
|
|
/* Channel lock MUST be held by the calling function! */
|
|
static void neo_send_break(struct jsm_channel *ch)
|
|
{
|
|
/*
|
|
* Set the time we should stop sending the break.
|
|
* If we are already sending a break, toss away the existing
|
|
* time to stop, and use this new value instead.
|
|
*/
|
|
|
|
/* Tell the UART to start sending the break */
|
|
if (!(ch->ch_flags & CH_BREAK_SENDING)) {
|
|
u8 temp = readb(&ch->ch_neo_uart->lcr);
|
|
writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
|
|
ch->ch_flags |= (CH_BREAK_SENDING);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* neo_send_immediate_char.
|
|
*
|
|
* Sends a specific character as soon as possible to the UART,
|
|
* jumping over any bytes that might be in the write queue.
|
|
*
|
|
* The channel lock MUST be held by the calling function.
|
|
*/
|
|
static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
|
|
{
|
|
if (!ch)
|
|
return;
|
|
|
|
writeb(c, &ch->ch_neo_uart->txrx);
|
|
|
|
/* flush write operation */
|
|
neo_pci_posting_flush(ch->ch_bd);
|
|
}
|
|
|
|
struct board_ops jsm_neo_ops = {
|
|
.intr = neo_intr,
|
|
.uart_init = neo_uart_init,
|
|
.uart_off = neo_uart_off,
|
|
.param = neo_param,
|
|
.assert_modem_signals = neo_assert_modem_signals,
|
|
.flush_uart_write = neo_flush_uart_write,
|
|
.flush_uart_read = neo_flush_uart_read,
|
|
.disable_receiver = neo_disable_receiver,
|
|
.enable_receiver = neo_enable_receiver,
|
|
.send_break = neo_send_break,
|
|
.clear_break = neo_clear_break,
|
|
.send_start_character = neo_send_start_character,
|
|
.send_stop_character = neo_send_stop_character,
|
|
.copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
|
|
.get_uart_bytes_left = neo_get_uart_bytes_left,
|
|
.send_immediate_char = neo_send_immediate_char
|
|
};
|