WSL2-Linux-Kernel/drivers/mtd/spi-nor/core.c

3467 строки
90 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/sched/task_stack.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
#include "core.h"
/* Define max times to check status register before we give up. */
/*
* For everything but full-chip erase; probably could be much smaller, but kept
* around for safety for now
*/
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
/*
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
* for larger flash
*/
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
#define SPI_NOR_MAX_ADDR_WIDTH 4
/**
* spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
* transfer
* @nor: pointer to 'struct spi_nor'
* @op: pointer to 'struct spi_mem_op' template for transfer
*
* If we have to use the bounce buffer, the data field in @op will be updated.
*
* Return: true if the bounce buffer is needed, false if not
*/
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
{
/* op->data.buf.in occupies the same memory as op->data.buf.out */
if (object_is_on_stack(op->data.buf.in) ||
!virt_addr_valid(op->data.buf.in)) {
if (op->data.nbytes > nor->bouncebuf_size)
op->data.nbytes = nor->bouncebuf_size;
op->data.buf.in = nor->bouncebuf;
return true;
}
return false;
}
/**
* spi_nor_spimem_exec_op() - execute a memory operation
* @nor: pointer to 'struct spi_nor'
* @op: pointer to 'struct spi_mem_op' template for transfer
*
* Return: 0 on success, -error otherwise.
*/
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
{
int error;
error = spi_mem_adjust_op_size(nor->spimem, op);
if (error)
return error;
return spi_mem_exec_op(nor->spimem, op);
}
/**
* spi_nor_spimem_read_data() - read data from flash's memory region via
* spi-mem
* @nor: pointer to 'struct spi_nor'
* @from: offset to read from
* @len: number of bytes to read
* @buf: pointer to dst buffer
*
* Return: number of bytes read successfully, -errno otherwise
*/
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
size_t len, u8 *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
SPI_MEM_OP_DATA_IN(len, buf, 1));
bool usebouncebuf;
ssize_t nbytes;
int error;
/* get transfer protocols. */
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
op.dummy.buswidth = op.addr.buswidth;
op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
/* convert the dummy cycles to the number of bytes */
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
usebouncebuf = spi_nor_spimem_bounce(nor, &op);
if (nor->dirmap.rdesc) {
nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
op.data.nbytes, op.data.buf.in);
} else {
error = spi_nor_spimem_exec_op(nor, &op);
if (error)
return error;
nbytes = op.data.nbytes;
}
if (usebouncebuf && nbytes > 0)
memcpy(buf, op.data.buf.in, nbytes);
return nbytes;
}
/**
* spi_nor_read_data() - read data from flash memory
* @nor: pointer to 'struct spi_nor'
* @from: offset to read from
* @len: number of bytes to read
* @buf: pointer to dst buffer
*
* Return: number of bytes read successfully, -errno otherwise
*/
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
{
if (nor->spimem)
return spi_nor_spimem_read_data(nor, from, len, buf);
return nor->controller_ops->read(nor, from, len, buf);
}
/**
* spi_nor_spimem_write_data() - write data to flash memory via
* spi-mem
* @nor: pointer to 'struct spi_nor'
* @to: offset to write to
* @len: number of bytes to write
* @buf: pointer to src buffer
*
* Return: number of bytes written successfully, -errno otherwise
*/
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
size_t len, const u8 *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, buf, 1));
ssize_t nbytes;
int error;
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op.addr.nbytes = 0;
if (spi_nor_spimem_bounce(nor, &op))
memcpy(nor->bouncebuf, buf, op.data.nbytes);
if (nor->dirmap.wdesc) {
nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
op.data.nbytes, op.data.buf.out);
} else {
error = spi_nor_spimem_exec_op(nor, &op);
if (error)
return error;
nbytes = op.data.nbytes;
}
return nbytes;
}
/**
* spi_nor_write_data() - write data to flash memory
* @nor: pointer to 'struct spi_nor'
* @to: offset to write to
* @len: number of bytes to write
* @buf: pointer to src buffer
*
* Return: number of bytes written successfully, -errno otherwise
*/
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
const u8 *buf)
{
if (nor->spimem)
return spi_nor_spimem_write_data(nor, to, len, buf);
return nor->controller_ops->write(nor, to, len, buf);
}
/**
* spi_nor_write_enable() - Set write enable latch with Write Enable command.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_enable(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
return ret;
}
/**
* spi_nor_write_disable() - Send Write Disable instruction to the chip.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_disable(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
return ret;
}
/**
* spi_nor_read_sr() - Read the Status Register.
* @nor: pointer to 'struct spi_nor'.
* @sr: pointer to a DMA-able buffer where the value of the
* Status Register will be written.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, sr, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
sr, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading SR\n", ret);
return ret;
}
/**
* spi_nor_read_fsr() - Read the Flag Status Register.
* @nor: pointer to 'struct spi_nor'
* @fsr: pointer to a DMA-able buffer where the value of the
* Flag Status Register will be written.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, fsr, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
fsr, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading FSR\n", ret);
return ret;
}
/**
* spi_nor_read_cr() - Read the Configuration Register using the
* SPINOR_OP_RDCR (35h) command.
* @nor: pointer to 'struct spi_nor'
* @cr: pointer to a DMA-able buffer where the value of the
* Configuration Register will be written.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, cr, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading CR\n", ret);
return ret;
}
/**
* spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
SPINOR_OP_EN4B :
SPINOR_OP_EX4B,
1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor,
enable ? SPINOR_OP_EN4B :
SPINOR_OP_EX4B,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
return ret;
}
/**
* spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
* flashes.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
nor->bouncebuf[0] = enable << 7;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
nor->bouncebuf, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
return ret;
}
/**
* spi_nor_write_ear() - Write Extended Address Register.
* @nor: pointer to 'struct spi_nor'.
* @ear: value to write to the Extended Address Register.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
{
int ret;
nor->bouncebuf[0] = ear;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
nor->bouncebuf, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d writing EAR\n", ret);
return ret;
}
/**
* spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
* @nor: pointer to 'struct spi_nor'.
* @sr: pointer to a DMA-able buffer where the value of the
* Status Register will be written.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, sr, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
sr, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
return ret;
}
/**
* spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
* the flash is ready for new commands.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spi_nor_xsr_ready(struct spi_nor *nor)
{
int ret;
ret = spi_nor_xread_sr(nor, nor->bouncebuf);
if (ret)
return ret;
return !!(nor->bouncebuf[0] & XSR_RDY);
}
/**
* spi_nor_clear_sr() - Clear the Status Register.
* @nor: pointer to 'struct spi_nor'.
*/
static void spi_nor_clear_sr(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d clearing SR\n", ret);
}
/**
* spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
* for new commands.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spi_nor_sr_ready(struct spi_nor *nor)
{
int ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->flags & SNOR_F_USE_CLSR &&
nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
if (nor->bouncebuf[0] & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
spi_nor_clear_sr(nor);
/*
* WEL bit remains set to one when an erase or page program
* error occurs. Issue a Write Disable command to protect
* against inadvertent writes that can possibly corrupt the
* contents of the memory.
*/
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return !(nor->bouncebuf[0] & SR_WIP);
}
/**
* spi_nor_clear_fsr() - Clear the Flag Status Register.
* @nor: pointer to 'struct spi_nor'.
*/
static void spi_nor_clear_fsr(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
}
/**
* spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
* ready for new commands.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spi_nor_fsr_ready(struct spi_nor *nor)
{
int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
if (nor->bouncebuf[0] & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
if (nor->bouncebuf[0] & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
spi_nor_clear_fsr(nor);
/*
* WEL bit remains set to one when an erase or page program
* error occurs. Issue a Write Disable command to protect
* against inadvertent writes that can possibly corrupt the
* contents of the memory.
*/
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return !!(nor->bouncebuf[0] & FSR_READY);
}
/**
* spi_nor_ready() - Query the flash to see if it is ready for new commands.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spi_nor_ready(struct spi_nor *nor)
{
int sr, fsr;
if (nor->flags & SNOR_F_READY_XSR_RDY)
sr = spi_nor_xsr_ready(nor);
else
sr = spi_nor_sr_ready(nor);
if (sr < 0)
return sr;
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
if (fsr < 0)
return fsr;
return sr && fsr;
}
/**
* spi_nor_wait_till_ready_with_timeout() - Service routine to read the
* Status Register until ready, or timeout occurs.
* @nor: pointer to "struct spi_nor".
* @timeout_jiffies: jiffies to wait until timeout.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout_jiffies)
{
unsigned long deadline;
int timeout = 0, ret;
deadline = jiffies + timeout_jiffies;
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
cond_resched();
}
dev_dbg(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
/**
* spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
* flash to be ready, or timeout occurs.
* @nor: pointer to "struct spi_nor".
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
/**
* spi_nor_write_sr() - Write the Status Register.
* @nor: pointer to 'struct spi_nor'.
* @sr: pointer to DMA-able buffer to write to the Status Register.
* @len: number of bytes to write to the Status Register.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, sr, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
sr, len);
}
if (ret) {
dev_dbg(nor->dev, "error %d writing SR\n", ret);
return ret;
}
return spi_nor_wait_till_ready(nor);
}
/**
* spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
* ensure that the byte written match the received value.
* @nor: pointer to a 'struct spi_nor'.
* @sr1: byte value to be written to the Status Register.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
{
int ret;
nor->bouncebuf[0] = sr1;
ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
if (ret)
return ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] != sr1) {
dev_dbg(nor->dev, "SR1: read back test failed\n");
return -EIO;
}
return 0;
}
/**
* spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
* Status Register 2 in one shot. Ensure that the byte written in the Status
* Register 1 match the received value, and that the 16-bit Write did not
* affect what was already in the Status Register 2.
* @nor: pointer to a 'struct spi_nor'.
* @sr1: byte value to be written to the Status Register 1.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
{
int ret;
u8 *sr_cr = nor->bouncebuf;
u8 cr_written;
/* Make sure we don't overwrite the contents of Status Register 2. */
if (!(nor->flags & SNOR_F_NO_READ_CR)) {
ret = spi_nor_read_cr(nor, &sr_cr[1]);
if (ret)
return ret;
} else if (nor->params->quad_enable) {
/*
* If the Status Register 2 Read command (35h) is not
* supported, we should at least be sure we don't
* change the value of the SR2 Quad Enable bit.
*
* We can safely assume that when the Quad Enable method is
* set, the value of the QE bit is one, as a consequence of the
* nor->params->quad_enable() call.
*
* We can safely assume that the Quad Enable bit is present in
* the Status Register 2 at BIT(1). According to the JESD216
* revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
* Write Status (01h) command is available just for the cases
* in which the QE bit is described in SR2 at BIT(1).
*/
sr_cr[1] = SR2_QUAD_EN_BIT1;
} else {
sr_cr[1] = 0;
}
sr_cr[0] = sr1;
ret = spi_nor_write_sr(nor, sr_cr, 2);
if (ret)
return ret;
if (nor->flags & SNOR_F_NO_READ_CR)
return 0;
cr_written = sr_cr[1];
ret = spi_nor_read_cr(nor, &sr_cr[1]);
if (ret)
return ret;
if (cr_written != sr_cr[1]) {
dev_dbg(nor->dev, "CR: read back test failed\n");
return -EIO;
}
return 0;
}
/**
* spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
* Configuration Register in one shot. Ensure that the byte written in the
* Configuration Register match the received value, and that the 16-bit Write
* did not affect what was already in the Status Register 1.
* @nor: pointer to a 'struct spi_nor'.
* @cr: byte value to be written to the Configuration Register.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
{
int ret;
u8 *sr_cr = nor->bouncebuf;
u8 sr_written;
/* Keep the current value of the Status Register 1. */
ret = spi_nor_read_sr(nor, sr_cr);
if (ret)
return ret;
sr_cr[1] = cr;
ret = spi_nor_write_sr(nor, sr_cr, 2);
if (ret)
return ret;
sr_written = sr_cr[0];
ret = spi_nor_read_sr(nor, sr_cr);
if (ret)
return ret;
if (sr_written != sr_cr[0]) {
dev_dbg(nor->dev, "SR: Read back test failed\n");
return -EIO;
}
if (nor->flags & SNOR_F_NO_READ_CR)
return 0;
ret = spi_nor_read_cr(nor, &sr_cr[1]);
if (ret)
return ret;
if (cr != sr_cr[1]) {
dev_dbg(nor->dev, "CR: read back test failed\n");
return -EIO;
}
return 0;
}
/**
* spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
* the byte written match the received value without affecting other bits in the
* Status Register 1 and 2.
* @nor: pointer to a 'struct spi_nor'.
* @sr1: byte value to be written to the Status Register.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
{
if (nor->flags & SNOR_F_HAS_16BIT_SR)
return spi_nor_write_16bit_sr_and_check(nor, sr1);
return spi_nor_write_sr1_and_check(nor, sr1);
}
/**
* spi_nor_write_sr2() - Write the Status Register 2 using the
* SPINOR_OP_WRSR2 (3eh) command.
* @nor: pointer to 'struct spi_nor'.
* @sr2: pointer to DMA-able buffer to write to the Status Register 2.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, sr2, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
sr2, 1);
}
if (ret) {
dev_dbg(nor->dev, "error %d writing SR2\n", ret);
return ret;
}
return spi_nor_wait_till_ready(nor);
}
/**
* spi_nor_read_sr2() - Read the Status Register 2 using the
* SPINOR_OP_RDSR2 (3fh) command.
* @nor: pointer to 'struct spi_nor'.
* @sr2: pointer to DMA-able buffer where the value of the
* Status Register 2 will be written.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, sr2, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
sr2, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading SR2\n", ret);
return ret;
}
/**
* spi_nor_erase_chip() - Erase the entire flash memory.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_erase_chip(struct spi_nor *nor)
{
int ret;
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d erasing chip\n", ret);
return ret;
}
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == opcode)
return table[i][1];
/* No conversion found, keep input op code. */
return opcode;
}
u8 spi_nor_convert_3to4_read(u8 opcode)
{
static const u8 spi_nor_3to4_read[][2] = {
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
ARRAY_SIZE(spi_nor_3to4_read));
}
static u8 spi_nor_convert_3to4_program(u8 opcode)
{
static const u8 spi_nor_3to4_program[][2] = {
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
ARRAY_SIZE(spi_nor_3to4_program));
}
static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
static const u8 spi_nor_3to4_erase[][2] = {
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
ARRAY_SIZE(spi_nor_3to4_erase));
}
static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
{
return !!nor->params->erase_map.uniform_erase_type;
}
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
{
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
if (!spi_nor_has_uniform_erase(nor)) {
struct spi_nor_erase_map *map = &nor->params->erase_map;
struct spi_nor_erase_type *erase;
int i;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
erase = &map->erase_type[i];
erase->opcode =
spi_nor_convert_3to4_erase(erase->opcode);
}
}
}
int spi_nor_lock_and_prep(struct spi_nor *nor)
{
int ret = 0;
mutex_lock(&nor->lock);
if (nor->controller_ops && nor->controller_ops->prepare) {
ret = nor->controller_ops->prepare(nor);
if (ret) {
mutex_unlock(&nor->lock);
return ret;
}
}
return ret;
}
void spi_nor_unlock_and_unprep(struct spi_nor *nor)
{
if (nor->controller_ops && nor->controller_ops->unprepare)
nor->controller_ops->unprepare(nor);
mutex_unlock(&nor->lock);
}
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
{
if (!nor->params->convert_addr)
return addr;
return nor->params->convert_addr(nor, addr);
}
/*
* Initiate the erasure of a single sector
*/
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
int i;
addr = spi_nor_convert_addr(nor, addr);
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
return spi_mem_exec_op(nor->spimem, &op);
} else if (nor->controller_ops->erase) {
return nor->controller_ops->erase(nor, addr);
}
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
for (i = nor->addr_width - 1; i >= 0; i--) {
nor->bouncebuf[i] = addr & 0xff;
addr >>= 8;
}
return nor->controller_ops->write_reg(nor, nor->erase_opcode,
nor->bouncebuf, nor->addr_width);
}
/**
* spi_nor_div_by_erase_size() - calculate remainder and update new dividend
* @erase: pointer to a structure that describes a SPI NOR erase type
* @dividend: dividend value
* @remainder: pointer to u32 remainder (will be updated)
*
* Return: the result of the division
*/
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
u64 dividend, u32 *remainder)
{
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
*remainder = (u32)dividend & erase->size_mask;
return dividend >> erase->size_shift;
}
/**
* spi_nor_find_best_erase_type() - find the best erase type for the given
* offset in the serial flash memory and the
* number of bytes to erase. The region in
* which the address fits is expected to be
* provided.
* @map: the erase map of the SPI NOR
* @region: pointer to a structure that describes a SPI NOR erase region
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Return: a pointer to the best fitted erase type, NULL otherwise.
*/
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
const struct spi_nor_erase_region *region,
u64 addr, u32 len)
{
const struct spi_nor_erase_type *erase;
u32 rem;
int i;
u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
/*
* Erase types are ordered by size, with the smallest erase type at
* index 0.
*/
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
/* Does the erase region support the tested erase type? */
if (!(erase_mask & BIT(i)))
continue;
erase = &map->erase_type[i];
/* Don't erase more than what the user has asked for. */
if (erase->size > len)
continue;
/* Alignment is not mandatory for overlaid regions */
if (region->offset & SNOR_OVERLAID_REGION)
return erase;
spi_nor_div_by_erase_size(erase, addr, &rem);
if (rem)
continue;
else
return erase;
}
return NULL;
}
static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
{
return region->offset & SNOR_LAST_REGION;
}
static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
{
return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
}
/**
* spi_nor_region_next() - get the next spi nor region
* @region: pointer to a structure that describes a SPI NOR erase region
*
* Return: the next spi nor region or NULL if last region.
*/
struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region)
{
if (spi_nor_region_is_last(region))
return NULL;
region++;
return region;
}
/**
* spi_nor_find_erase_region() - find the region of the serial flash memory in
* which the offset fits
* @map: the erase map of the SPI NOR
* @addr: offset in the serial flash memory
*
* Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
* otherwise.
*/
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
struct spi_nor_erase_region *region = map->regions;
u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
u64 region_end = region_start + region->size;
while (addr < region_start || addr >= region_end) {
region = spi_nor_region_next(region);
if (!region)
return ERR_PTR(-EINVAL);
region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
region_end = region_start + region->size;
}
return region;
}
/**
* spi_nor_init_erase_cmd() - initialize an erase command
* @region: pointer to a structure that describes a SPI NOR erase region
* @erase: pointer to a structure that describes a SPI NOR erase type
*
* Return: the pointer to the allocated erase command, ERR_PTR(-errno)
* otherwise.
*/
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
const struct spi_nor_erase_type *erase)
{
struct spi_nor_erase_command *cmd;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&cmd->list);
cmd->opcode = erase->opcode;
cmd->count = 1;
if (region->offset & SNOR_OVERLAID_REGION)
cmd->size = region->size;
else
cmd->size = erase->size;
return cmd;
}
/**
* spi_nor_destroy_erase_cmd_list() - destroy erase command list
* @erase_list: list of erase commands
*/
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
struct spi_nor_erase_command *cmd, *next;
list_for_each_entry_safe(cmd, next, erase_list, list) {
list_del(&cmd->list);
kfree(cmd);
}
}
/**
* spi_nor_init_erase_cmd_list() - initialize erase command list
* @nor: pointer to a 'struct spi_nor'
* @erase_list: list of erase commands to be executed once we validate that the
* erase can be performed
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Builds the list of best fitted erase commands and verifies if the erase can
* be performed.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
struct list_head *erase_list,
u64 addr, u32 len)
{
const struct spi_nor_erase_map *map = &nor->params->erase_map;
const struct spi_nor_erase_type *erase, *prev_erase = NULL;
struct spi_nor_erase_region *region;
struct spi_nor_erase_command *cmd = NULL;
u64 region_end;
int ret = -EINVAL;
region = spi_nor_find_erase_region(map, addr);
if (IS_ERR(region))
return PTR_ERR(region);
region_end = spi_nor_region_end(region);
while (len) {
erase = spi_nor_find_best_erase_type(map, region, addr, len);
if (!erase)
goto destroy_erase_cmd_list;
if (prev_erase != erase ||
region->offset & SNOR_OVERLAID_REGION) {
cmd = spi_nor_init_erase_cmd(region, erase);
if (IS_ERR(cmd)) {
ret = PTR_ERR(cmd);
goto destroy_erase_cmd_list;
}
list_add_tail(&cmd->list, erase_list);
} else {
cmd->count++;
}
addr += cmd->size;
len -= cmd->size;
if (len && addr >= region_end) {
region = spi_nor_region_next(region);
if (!region)
goto destroy_erase_cmd_list;
region_end = spi_nor_region_end(region);
}
prev_erase = erase;
}
return 0;
destroy_erase_cmd_list:
spi_nor_destroy_erase_cmd_list(erase_list);
return ret;
}
/**
* spi_nor_erase_multi_sectors() - perform a non-uniform erase
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Build a list of best fitted erase commands and execute it once we validate
* that the erase can be performed.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
LIST_HEAD(erase_list);
struct spi_nor_erase_command *cmd, *next;
int ret;
ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
if (ret)
return ret;
list_for_each_entry_safe(cmd, next, &erase_list, list) {
nor->erase_opcode = cmd->opcode;
while (cmd->count) {
ret = spi_nor_write_enable(nor);
if (ret)
goto destroy_erase_cmd_list;
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto destroy_erase_cmd_list;
addr += cmd->size;
cmd->count--;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto destroy_erase_cmd_list;
}
list_del(&cmd->list);
kfree(cmd);
}
return 0;
destroy_erase_cmd_list:
spi_nor_destroy_erase_cmd_list(&erase_list);
return ret;
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len;
uint32_t rem;
int ret;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
if (spi_nor_has_uniform_erase(nor)) {
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
}
addr = instr->addr;
len = instr->len;
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
/* whole-chip erase? */
if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
unsigned long timeout;
ret = spi_nor_write_enable(nor);
if (ret)
goto erase_err;
ret = spi_nor_erase_chip(nor);
if (ret)
goto erase_err;
/*
* Scale the timeout linearly with the size of the flash, with
* a minimum calibrated to an old 2MB flash. We could try to
* pull these from CFI/SFDP, but these values should be good
* enough for now.
*/
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
(unsigned long)(mtd->size / SZ_2M));
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
if (ret)
goto erase_err;
/* REVISIT in some cases we could speed up erasing large regions
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else if (spi_nor_has_uniform_erase(nor)) {
while (len) {
ret = spi_nor_write_enable(nor);
if (ret)
goto erase_err;
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto erase_err;
addr += mtd->erasesize;
len -= mtd->erasesize;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
}
/* erase multiple sectors */
} else {
ret = spi_nor_erase_multi_sectors(nor, addr, len);
if (ret)
goto erase_err;
}
ret = spi_nor_write_disable(nor);
erase_err:
spi_nor_unlock_and_unprep(nor);
return ret;
}
static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
{
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
return mask | SR_BP3_BIT6;
if (nor->flags & SNOR_F_HAS_4BIT_BP)
return mask | SR_BP3;
return mask;
}
static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
{
if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
return SR_TB_BIT6;
else
return SR_TB_BIT5;
}
static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
{
unsigned int bp_slots, bp_slots_needed;
u8 mask = spi_nor_get_sr_bp_mask(nor);
/* Reserved one for "protect none" and one for "protect all". */
bp_slots = (1 << hweight8(mask)) - 2;
bp_slots_needed = ilog2(nor->info->n_sectors);
if (bp_slots_needed > bp_slots)
return nor->info->sector_size <<
(bp_slots_needed - bp_slots);
else
return nor->info->sector_size;
}
static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
{
struct mtd_info *mtd = &nor->mtd;
u64 min_prot_len;
u8 mask = spi_nor_get_sr_bp_mask(nor);
u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
u8 bp, val = sr & mask;
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
val = (val & ~SR_BP3_BIT6) | SR_BP3;
bp = val >> SR_BP_SHIFT;
if (!bp) {
/* No protection */
*ofs = 0;
*len = 0;
return;
}
min_prot_len = spi_nor_get_min_prot_length_sr(nor);
*len = min_prot_len << (bp - 1);
if (*len > mtd->size)
*len = mtd->size;
if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
*ofs = 0;
else
*ofs = mtd->size - *len;
}
/*
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
* @locked is false); 0 otherwise
*/
static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
uint64_t len, u8 sr, bool locked)
{
loff_t lock_offs;
uint64_t lock_len;
if (!len)
return 1;
spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}
static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
}
static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
* register
* (SR). Does not support these features found in newer SR bitfields:
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Support for the following is provided conditionally for some flash:
* - TB: top/bottom protect
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
* ------|-------|-------|-------|-------|---------------|-------------------
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
*
* Returns negative on errors, 0 on success.
*/
static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
u64 min_prot_len;
int ret, status_old, status_new;
u8 mask = spi_nor_get_sr_bp_mask(nor);
u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
u8 pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
status_old = nor->bouncebuf[0];
/* If nothing in our range is unlocked, we don't need to do anything */
if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is unlocked, we can't use 'bottom' protection */
if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
can_be_bottom = false;
/* If anything above us is unlocked, we can't use 'top' protection */
if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_top = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should end up locked */
if (use_top)
lock_len = mtd->size - ofs;
else
lock_len = ofs + len;
if (lock_len == mtd->size) {
val = mask;
} else {
min_prot_len = spi_nor_get_min_prot_length_sr(nor);
pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
val = pow << SR_BP_SHIFT;
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
val = (val & ~SR_BP3) | SR_BP3_BIT6;
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
}
status_new = (status_old & ~mask & ~tb_mask) | val;
/* Disallow further writes if WP pin is asserted */
status_new |= SR_SRWD;
if (!use_top)
status_new |= tb_mask;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
return spi_nor_write_sr_and_check(nor, status_new);
}
/*
* Unlock a region of the flash. See spi_nor_sr_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
u64 min_prot_len;
int ret, status_old, status_new;
u8 mask = spi_nor_get_sr_bp_mask(nor);
u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
u8 pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
status_old = nor->bouncebuf[0];
/* If nothing in our range is locked, we don't need to do anything */
if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is locked, we can't use 'top' protection */
if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
can_be_top = false;
/* If anything above us is locked, we can't use 'bottom' protection */
if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_bottom = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should remain locked */
if (use_top)
lock_len = mtd->size - (ofs + len);
else
lock_len = ofs;
if (lock_len == 0) {
val = 0; /* fully unlocked */
} else {
min_prot_len = spi_nor_get_min_prot_length_sr(nor);
pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
val = pow << SR_BP_SHIFT;
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
val = (val & ~SR_BP3) | SR_BP3_BIT6;
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask & ~tb_mask) | val;
/* Don't protect status register if we're fully unlocked */
if (lock_len == 0)
status_new &= ~SR_SRWD;
if (!use_top)
status_new |= tb_mask;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
return spi_nor_write_sr_and_check(nor, status_new);
}
/*
* Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
* for more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
}
static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
.lock = spi_nor_sr_lock,
.unlock = spi_nor_sr_unlock,
.is_locked = spi_nor_sr_is_locked,
};
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
ret = nor->params->locking_ops->lock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor);
return ret;
}
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
ret = nor->params->locking_ops->unlock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor);
return ret;
}
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
ret = nor->params->locking_ops->is_locked(nor, ofs, len);
spi_nor_unlock_and_unprep(nor);
return ret;
}
/**
* spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
* Register 1.
* @nor: pointer to a 'struct spi_nor'
*
* Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
{
int ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
return 0;
nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
}
/**
* spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
* Register 2.
* @nor: pointer to a 'struct spi_nor'.
*
* Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
{
int ret;
if (nor->flags & SNOR_F_NO_READ_CR)
return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
ret = spi_nor_read_cr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
return 0;
nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
}
/**
* spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register 2.
*
* This is one of the procedures to set the QE bit described in the SFDP
* (JESD216 rev B) specification but no manufacturer using this procedure has
* been identified yet, hence the name of the function.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
{
u8 *sr2 = nor->bouncebuf;
int ret;
u8 sr2_written;
/* Check current Quad Enable bit value. */
ret = spi_nor_read_sr2(nor, sr2);
if (ret)
return ret;
if (*sr2 & SR2_QUAD_EN_BIT7)
return 0;
/* Update the Quad Enable bit. */
*sr2 |= SR2_QUAD_EN_BIT7;
ret = spi_nor_write_sr2(nor, sr2);
if (ret)
return ret;
sr2_written = *sr2;
/* Read back and check it. */
ret = spi_nor_read_sr2(nor, sr2);
if (ret)
return ret;
if (*sr2 != sr2_written) {
dev_dbg(nor->dev, "SR2: Read back test failed\n");
return -EIO;
}
return 0;
}
static const struct spi_nor_manufacturer *manufacturers[] = {
&spi_nor_atmel,
&spi_nor_catalyst,
&spi_nor_eon,
&spi_nor_esmt,
&spi_nor_everspin,
&spi_nor_fujitsu,
&spi_nor_gigadevice,
&spi_nor_intel,
&spi_nor_issi,
&spi_nor_macronix,
&spi_nor_micron,
&spi_nor_st,
&spi_nor_spansion,
&spi_nor_sst,
&spi_nor_winbond,
&spi_nor_xilinx,
&spi_nor_xmc,
};
static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
const u8 *id)
{
unsigned int i;
for (i = 0; i < nparts; i++) {
if (parts[i].id_len &&
!memcmp(parts[i].id, id, parts[i].id_len))
return &parts[i];
}
return NULL;
}
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
const struct flash_info *info;
u8 *id = nor->bouncebuf;
unsigned int i;
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
SPI_NOR_MAX_ID_LEN);
}
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
return ERR_PTR(ret);
}
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
info = spi_nor_search_part_by_id(manufacturers[i]->parts,
manufacturers[i]->nparts,
id);
if (info) {
nor->manufacturer = manufacturers[i];
return info;
}
}
dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
SPI_NOR_MAX_ID_LEN, id);
return ERR_PTR(-ENODEV);
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
ssize_t ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
while (len) {
loff_t addr = from;
addr = spi_nor_convert_addr(nor, addr);
ret = spi_nor_read_data(nor, addr, len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
WARN_ON(ret > len);
*retlen += ret;
buf += ret;
from += ret;
len -= ret;
}
ret = 0;
read_err:
spi_nor_unlock_and_unprep(nor);
return ret;
}
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t page_offset, page_remain, i;
ssize_t ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
for (i = 0; i < len; ) {
ssize_t written;
loff_t addr = to + i;
/*
* If page_size is a power of two, the offset can be quickly
* calculated with an AND operation. On the other cases we
* need to do a modulus operation (more expensive).
* Power of two numbers have only one bit set and we can use
* the instruction hweight32 to detect if we need to do a
* modulus (do_div()) or not.
*/
if (hweight32(nor->page_size) == 1) {
page_offset = addr & (nor->page_size - 1);
} else {
uint64_t aux = addr;
page_offset = do_div(aux, nor->page_size);
}
/* the size of data remaining on the first page */
page_remain = min_t(size_t,
nor->page_size - page_offset, len - i);
addr = spi_nor_convert_addr(nor, addr);
ret = spi_nor_write_enable(nor);
if (ret)
goto write_err;
ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
i += written;
}
write_err:
spi_nor_unlock_and_unprep(nor);
return ret;
}
static int spi_nor_check(struct spi_nor *nor)
{
if (!nor->dev ||
(!nor->spimem && !nor->controller_ops) ||
(!nor->spimem && nor->controller_ops &&
(!nor->controller_ops->read ||
!nor->controller_ops->write ||
!nor->controller_ops->read_reg ||
!nor->controller_ops->write_reg))) {
pr_err("spi-nor: please fill all the necessary fields!\n");
return -EINVAL;
}
if (nor->spimem && nor->controller_ops) {
dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
return -EINVAL;
}
return 0;
}
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
u8 num_mode_clocks,
u8 num_wait_states,
u8 opcode,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = num_mode_clocks;
read->num_wait_states = num_wait_states;
read->opcode = opcode;
read->proto = proto;
}
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
enum spi_nor_protocol proto)
{
pp->opcode = opcode;
pp->proto = proto;
}
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == (int)hwcaps)
return table[i][1];
return -EINVAL;
}
int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
static const int hwcaps_read2cmd[][2] = {
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
ARRAY_SIZE(hwcaps_read2cmd));
}
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
static const int hwcaps_pp2cmd[][2] = {
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
ARRAY_SIZE(hwcaps_pp2cmd));
}
/**
* spi_nor_spimem_check_op - check if the operation is supported
* by controller
*@nor: pointer to a 'struct spi_nor'
*@op: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_spimem_check_op(struct spi_nor *nor,
struct spi_mem_op *op)
{
/*
* First test with 4 address bytes. The opcode itself might
* be a 3B addressing opcode but we don't care, because
* SPI controller implementation should not check the opcode,
* but just the sequence.
*/
op->addr.nbytes = 4;
if (!spi_mem_supports_op(nor->spimem, op)) {
if (nor->mtd.size > SZ_16M)
return -ENOTSUPP;
/* If flash size <= 16MB, 3 address bytes are sufficient */
op->addr.nbytes = 3;
if (!spi_mem_supports_op(nor->spimem, op))
return -ENOTSUPP;
}
return 0;
}
/**
* spi_nor_spimem_check_readop - check if the read op is supported
* by controller
*@nor: pointer to a 'struct spi_nor'
*@read: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
const struct spi_nor_read_command *read)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
SPI_MEM_OP_ADDR(3, 0, 1),
SPI_MEM_OP_DUMMY(0, 1),
SPI_MEM_OP_DATA_IN(0, NULL, 1));
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
op.dummy.buswidth = op.addr.buswidth;
op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
op.dummy.buswidth / 8;
return spi_nor_spimem_check_op(nor, &op);
}
/**
* spi_nor_spimem_check_pp - check if the page program op is supported
* by controller
*@nor: pointer to a 'struct spi_nor'
*@pp: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
const struct spi_nor_pp_command *pp)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
SPI_MEM_OP_ADDR(3, 0, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(0, NULL, 1));
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
return spi_nor_spimem_check_op(nor, &op);
}
/**
* spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
* based on SPI controller capabilities
* @nor: pointer to a 'struct spi_nor'
* @hwcaps: pointer to resulting capabilities after adjusting
* according to controller and flash's capability
*/
static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
{
struct spi_nor_flash_parameter *params = nor->params;
unsigned int cap;
/* DTR modes are not supported yet, mask them all. */
*hwcaps &= ~SNOR_HWCAPS_DTR;
/* X-X-X modes are not supported yet, mask them all. */
*hwcaps &= ~SNOR_HWCAPS_X_X_X;
for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
int rdidx, ppidx;
if (!(*hwcaps & BIT(cap)))
continue;
rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
if (rdidx >= 0 &&
spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
*hwcaps &= ~BIT(cap);
ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
if (ppidx < 0)
continue;
if (spi_nor_spimem_check_pp(nor,
&params->page_programs[ppidx]))
*hwcaps &= ~BIT(cap);
}
}
/**
* spi_nor_set_erase_type() - set a SPI NOR erase type
* @erase: pointer to a structure that describes a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type
* @opcode: the SPI command op code to erase the sector/block
*/
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
u8 opcode)
{
erase->size = size;
erase->opcode = opcode;
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
erase->size_shift = ffs(erase->size) - 1;
erase->size_mask = (1 << erase->size_shift) - 1;
}
/**
* spi_nor_init_uniform_erase_map() - Initialize uniform erase map
* @map: the erase map of the SPI NOR
* @erase_mask: bitmask encoding erase types that can erase the entire
* flash memory
* @flash_size: the spi nor flash memory size
*/
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
u8 erase_mask, u64 flash_size)
{
/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
SNOR_LAST_REGION;
map->uniform_region.size = flash_size;
map->regions = &map->uniform_region;
map->uniform_erase_type = erase_mask;
}
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
int ret;
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->post_bfpt) {
ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
bfpt, params);
if (ret)
return ret;
}
if (nor->info->fixups && nor->info->fixups->post_bfpt)
return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
params);
return 0;
}
static int spi_nor_select_read(struct spi_nor *nor,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
const struct spi_nor_read_command *read;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
read = &nor->params->reads[cmd];
nor->read_opcode = read->opcode;
nor->read_proto = read->proto;
/*
* In the SPI NOR framework, we don't need to make the difference
* between mode clock cycles and wait state clock cycles.
* Indeed, the value of the mode clock cycles is used by a QSPI
* flash memory to know whether it should enter or leave its 0-4-4
* (Continuous Read / XIP) mode.
* eXecution In Place is out of the scope of the mtd sub-system.
* Hence we choose to merge both mode and wait state clock cycles
* into the so called dummy clock cycles.
*/
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
return 0;
}
static int spi_nor_select_pp(struct spi_nor *nor,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
const struct spi_nor_pp_command *pp;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
pp = &nor->params->page_programs[cmd];
nor->program_opcode = pp->opcode;
nor->write_proto = pp->proto;
return 0;
}
/**
* spi_nor_select_uniform_erase() - select optimum uniform erase type
* @map: the erase map of the SPI NOR
* @wanted_size: the erase type size to search for. Contains the value of
* info->sector_size or of the "small sector" size in case
* CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
*
* Once the optimum uniform sector erase command is found, disable all the
* other.
*
* Return: pointer to erase type on success, NULL otherwise.
*/
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
const u32 wanted_size)
{
const struct spi_nor_erase_type *tested_erase, *erase = NULL;
int i;
u8 uniform_erase_type = map->uniform_erase_type;
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
if (!(uniform_erase_type & BIT(i)))
continue;
tested_erase = &map->erase_type[i];
/*
* If the current erase size is the one, stop here:
* we have found the right uniform Sector Erase command.
*/
if (tested_erase->size == wanted_size) {
erase = tested_erase;
break;
}
/*
* Otherwise, the current erase size is still a valid canditate.
* Select the biggest valid candidate.
*/
if (!erase && tested_erase->size)
erase = tested_erase;
/* keep iterating to find the wanted_size */
}
if (!erase)
return NULL;
/* Disable all other Sector Erase commands. */
map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
map->uniform_erase_type |= BIT(erase - map->erase_type);
return erase;
}
static int spi_nor_select_erase(struct spi_nor *nor)
{
struct spi_nor_erase_map *map = &nor->params->erase_map;
const struct spi_nor_erase_type *erase = NULL;
struct mtd_info *mtd = &nor->mtd;
u32 wanted_size = nor->info->sector_size;
int i;
/*
* The previous implementation handling Sector Erase commands assumed
* that the SPI flash memory has an uniform layout then used only one
* of the supported erase sizes for all Sector Erase commands.
* So to be backward compatible, the new implementation also tries to
* manage the SPI flash memory as uniform with a single erase sector
* size, when possible.
*/
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
wanted_size = 4096u;
#endif
if (spi_nor_has_uniform_erase(nor)) {
erase = spi_nor_select_uniform_erase(map, wanted_size);
if (!erase)
return -EINVAL;
nor->erase_opcode = erase->opcode;
mtd->erasesize = erase->size;
return 0;
}
/*
* For non-uniform SPI flash memory, set mtd->erasesize to the
* maximum erase sector size. No need to set nor->erase_opcode.
*/
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
if (map->erase_type[i].size) {
erase = &map->erase_type[i];
break;
}
}
if (!erase)
return -EINVAL;
mtd->erasesize = erase->size;
return 0;
}
static int spi_nor_default_setup(struct spi_nor *nor,
const struct spi_nor_hwcaps *hwcaps)
{
struct spi_nor_flash_parameter *params = nor->params;
u32 ignored_mask, shared_mask;
int err;
/*
* Keep only the hardware capabilities supported by both the SPI
* controller and the SPI flash memory.
*/
shared_mask = hwcaps->mask & params->hwcaps.mask;
if (nor->spimem) {
/*
* When called from spi_nor_probe(), all caps are set and we
* need to discard some of them based on what the SPI
* controller actually supports (using spi_mem_supports_op()).
*/
spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
} else {
/*
* SPI n-n-n protocols are not supported when the SPI
* controller directly implements the spi_nor interface.
* Yet another reason to switch to spi-mem.
*/
ignored_mask = SNOR_HWCAPS_X_X_X;
if (shared_mask & ignored_mask) {
dev_dbg(nor->dev,
"SPI n-n-n protocols are not supported.\n");
shared_mask &= ~ignored_mask;
}
}
/* Select the (Fast) Read command. */
err = spi_nor_select_read(nor, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Page Program command. */
err = spi_nor_select_pp(nor, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Sector Erase command. */
err = spi_nor_select_erase(nor);
if (err) {
dev_dbg(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
}
return 0;
}
static int spi_nor_setup(struct spi_nor *nor,
const struct spi_nor_hwcaps *hwcaps)
{
if (!nor->params->setup)
return 0;
return nor->params->setup(nor, hwcaps);
}
/**
* spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
* settings based on MFR register and ->default_init() hook.
* @nor: pointer to a 'struct spi_nor'.
*/
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
{
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->default_init)
nor->manufacturer->fixups->default_init(nor);
if (nor->info->fixups && nor->info->fixups->default_init)
nor->info->fixups->default_init(nor);
}
/**
* spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
* based on JESD216 SFDP standard.
* @nor: pointer to a 'struct spi_nor'.
*
* The method has a roll-back mechanism: in case the SFDP parsing fails, the
* legacy flash parameters and settings will be restored.
*/
static void spi_nor_sfdp_init_params(struct spi_nor *nor)
{
struct spi_nor_flash_parameter sfdp_params;
memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
nor->addr_width = 0;
nor->flags &= ~SNOR_F_4B_OPCODES;
} else {
memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
}
}
/**
* spi_nor_info_init_params() - Initialize the flash's parameters and settings
* based on nor->info data.
* @nor: pointer to a 'struct spi_nor'.
*/
static void spi_nor_info_init_params(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
struct spi_nor_erase_map *map = &params->erase_map;
const struct flash_info *info = nor->info;
struct device_node *np = spi_nor_get_flash_node(nor);
u8 i, erase_mask;
/* Initialize legacy flash parameters and settings. */
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
params->setup = spi_nor_default_setup;
/* Default to 16-bit Write Status (01h) Command */
nor->flags |= SNOR_F_HAS_16BIT_SR;
/* Set SPI NOR sizes. */
params->size = (u64)info->sector_size * info->n_sectors;
params->page_size = info->page_size;
if (!(info->flags & SPI_NOR_NO_FR)) {
/* Default to Fast Read for DT and non-DT platform devices. */
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
/* Mask out Fast Read if not requested at DT instantiation. */
if (np && !of_property_read_bool(np, "m25p,fast-read"))
params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
}
/* (Fast) Read settings. */
params->hwcaps.mask |= SNOR_HWCAPS_READ;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
0, 0, SPINOR_OP_READ,
SNOR_PROTO_1_1_1);
if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
0, 8, SPINOR_OP_READ_FAST,
SNOR_PROTO_1_1_1);
if (info->flags & SPI_NOR_DUAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
0, 8, SPINOR_OP_READ_1_1_2,
SNOR_PROTO_1_1_2);
}
if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
0, 8, SPINOR_OP_READ_1_1_4,
SNOR_PROTO_1_1_4);
}
if (info->flags & SPI_NOR_OCTAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
0, 8, SPINOR_OP_READ_1_1_8,
SNOR_PROTO_1_1_8);
}
/* Page Program settings. */
params->hwcaps.mask |= SNOR_HWCAPS_PP;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
/*
* Sector Erase settings. Sort Erase Types in ascending order, with the
* smallest erase size starting at BIT(0).
*/
erase_mask = 0;
i = 0;
if (info->flags & SECT_4K_PMC) {
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
SPINOR_OP_BE_4K_PMC);
i++;
} else if (info->flags & SECT_4K) {
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
SPINOR_OP_BE_4K);
i++;
}
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
SPINOR_OP_SE);
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
}
/**
* spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
* after SFDP has been parsed (is also called for SPI NORs that do not
* support RDSFDP).
* @nor: pointer to a 'struct spi_nor'
*
* Typically used to tweak various parameters that could not be extracted by
* other means (i.e. when information provided by the SFDP/flash_info tables
* are incomplete or wrong).
*/
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
{
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->post_sfdp)
nor->manufacturer->fixups->post_sfdp(nor);
if (nor->info->fixups && nor->info->fixups->post_sfdp)
nor->info->fixups->post_sfdp(nor);
}
/**
* spi_nor_late_init_params() - Late initialization of default flash parameters.
* @nor: pointer to a 'struct spi_nor'
*
* Used to set default flash parameters and settings when the ->default_init()
* hook or the SFDP parser let voids.
*/
static void spi_nor_late_init_params(struct spi_nor *nor)
{
/*
* NOR protection support. When locking_ops are not provided, we pick
* the default ones.
*/
if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
nor->params->locking_ops = &spi_nor_sr_locking_ops;
}
/**
* spi_nor_init_params() - Initialize the flash's parameters and settings.
* @nor: pointer to a 'struct spi_nor'.
*
* The flash parameters and settings are initialized based on a sequence of
* calls that are ordered by priority:
*
* 1/ Default flash parameters initialization. The initializations are done
* based on nor->info data:
* spi_nor_info_init_params()
*
* which can be overwritten by:
* 2/ Manufacturer flash parameters initialization. The initializations are
* done based on MFR register, or when the decisions can not be done solely
* based on MFR, by using specific flash_info tweeks, ->default_init():
* spi_nor_manufacturer_init_params()
*
* which can be overwritten by:
* 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
* should be more accurate that the above.
* spi_nor_sfdp_init_params()
*
* Please note that there is a ->post_bfpt() fixup hook that can overwrite
* the flash parameters and settings immediately after parsing the Basic
* Flash Parameter Table.
*
* which can be overwritten by:
* 4/ Post SFDP flash parameters initialization. Used to tweak various
* parameters that could not be extracted by other means (i.e. when
* information provided by the SFDP/flash_info tables are incomplete or
* wrong).
* spi_nor_post_sfdp_fixups()
*
* 5/ Late default flash parameters initialization, used when the
* ->default_init() hook or the SFDP parser do not set specific params.
* spi_nor_late_init_params()
*/
static int spi_nor_init_params(struct spi_nor *nor)
{
nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
if (!nor->params)
return -ENOMEM;
spi_nor_info_init_params(nor);
spi_nor_manufacturer_init_params(nor);
if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
!(nor->info->flags & SPI_NOR_SKIP_SFDP))
spi_nor_sfdp_init_params(nor);
spi_nor_post_sfdp_fixups(nor);
spi_nor_late_init_params(nor);
return 0;
}
/**
* spi_nor_quad_enable() - enable Quad I/O if needed.
* @nor: pointer to a 'struct spi_nor'
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_quad_enable(struct spi_nor *nor)
{
if (!nor->params->quad_enable)
return 0;
if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
spi_nor_get_protocol_width(nor->write_proto) == 4))
return 0;
return nor->params->quad_enable(nor);
}
/**
* spi_nor_unlock_all() - Unlocks the entire flash memory array.
* @nor: pointer to a 'struct spi_nor'.
*
* Some SPI NOR flashes are write protected by default after a power-on reset
* cycle, in order to avoid inadvertent writes during power-up. Backward
* compatibility imposes to unlock the entire flash memory array at power-up
* by default.
*/
static int spi_nor_unlock_all(struct spi_nor *nor)
{
if (nor->flags & SNOR_F_HAS_LOCK)
return spi_nor_unlock(&nor->mtd, 0, nor->params->size);
return 0;
}
static int spi_nor_init(struct spi_nor *nor)
{
int err;
err = spi_nor_quad_enable(nor);
if (err) {
dev_dbg(nor->dev, "quad mode not supported\n");
return err;
}
err = spi_nor_unlock_all(nor);
if (err) {
dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
return err;
}
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
"enabling reset hack; may not recover from unexpected reboots\n");
nor->params->set_4byte_addr_mode(nor, true);
}
return 0;
}
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
struct device *dev = nor->dev;
int ret;
/* re-initialize the nor chip */
ret = spi_nor_init(nor);
if (ret)
dev_err(dev, "resume() failed\n");
}
void spi_nor_restore(struct spi_nor *nor)
{
/* restore the addressing mode */
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
nor->flags & SNOR_F_BROKEN_RESET)
nor->params->set_4byte_addr_mode(nor, false);
}
EXPORT_SYMBOL_GPL(spi_nor_restore);
static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
const char *name)
{
unsigned int i, j;
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
for (j = 0; j < manufacturers[i]->nparts; j++) {
if (!strcmp(name, manufacturers[i]->parts[j].name)) {
nor->manufacturer = manufacturers[i];
return &manufacturers[i]->parts[j];
}
}
}
return NULL;
}
static int spi_nor_set_addr_width(struct spi_nor *nor)
{
if (nor->addr_width) {
/* already configured from SFDP */
} else if (nor->info->addr_width) {
nor->addr_width = nor->info->addr_width;
} else if (nor->mtd.size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
} else {
nor->addr_width = 3;
}
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
dev_dbg(nor->dev, "address width is too large: %u\n",
nor->addr_width);
return -EINVAL;
}
/* Set 4byte opcodes when possible. */
if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
!(nor->flags & SNOR_F_HAS_4BAIT))
spi_nor_set_4byte_opcodes(nor);
return 0;
}
static void spi_nor_debugfs_init(struct spi_nor *nor,
const struct flash_info *info)
{
struct mtd_info *mtd = &nor->mtd;
mtd->dbg.partname = info->name;
mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
info->id_len, info->id);
}
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
const char *name)
{
const struct flash_info *info = NULL;
if (name)
info = spi_nor_match_id(nor, name);
/* Try to auto-detect if chip name wasn't specified or not found */
if (!info)
info = spi_nor_read_id(nor);
if (IS_ERR_OR_NULL(info))
return ERR_PTR(-ENOENT);
/*
* If caller has specified name of flash model that can normally be
* detected using JEDEC, let's verify it.
*/
if (name && info->id_len) {
const struct flash_info *jinfo;
jinfo = spi_nor_read_id(nor);
if (IS_ERR(jinfo)) {
return jinfo;
} else if (jinfo != info) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
dev_warn(nor->dev, "found %s, expected %s\n",
jinfo->name, info->name);
info = jinfo;
}
}
return info;
}
int spi_nor_scan(struct spi_nor *nor, const char *name,
const struct spi_nor_hwcaps *hwcaps)
{
const struct flash_info *info;
struct device *dev = nor->dev;
struct mtd_info *mtd = &nor->mtd;
struct device_node *np = spi_nor_get_flash_node(nor);
int ret;
int i;
ret = spi_nor_check(nor);
if (ret)
return ret;
/* Reset SPI protocol for all commands. */
nor->reg_proto = SNOR_PROTO_1_1_1;
nor->read_proto = SNOR_PROTO_1_1_1;
nor->write_proto = SNOR_PROTO_1_1_1;
/*
* We need the bounce buffer early to read/write registers when going
* through the spi-mem layer (buffers have to be DMA-able).
* For spi-mem drivers, we'll reallocate a new buffer if
* nor->page_size turns out to be greater than PAGE_SIZE (which
* shouldn't happen before long since NOR pages are usually less
* than 1KB) after spi_nor_scan() returns.
*/
nor->bouncebuf_size = PAGE_SIZE;
nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
GFP_KERNEL);
if (!nor->bouncebuf)
return -ENOMEM;
info = spi_nor_get_flash_info(nor, name);
if (IS_ERR(info))
return PTR_ERR(info);
nor->info = info;
spi_nor_debugfs_init(nor, info);
mutex_init(&nor->lock);
/*
* Make sure the XSR_RDY flag is set before calling
* spi_nor_wait_till_ready(). Xilinx S3AN share MFR
* with Atmel SPI NOR.
*/
if (info->flags & SPI_NOR_XSR_RDY)
nor->flags |= SNOR_F_READY_XSR_RDY;
if (info->flags & SPI_NOR_HAS_LOCK)
nor->flags |= SNOR_F_HAS_LOCK;
mtd->_write = spi_nor_write;
/* Init flash parameters based on flash_info struct and SFDP */
ret = spi_nor_init_params(nor);
if (ret)
return ret;
if (!mtd->name)
mtd->name = dev_name(dev);
mtd->priv = nor;
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
mtd->size = nor->params->size;
mtd->_erase = spi_nor_erase;
mtd->_read = spi_nor_read;
mtd->_resume = spi_nor_resume;
if (nor->params->locking_ops) {
mtd->_lock = spi_nor_lock;
mtd->_unlock = spi_nor_unlock;
mtd->_is_locked = spi_nor_is_locked;
}
if (info->flags & USE_FSR)
nor->flags |= SNOR_F_USE_FSR;
if (info->flags & SPI_NOR_HAS_TB) {
nor->flags |= SNOR_F_HAS_SR_TB;
if (info->flags & SPI_NOR_TB_SR_BIT6)
nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
}
if (info->flags & NO_CHIP_ERASE)
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
if (info->flags & USE_CLSR)
nor->flags |= SNOR_F_USE_CLSR;
if (info->flags & SPI_NOR_4BIT_BP) {
nor->flags |= SNOR_F_HAS_4BIT_BP;
if (info->flags & SPI_NOR_BP3_SR_BIT6)
nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
}
if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
mtd->dev.parent = dev;
nor->page_size = nor->params->page_size;
mtd->writebufsize = nor->page_size;
if (of_property_read_bool(np, "broken-flash-reset"))
nor->flags |= SNOR_F_BROKEN_RESET;
/*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
*/
ret = spi_nor_setup(nor, hwcaps);
if (ret)
return ret;
if (info->flags & SPI_NOR_4B_OPCODES)
nor->flags |= SNOR_F_4B_OPCODES;
ret = spi_nor_set_addr_width(nor);
if (ret)
return ret;
/* Send all the required SPI flash commands to initialize device */
ret = spi_nor_init(nor);
if (ret)
return ret;
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
(long long)mtd->size >> 10);
dev_dbg(dev,
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
if (mtd->numeraseregions)
for (i = 0; i < mtd->numeraseregions; i++)
dev_dbg(dev,
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].erasesize / 1024,
mtd->eraseregions[i].numblocks);
return 0;
}
EXPORT_SYMBOL_GPL(spi_nor_scan);
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
{
struct spi_mem_dirmap_info info = {
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
SPI_MEM_OP_DATA_IN(0, NULL, 1)),
.offset = 0,
.length = nor->mtd.size,
};
struct spi_mem_op *op = &info.op_tmpl;
/* get transfer protocols. */
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
op->dummy.buswidth = op->addr.buswidth;
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
/* convert the dummy cycles to the number of bytes */
op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
&info);
return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
}
static int spi_nor_create_write_dirmap(struct spi_nor *nor)
{
struct spi_mem_dirmap_info info = {
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
.offset = 0,
.length = nor->mtd.size,
};
struct spi_mem_op *op = &info.op_tmpl;
/* get transfer protocols. */
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
op->dummy.buswidth = op->addr.buswidth;
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op->addr.nbytes = 0;
nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
&info);
return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
}
static int spi_nor_probe(struct spi_mem *spimem)
{
struct spi_device *spi = spimem->spi;
struct flash_platform_data *data = dev_get_platdata(&spi->dev);
struct spi_nor *nor;
/*
* Enable all caps by default. The core will mask them after
* checking what's really supported using spi_mem_supports_op().
*/
const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
char *flash_name;
int ret;
nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
if (!nor)
return -ENOMEM;
nor->spimem = spimem;
nor->dev = &spi->dev;
spi_nor_set_flash_node(nor, spi->dev.of_node);
spi_mem_set_drvdata(spimem, nor);
if (data && data->name)
nor->mtd.name = data->name;
if (!nor->mtd.name)
nor->mtd.name = spi_mem_get_name(spimem);
/*
* For some (historical?) reason many platforms provide two different
* names in flash_platform_data: "name" and "type". Quite often name is
* set to "m25p80" and then "type" provides a real chip name.
* If that's the case, respect "type" and ignore a "name".
*/
if (data && data->type)
flash_name = data->type;
else if (!strcmp(spi->modalias, "spi-nor"))
flash_name = NULL; /* auto-detect */
else
flash_name = spi->modalias;
ret = spi_nor_scan(nor, flash_name, &hwcaps);
if (ret)
return ret;
/*
* None of the existing parts have > 512B pages, but let's play safe
* and add this logic so that if anyone ever adds support for such
* a NOR we don't end up with buffer overflows.
*/
if (nor->page_size > PAGE_SIZE) {
nor->bouncebuf_size = nor->page_size;
devm_kfree(nor->dev, nor->bouncebuf);
nor->bouncebuf = devm_kmalloc(nor->dev,
nor->bouncebuf_size,
GFP_KERNEL);
if (!nor->bouncebuf)
return -ENOMEM;
}
ret = spi_nor_create_read_dirmap(nor);
if (ret)
return ret;
ret = spi_nor_create_write_dirmap(nor);
if (ret)
return ret;
return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
data ? data->nr_parts : 0);
}
static int spi_nor_remove(struct spi_mem *spimem)
{
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
spi_nor_restore(nor);
/* Clean up MTD stuff. */
return mtd_device_unregister(&nor->mtd);
}
static void spi_nor_shutdown(struct spi_mem *spimem)
{
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
spi_nor_restore(nor);
}
/*
* Do NOT add to this array without reading the following:
*
* Historically, many flash devices are bound to this driver by their name. But
* since most of these flash are compatible to some extent, and their
* differences can often be differentiated by the JEDEC read-ID command, we
* encourage new users to add support to the spi-nor library, and simply bind
* against a generic string here (e.g., "jedec,spi-nor").
*
* Many flash names are kept here in this list (as well as in spi-nor.c) to
* keep them available as module aliases for existing platforms.
*/
static const struct spi_device_id spi_nor_dev_ids[] = {
/*
* Allow non-DT platform devices to bind to the "spi-nor" modalias, and
* hack around the fact that the SPI core does not provide uevent
* matching for .of_match_table
*/
{"spi-nor"},
/*
* Entries not used in DTs that should be safe to drop after replacing
* them with "spi-nor" in platform data.
*/
{"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
/*
* Entries that were used in DTs without "jedec,spi-nor" fallback and
* should be kept for backward compatibility.
*/
{"at25df321a"}, {"at25df641"}, {"at26df081a"},
{"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
{"mx25l25635e"},{"mx66l51235l"},
{"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
{"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
{"s25fl064k"},
{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
{"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
{"m25p64"}, {"m25p128"},
{"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
{"w25q80bl"}, {"w25q128"}, {"w25q256"},
/* Flashes that can't be detected using JEDEC */
{"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
{"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
{"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
/* Everspin MRAMs (non-JEDEC) */
{ "mr25h128" }, /* 128 Kib, 40 MHz */
{ "mr25h256" }, /* 256 Kib, 40 MHz */
{ "mr25h10" }, /* 1 Mib, 40 MHz */
{ "mr25h40" }, /* 4 Mib, 40 MHz */
{ },
};
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
static const struct of_device_id spi_nor_of_table[] = {
/*
* Generic compatibility for SPI NOR that can be identified by the
* JEDEC READ ID opcode (0x9F). Use this, if possible.
*/
{ .compatible = "jedec,spi-nor" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spi_nor_of_table);
/*
* REVISIT: many of these chips have deep power-down modes, which
* should clearly be entered on suspend() to minimize power use.
* And also when they're otherwise idle...
*/
static struct spi_mem_driver spi_nor_driver = {
.spidrv = {
.driver = {
.name = "spi-nor",
.of_match_table = spi_nor_of_table,
},
.id_table = spi_nor_dev_ids,
},
.probe = spi_nor_probe,
.remove = spi_nor_remove,
.shutdown = spi_nor_shutdown,
};
module_spi_mem_driver(spi_nor_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");