WSL2-Linux-Kernel/arch/x86/crypto/sha256-avx2-asm.S

768 строки
23 KiB
ArmAsm

########################################################################
# Implement fast SHA-256 with AVX2 instructions. (x86_64)
#
# Copyright (C) 2013 Intel Corporation.
#
# Authors:
# James Guilford <james.guilford@intel.com>
# Kirk Yap <kirk.s.yap@intel.com>
# Tim Chen <tim.c.chen@linux.intel.com>
#
# This software is available to you under a choice of one of two
# licenses. You may choose to be licensed under the terms of the GNU
# General Public License (GPL) Version 2, available from the file
# COPYING in the main directory of this source tree, or the
# OpenIB.org BSD license below:
#
# Redistribution and use in source and binary forms, with or
# without modification, are permitted provided that the following
# conditions are met:
#
# - Redistributions of source code must retain the above
# copyright notice, this list of conditions and the following
# disclaimer.
#
# - Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
########################################################################
#
# This code is described in an Intel White-Paper:
# "Fast SHA-256 Implementations on Intel Architecture Processors"
#
# To find it, surf to http://www.intel.com/p/en_US/embedded
# and search for that title.
#
########################################################################
# This code schedules 2 blocks at a time, with 4 lanes per block
########################################################################
#include <linux/linkage.h>
## assume buffers not aligned
#define VMOVDQ vmovdqu
################################ Define Macros
# addm [mem], reg
# Add reg to mem using reg-mem add and store
.macro addm p1 p2
add \p1, \p2
mov \p2, \p1
.endm
################################
X0 = %ymm4
X1 = %ymm5
X2 = %ymm6
X3 = %ymm7
# XMM versions of above
XWORD0 = %xmm4
XWORD1 = %xmm5
XWORD2 = %xmm6
XWORD3 = %xmm7
XTMP0 = %ymm0
XTMP1 = %ymm1
XTMP2 = %ymm2
XTMP3 = %ymm3
XTMP4 = %ymm8
XFER = %ymm9
XTMP5 = %ymm11
SHUF_00BA = %ymm10 # shuffle xBxA -> 00BA
SHUF_DC00 = %ymm12 # shuffle xDxC -> DC00
BYTE_FLIP_MASK = %ymm13
X_BYTE_FLIP_MASK = %xmm13 # XMM version of BYTE_FLIP_MASK
NUM_BLKS = %rdx # 3rd arg
INP = %rsi # 2nd arg
CTX = %rdi # 1st arg
c = %ecx
d = %r8d
e = %edx # clobbers NUM_BLKS
y3 = %esi # clobbers INP
SRND = CTX # SRND is same register as CTX
a = %eax
b = %ebx
f = %r9d
g = %r10d
h = %r11d
old_h = %r11d
T1 = %r12d
y0 = %r13d
y1 = %r14d
y2 = %r15d
_XFER_SIZE = 2*64*4 # 2 blocks, 64 rounds, 4 bytes/round
_XMM_SAVE_SIZE = 0
_INP_END_SIZE = 8
_INP_SIZE = 8
_CTX_SIZE = 8
_XFER = 0
_XMM_SAVE = _XFER + _XFER_SIZE
_INP_END = _XMM_SAVE + _XMM_SAVE_SIZE
_INP = _INP_END + _INP_END_SIZE
_CTX = _INP + _INP_SIZE
STACK_SIZE = _CTX + _CTX_SIZE
# rotate_Xs
# Rotate values of symbols X0...X3
.macro rotate_Xs
X_ = X0
X0 = X1
X1 = X2
X2 = X3
X3 = X_
.endm
# ROTATE_ARGS
# Rotate values of symbols a...h
.macro ROTATE_ARGS
old_h = h
TMP_ = h
h = g
g = f
f = e
e = d
d = c
c = b
b = a
a = TMP_
.endm
.macro FOUR_ROUNDS_AND_SCHED disp
################################### RND N + 0 ############################
mov a, y3 # y3 = a # MAJA
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
addl \disp(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7]
mov f, y2 # y2 = f # CH
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
xor g, y2 # y2 = f^g # CH
vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]# y1 = (e >> 6)# S1
rorx $6, e, y1 # y1 = (e >> 6) # S1
and e, y2 # y2 = (f^g)&e # CH
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $22, a, y1 # y1 = a >> 22 # S0A
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15]
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
rorx $2, a, T1 # T1 = (a >> 2) # S0
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
vpsrld $7, XTMP1, XTMP2
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
vpslld $(32-7), XTMP1, XTMP3
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
vpor XTMP2, XTMP3, XTMP3 # XTMP3 = W[-15] ror 7
vpsrld $18, XTMP1, XTMP2
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
ROTATE_ARGS
################################### RND N + 1 ############################
mov a, y3 # y3 = a # MAJA
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
offset = \disp + 1*4
addl offset(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3
mov f, y2 # y2 = f # CH
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
xor g, y2 # y2 = f^g # CH
rorx $6, e, y1 # y1 = (e >> 6) # S1
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $22, a, y1 # y1 = a >> 22 # S0A
and e, y2 # y2 = (f^g)&e # CH
add h, d # d = k + w + h + d # --
vpslld $(32-18), XTMP1, XTMP1
and b, y3 # y3 = (a|c)&b # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
vpxor XTMP1, XTMP3, XTMP3
rorx $2, a, T1 # T1 = (a >> 2) # S0
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
vpxor XTMP2, XTMP3, XTMP3 # XTMP3 = W[-15] ror 7 ^ W[-15] ror 18
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0
vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA}
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA}
ROTATE_ARGS
################################### RND N + 2 ############################
mov a, y3 # y3 = a # MAJA
rorx $25, e, y0 # y0 = e >> 25 # S1A
offset = \disp + 2*4
addl offset(%rsp, SRND), h # h = k + w + h # --
vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] ror 19 {xBxA}
rorx $11, e, y1 # y1 = e >> 11 # S1B
or c, y3 # y3 = a|c # MAJA
mov f, y2 # y2 = f # CH
xor g, y2 # y2 = f^g # CH
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] ror 17 {xBxA}
and e, y2 # y2 = (f^g)&e # CH
rorx $6, e, y1 # y1 = (e >> 6) # S1
vpxor XTMP3, XTMP2, XTMP2
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $22, a, y1 # y1 = a >> 22 # S0A
vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA}
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA}
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
rorx $2, a ,T1 # T1 = (a >> 2) # S0
vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]}
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC}
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1,h # h = k + w + h + S0 # --
add y2,d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2,h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3,h # h = t1 + S0 + MAJ # --
ROTATE_ARGS
################################### RND N + 3 ############################
mov a, y3 # y3 = a # MAJA
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
offset = \disp + 3*4
addl offset(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC}
mov f, y2 # y2 = f # CH
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
xor g, y2 # y2 = f^g # CH
vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] ror 19 {xDxC}
rorx $6, e, y1 # y1 = (e >> 6) # S1
and e, y2 # y2 = (f^g)&e # CH
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] ror 17 {xDxC}
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
vpxor XTMP3, XTMP2, XTMP2
rorx $22, a, y1 # y1 = a >> 22 # S0A
add y0, y2 # y2 = S1 + CH # --
vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC}
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
rorx $2, a, T1 # T1 = (a >> 2) # S0
vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00}
vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]}
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
ROTATE_ARGS
rotate_Xs
.endm
.macro DO_4ROUNDS disp
################################### RND N + 0 ###########################
mov f, y2 # y2 = f # CH
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
rorx $6, e, y1 # y1 = (e >> 6) # S1
and e, y2 # y2 = (f^g)&e # CH
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $22, a, y1 # y1 = a >> 22 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
rorx $2, a, T1 # T1 = (a >> 2) # S0
addl \disp(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
ROTATE_ARGS
################################### RND N + 1 ###########################
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
mov f, y2 # y2 = f # CH
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
rorx $6, e, y1 # y1 = (e >> 6) # S1
and e, y2 # y2 = (f^g)&e # CH
add y3, old_h # h = t1 + S0 + MAJ # --
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $22, a, y1 # y1 = a >> 22 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
rorx $2, a, T1 # T1 = (a >> 2) # S0
offset = 4*1 + \disp
addl offset(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
ROTATE_ARGS
################################### RND N + 2 ##############################
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
mov f, y2 # y2 = f # CH
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
rorx $6, e, y1 # y1 = (e >> 6) # S1
and e, y2 # y2 = (f^g)&e # CH
add y3, old_h # h = t1 + S0 + MAJ # --
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $22, a, y1 # y1 = a >> 22 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
rorx $2, a, T1 # T1 = (a >> 2) # S0
offset = 4*2 + \disp
addl offset(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
ROTATE_ARGS
################################### RND N + 3 ###########################
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
mov f, y2 # y2 = f # CH
rorx $25, e, y0 # y0 = e >> 25 # S1A
rorx $11, e, y1 # y1 = e >> 11 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1
rorx $6, e, y1 # y1 = (e >> 6) # S1
and e, y2 # y2 = (f^g)&e # CH
add y3, old_h # h = t1 + S0 + MAJ # --
xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1
rorx $13, a, T1 # T1 = a >> 13 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $22, a, y1 # y1 = a >> 22 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0
rorx $2, a, T1 # T1 = (a >> 2) # S0
offset = 4*3 + \disp
addl offset(%rsp, SRND), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
ROTATE_ARGS
.endm
########################################################################
## void sha256_transform_rorx(struct sha256_state *state, const u8 *data, int blocks)
## arg 1 : pointer to state
## arg 2 : pointer to input data
## arg 3 : Num blocks
########################################################################
.text
SYM_FUNC_START(sha256_transform_rorx)
.align 32
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
push %rbp
mov %rsp, %rbp
subq $STACK_SIZE, %rsp
and $-32, %rsp # align rsp to 32 byte boundary
shl $6, NUM_BLKS # convert to bytes
jz done_hash
lea -64(INP, NUM_BLKS), NUM_BLKS # pointer to last block
mov NUM_BLKS, _INP_END(%rsp)
cmp NUM_BLKS, INP
je only_one_block
## load initial digest
mov (CTX), a
mov 4*1(CTX), b
mov 4*2(CTX), c
mov 4*3(CTX), d
mov 4*4(CTX), e
mov 4*5(CTX), f
mov 4*6(CTX), g
mov 4*7(CTX), h
vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
vmovdqa _SHUF_00BA(%rip), SHUF_00BA
vmovdqa _SHUF_DC00(%rip), SHUF_DC00
mov CTX, _CTX(%rsp)
loop0:
## Load first 16 dwords from two blocks
VMOVDQ 0*32(INP),XTMP0
VMOVDQ 1*32(INP),XTMP1
VMOVDQ 2*32(INP),XTMP2
VMOVDQ 3*32(INP),XTMP3
## byte swap data
vpshufb BYTE_FLIP_MASK, XTMP0, XTMP0
vpshufb BYTE_FLIP_MASK, XTMP1, XTMP1
vpshufb BYTE_FLIP_MASK, XTMP2, XTMP2
vpshufb BYTE_FLIP_MASK, XTMP3, XTMP3
## transpose data into high/low halves
vperm2i128 $0x20, XTMP2, XTMP0, X0
vperm2i128 $0x31, XTMP2, XTMP0, X1
vperm2i128 $0x20, XTMP3, XTMP1, X2
vperm2i128 $0x31, XTMP3, XTMP1, X3
last_block_enter:
add $64, INP
mov INP, _INP(%rsp)
## schedule 48 input dwords, by doing 3 rounds of 12 each
xor SRND, SRND
.align 16
loop1:
vpaddd K256+0*32(SRND), X0, XFER
vmovdqa XFER, 0*32+_XFER(%rsp, SRND)
FOUR_ROUNDS_AND_SCHED _XFER + 0*32
vpaddd K256+1*32(SRND), X0, XFER
vmovdqa XFER, 1*32+_XFER(%rsp, SRND)
FOUR_ROUNDS_AND_SCHED _XFER + 1*32
vpaddd K256+2*32(SRND), X0, XFER
vmovdqa XFER, 2*32+_XFER(%rsp, SRND)
FOUR_ROUNDS_AND_SCHED _XFER + 2*32
vpaddd K256+3*32(SRND), X0, XFER
vmovdqa XFER, 3*32+_XFER(%rsp, SRND)
FOUR_ROUNDS_AND_SCHED _XFER + 3*32
add $4*32, SRND
cmp $3*4*32, SRND
jb loop1
loop2:
## Do last 16 rounds with no scheduling
vpaddd K256+0*32(SRND), X0, XFER
vmovdqa XFER, 0*32+_XFER(%rsp, SRND)
DO_4ROUNDS _XFER + 0*32
vpaddd K256+1*32(SRND), X1, XFER
vmovdqa XFER, 1*32+_XFER(%rsp, SRND)
DO_4ROUNDS _XFER + 1*32
add $2*32, SRND
vmovdqa X2, X0
vmovdqa X3, X1
cmp $4*4*32, SRND
jb loop2
mov _CTX(%rsp), CTX
mov _INP(%rsp), INP
addm (4*0)(CTX),a
addm (4*1)(CTX),b
addm (4*2)(CTX),c
addm (4*3)(CTX),d
addm (4*4)(CTX),e
addm (4*5)(CTX),f
addm (4*6)(CTX),g
addm (4*7)(CTX),h
cmp _INP_END(%rsp), INP
ja done_hash
#### Do second block using previously scheduled results
xor SRND, SRND
.align 16
loop3:
DO_4ROUNDS _XFER + 0*32 + 16
DO_4ROUNDS _XFER + 1*32 + 16
add $2*32, SRND
cmp $4*4*32, SRND
jb loop3
mov _CTX(%rsp), CTX
mov _INP(%rsp), INP
add $64, INP
addm (4*0)(CTX),a
addm (4*1)(CTX),b
addm (4*2)(CTX),c
addm (4*3)(CTX),d
addm (4*4)(CTX),e
addm (4*5)(CTX),f
addm (4*6)(CTX),g
addm (4*7)(CTX),h
cmp _INP_END(%rsp), INP
jb loop0
ja done_hash
do_last_block:
VMOVDQ 0*16(INP),XWORD0
VMOVDQ 1*16(INP),XWORD1
VMOVDQ 2*16(INP),XWORD2
VMOVDQ 3*16(INP),XWORD3
vpshufb X_BYTE_FLIP_MASK, XWORD0, XWORD0
vpshufb X_BYTE_FLIP_MASK, XWORD1, XWORD1
vpshufb X_BYTE_FLIP_MASK, XWORD2, XWORD2
vpshufb X_BYTE_FLIP_MASK, XWORD3, XWORD3
jmp last_block_enter
only_one_block:
## load initial digest
mov (4*0)(CTX),a
mov (4*1)(CTX),b
mov (4*2)(CTX),c
mov (4*3)(CTX),d
mov (4*4)(CTX),e
mov (4*5)(CTX),f
mov (4*6)(CTX),g
mov (4*7)(CTX),h
vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
vmovdqa _SHUF_00BA(%rip), SHUF_00BA
vmovdqa _SHUF_DC00(%rip), SHUF_DC00
mov CTX, _CTX(%rsp)
jmp do_last_block
done_hash:
mov %rbp, %rsp
pop %rbp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
RET
SYM_FUNC_END(sha256_transform_rorx)
.section .rodata.cst512.K256, "aM", @progbits, 512
.align 64
K256:
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
.align 32
PSHUFFLE_BYTE_FLIP_MASK:
.octa 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203
# shuffle xBxA -> 00BA
.section .rodata.cst32._SHUF_00BA, "aM", @progbits, 32
.align 32
_SHUF_00BA:
.octa 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100
# shuffle xDxC -> DC00
.section .rodata.cst32._SHUF_DC00, "aM", @progbits, 32
.align 32
_SHUF_DC00:
.octa 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF