1065 строки
35 KiB
C
1065 строки
35 KiB
C
/*
|
|
* Contains CPU feature definitions
|
|
*
|
|
* Copyright (C) 2015 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "CPU features: " fmt
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/types.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/virt.h>
|
|
|
|
unsigned long elf_hwcap __read_mostly;
|
|
EXPORT_SYMBOL_GPL(elf_hwcap);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define COMPAT_ELF_HWCAP_DEFAULT \
|
|
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
|
|
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
|
|
COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
|
|
COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
|
|
COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
|
|
COMPAT_HWCAP_LPAE)
|
|
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
|
|
unsigned int compat_elf_hwcap2 __read_mostly;
|
|
#endif
|
|
|
|
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
|
|
|
|
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
{ \
|
|
.sign = SIGNED, \
|
|
.strict = STRICT, \
|
|
.type = TYPE, \
|
|
.shift = SHIFT, \
|
|
.width = WIDTH, \
|
|
.safe_val = SAFE_VAL, \
|
|
}
|
|
|
|
/* Define a feature with unsigned values */
|
|
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
/* Define a feature with a signed value */
|
|
#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
#define ARM64_FTR_END \
|
|
{ \
|
|
.width = 0, \
|
|
}
|
|
|
|
/* meta feature for alternatives */
|
|
static bool __maybe_unused
|
|
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
|
|
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
|
|
/* Linux doesn't care about the EL3 */
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
|
|
/* Linux shouldn't care about secure memory */
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
|
|
/*
|
|
* Differing PARange is fine as long as all peripherals and memory are mapped
|
|
* within the minimum PARange of all CPUs
|
|
*/
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_ctr[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
|
|
/*
|
|
* Linux can handle differing I-cache policies. Userspace JITs will
|
|
* make use of *minLine
|
|
*/
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_mmfr0[] = {
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_mvfr2[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_dczid[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
|
|
static struct arm64_ftr_bits ftr_id_isar5[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_mmfr4[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_dfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
/*
|
|
* Common ftr bits for a 32bit register with all hidden, strict
|
|
* attributes, with 4bit feature fields and a default safe value of
|
|
* 0. Covers the following 32bit registers:
|
|
* id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
|
|
*/
|
|
static struct arm64_ftr_bits ftr_generic_32bits[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_generic[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_generic32[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_aa64raz[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
#define ARM64_FTR_REG(id, table) \
|
|
{ \
|
|
.sys_id = id, \
|
|
.name = #id, \
|
|
.ftr_bits = &((table)[0]), \
|
|
}
|
|
|
|
static struct arm64_ftr_reg arm64_ftr_regs[] = {
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 1 */
|
|
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
|
|
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 2 */
|
|
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
|
|
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 3 */
|
|
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 4 */
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 5 */
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 6 */
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 7 */
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
|
|
|
|
/* Op1 = 3, CRn = 0, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
|
|
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
|
|
|
|
/* Op1 = 3, CRn = 14, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
|
|
};
|
|
|
|
static int search_cmp_ftr_reg(const void *id, const void *regp)
|
|
{
|
|
return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
|
|
}
|
|
|
|
/*
|
|
* get_arm64_ftr_reg - Lookup a feature register entry using its
|
|
* sys_reg() encoding. With the array arm64_ftr_regs sorted in the
|
|
* ascending order of sys_id , we use binary search to find a matching
|
|
* entry.
|
|
*
|
|
* returns - Upon success, matching ftr_reg entry for id.
|
|
* - NULL on failure. It is upto the caller to decide
|
|
* the impact of a failure.
|
|
*/
|
|
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
|
|
{
|
|
return bsearch((const void *)(unsigned long)sys_id,
|
|
arm64_ftr_regs,
|
|
ARRAY_SIZE(arm64_ftr_regs),
|
|
sizeof(arm64_ftr_regs[0]),
|
|
search_cmp_ftr_reg);
|
|
}
|
|
|
|
static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
|
|
{
|
|
u64 mask = arm64_ftr_mask(ftrp);
|
|
|
|
reg &= ~mask;
|
|
reg |= (ftr_val << ftrp->shift) & mask;
|
|
return reg;
|
|
}
|
|
|
|
static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
|
|
{
|
|
s64 ret = 0;
|
|
|
|
switch (ftrp->type) {
|
|
case FTR_EXACT:
|
|
ret = ftrp->safe_val;
|
|
break;
|
|
case FTR_LOWER_SAFE:
|
|
ret = new < cur ? new : cur;
|
|
break;
|
|
case FTR_HIGHER_SAFE:
|
|
ret = new > cur ? new : cur;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init sort_cmp_ftr_regs(const void *a, const void *b)
|
|
{
|
|
return ((const struct arm64_ftr_reg *)a)->sys_id -
|
|
((const struct arm64_ftr_reg *)b)->sys_id;
|
|
}
|
|
|
|
static void __init swap_ftr_regs(void *a, void *b, int size)
|
|
{
|
|
struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
|
|
*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
|
|
*(struct arm64_ftr_reg *)b = tmp;
|
|
}
|
|
|
|
static void __init sort_ftr_regs(void)
|
|
{
|
|
/* Keep the array sorted so that we can do the binary search */
|
|
sort(arm64_ftr_regs,
|
|
ARRAY_SIZE(arm64_ftr_regs),
|
|
sizeof(arm64_ftr_regs[0]),
|
|
sort_cmp_ftr_regs,
|
|
swap_ftr_regs);
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU feature register from Boot CPU values.
|
|
* Also initiliases the strict_mask for the register.
|
|
*/
|
|
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
|
|
{
|
|
u64 val = 0;
|
|
u64 strict_mask = ~0x0ULL;
|
|
struct arm64_ftr_bits *ftrp;
|
|
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
|
|
|
|
BUG_ON(!reg);
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
val = arm64_ftr_set_value(ftrp, val, ftr_new);
|
|
if (!ftrp->strict)
|
|
strict_mask &= ~arm64_ftr_mask(ftrp);
|
|
}
|
|
reg->sys_val = val;
|
|
reg->strict_mask = strict_mask;
|
|
}
|
|
|
|
void __init init_cpu_features(struct cpuinfo_arm64 *info)
|
|
{
|
|
/* Before we start using the tables, make sure it is sorted */
|
|
sort_ftr_regs();
|
|
|
|
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
|
|
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
|
|
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
|
|
|
|
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
|
|
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
|
|
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
|
|
}
|
|
|
|
}
|
|
|
|
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
|
|
{
|
|
struct arm64_ftr_bits *ftrp;
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
if (ftr_cur == ftr_new)
|
|
continue;
|
|
/* Find a safe value */
|
|
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
|
|
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
|
|
}
|
|
|
|
}
|
|
|
|
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
|
|
|
|
BUG_ON(!regp);
|
|
update_cpu_ftr_reg(regp, val);
|
|
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
|
|
return 0;
|
|
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
|
|
regp->name, boot, cpu, val);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Update system wide CPU feature registers with the values from a
|
|
* non-boot CPU. Also performs SANITY checks to make sure that there
|
|
* aren't any insane variations from that of the boot CPU.
|
|
*/
|
|
void update_cpu_features(int cpu,
|
|
struct cpuinfo_arm64 *info,
|
|
struct cpuinfo_arm64 *boot)
|
|
{
|
|
int taint = 0;
|
|
|
|
/*
|
|
* The kernel can handle differing I-cache policies, but otherwise
|
|
* caches should look identical. Userspace JITs will make use of
|
|
* *minLine.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
|
|
info->reg_ctr, boot->reg_ctr);
|
|
|
|
/*
|
|
* Userspace may perform DC ZVA instructions. Mismatched block sizes
|
|
* could result in too much or too little memory being zeroed if a
|
|
* process is preempted and migrated between CPUs.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
|
|
info->reg_dczid, boot->reg_dczid);
|
|
|
|
/* If different, timekeeping will be broken (especially with KVM) */
|
|
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
|
|
info->reg_cntfrq, boot->reg_cntfrq);
|
|
|
|
/*
|
|
* The kernel uses self-hosted debug features and expects CPUs to
|
|
* support identical debug features. We presently need CTX_CMPs, WRPs,
|
|
* and BRPs to be identical.
|
|
* ID_AA64DFR1 is currently RES0.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
|
|
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
|
|
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
|
|
/*
|
|
* Even in big.LITTLE, processors should be identical instruction-set
|
|
* wise.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
|
|
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
|
|
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
|
|
|
|
/*
|
|
* Differing PARange support is fine as long as all peripherals and
|
|
* memory are mapped within the minimum PARange of all CPUs.
|
|
* Linux should not care about secure memory.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
|
|
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
|
|
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
|
|
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
|
|
|
|
/*
|
|
* EL3 is not our concern.
|
|
* ID_AA64PFR1 is currently RES0.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
|
|
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
|
|
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
|
|
|
|
/*
|
|
* If we have AArch32, we care about 32-bit features for compat.
|
|
* If the system doesn't support AArch32, don't update them.
|
|
*/
|
|
if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
|
|
id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
|
|
info->reg_id_dfr0, boot->reg_id_dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
|
|
info->reg_id_isar0, boot->reg_id_isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
|
|
info->reg_id_isar1, boot->reg_id_isar1);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
|
|
info->reg_id_isar2, boot->reg_id_isar2);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
|
|
info->reg_id_isar3, boot->reg_id_isar3);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
|
|
info->reg_id_isar4, boot->reg_id_isar4);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
|
|
info->reg_id_isar5, boot->reg_id_isar5);
|
|
|
|
/*
|
|
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
|
|
* ACTLR formats could differ across CPUs and therefore would have to
|
|
* be trapped for virtualization anyway.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
|
|
info->reg_id_mmfr0, boot->reg_id_mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
|
|
info->reg_id_mmfr1, boot->reg_id_mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
|
|
info->reg_id_mmfr2, boot->reg_id_mmfr2);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
|
|
info->reg_id_mmfr3, boot->reg_id_mmfr3);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
|
|
info->reg_id_pfr0, boot->reg_id_pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
|
|
info->reg_id_pfr1, boot->reg_id_pfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
|
|
info->reg_mvfr0, boot->reg_mvfr0);
|
|
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
|
|
info->reg_mvfr1, boot->reg_mvfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
|
|
info->reg_mvfr2, boot->reg_mvfr2);
|
|
}
|
|
|
|
/*
|
|
* Mismatched CPU features are a recipe for disaster. Don't even
|
|
* pretend to support them.
|
|
*/
|
|
WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
|
|
"Unsupported CPU feature variation.\n");
|
|
}
|
|
|
|
u64 read_system_reg(u32 id)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
|
|
|
|
/* We shouldn't get a request for an unsupported register */
|
|
BUG_ON(!regp);
|
|
return regp->sys_val;
|
|
}
|
|
|
|
/*
|
|
* __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
|
|
* Read the system register on the current CPU
|
|
*/
|
|
static u64 __raw_read_system_reg(u32 sys_id)
|
|
{
|
|
switch (sys_id) {
|
|
case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
|
|
case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
|
|
case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
|
|
case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
|
|
case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
|
|
case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
|
|
case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
|
|
case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
|
|
case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
|
|
case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
|
|
case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
|
|
case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
|
|
case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
|
|
case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
|
|
case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
|
|
case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
|
|
|
|
case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
|
|
case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
|
|
case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
|
|
case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
|
|
case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
|
|
case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
|
|
case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
|
|
case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
|
|
case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
|
|
|
|
case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
|
|
case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
|
|
case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
|
|
default:
|
|
BUG();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
static bool
|
|
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
|
|
{
|
|
int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
|
|
|
|
return val >= entry->min_field_value;
|
|
}
|
|
|
|
static bool
|
|
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
u64 val;
|
|
|
|
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
|
|
if (scope == SCOPE_SYSTEM)
|
|
val = read_system_reg(entry->sys_reg);
|
|
else
|
|
val = __raw_read_system_reg(entry->sys_reg);
|
|
|
|
return feature_matches(val, entry);
|
|
}
|
|
|
|
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
bool has_sre;
|
|
|
|
if (!has_cpuid_feature(entry, scope))
|
|
return false;
|
|
|
|
has_sre = gic_enable_sre();
|
|
if (!has_sre)
|
|
pr_warn_once("%s present but disabled by higher exception level\n",
|
|
entry->desc);
|
|
|
|
return has_sre;
|
|
}
|
|
|
|
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
u32 midr = read_cpuid_id();
|
|
u32 rv_min, rv_max;
|
|
|
|
/* Cavium ThunderX pass 1.x and 2.x */
|
|
rv_min = 0;
|
|
rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
|
|
|
|
return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
|
|
}
|
|
|
|
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return is_kernel_in_hyp_mode();
|
|
}
|
|
|
|
static const struct arm64_cpu_capabilities arm64_features[] = {
|
|
{
|
|
.desc = "GIC system register CPU interface",
|
|
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_useable_gicv3_cpuif,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.field_pos = ID_AA64PFR0_GIC_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
},
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.desc = "Privileged Access Never",
|
|
.capability = ARM64_HAS_PAN,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64MMFR1_EL1,
|
|
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
.enable = cpu_enable_pan,
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
|
|
{
|
|
.desc = "LSE atomic instructions",
|
|
.capability = ARM64_HAS_LSE_ATOMICS,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
|
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 2,
|
|
},
|
|
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
|
|
{
|
|
.desc = "Software prefetching using PRFM",
|
|
.capability = ARM64_HAS_NO_HW_PREFETCH,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_no_hw_prefetch,
|
|
},
|
|
#ifdef CONFIG_ARM64_UAO
|
|
{
|
|
.desc = "User Access Override",
|
|
.capability = ARM64_HAS_UAO,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64MMFR2_EL1,
|
|
.field_pos = ID_AA64MMFR2_UAO_SHIFT,
|
|
.min_field_value = 1,
|
|
.enable = cpu_enable_uao,
|
|
},
|
|
#endif /* CONFIG_ARM64_UAO */
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.capability = ARM64_ALT_PAN_NOT_UAO,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = cpufeature_pan_not_uao,
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
{
|
|
.desc = "Virtualization Host Extensions",
|
|
.capability = ARM64_HAS_VIRT_HOST_EXTN,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = runs_at_el2,
|
|
},
|
|
{
|
|
.desc = "32-bit EL0 Support",
|
|
.capability = ARM64_HAS_32BIT_EL0,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64PFR0_EL0_SHIFT,
|
|
.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
|
|
},
|
|
{},
|
|
};
|
|
|
|
#define HWCAP_CAP(reg, field, s, min_value, type, cap) \
|
|
{ \
|
|
.desc = #cap, \
|
|
.def_scope = SCOPE_SYSTEM, \
|
|
.matches = has_cpuid_feature, \
|
|
.sys_reg = reg, \
|
|
.field_pos = field, \
|
|
.sign = s, \
|
|
.min_field_value = min_value, \
|
|
.hwcap_type = type, \
|
|
.hwcap = cap, \
|
|
}
|
|
|
|
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
|
|
{},
|
|
};
|
|
|
|
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
|
|
#ifdef CONFIG_COMPAT
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
elf_hwcap |= cap->hwcap;
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
compat_elf_hwcap |= (u32)cap->hwcap;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
compat_elf_hwcap2 |= (u32)cap->hwcap;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if we have a particular HWCAP enabled */
|
|
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
bool rc;
|
|
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
rc = (elf_hwcap & cap->hwcap) != 0;
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
rc = false;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
|
|
{
|
|
for (; hwcaps->matches; hwcaps++)
|
|
if (hwcaps->matches(hwcaps, hwcaps->def_scope))
|
|
cap_set_elf_hwcap(hwcaps);
|
|
}
|
|
|
|
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
|
|
const char *info)
|
|
{
|
|
for (; caps->matches; caps++) {
|
|
if (!caps->matches(caps, caps->def_scope))
|
|
continue;
|
|
|
|
if (!cpus_have_cap(caps->capability) && caps->desc)
|
|
pr_info("%s %s\n", info, caps->desc);
|
|
cpus_set_cap(caps->capability);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled capabilities and enable() it on all active
|
|
* CPUs
|
|
*/
|
|
static void __init
|
|
enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
for (; caps->matches; caps++)
|
|
if (caps->enable && cpus_have_cap(caps->capability))
|
|
on_each_cpu(caps->enable, NULL, true);
|
|
}
|
|
|
|
/*
|
|
* Flag to indicate if we have computed the system wide
|
|
* capabilities based on the boot time active CPUs. This
|
|
* will be used to determine if a new booting CPU should
|
|
* go through the verification process to make sure that it
|
|
* supports the system capabilities, without using a hotplug
|
|
* notifier.
|
|
*/
|
|
static bool sys_caps_initialised;
|
|
|
|
static inline void set_sys_caps_initialised(void)
|
|
{
|
|
sys_caps_initialised = true;
|
|
}
|
|
|
|
/*
|
|
* Check for CPU features that are used in early boot
|
|
* based on the Boot CPU value.
|
|
*/
|
|
static void check_early_cpu_features(void)
|
|
{
|
|
verify_cpu_run_el();
|
|
verify_cpu_asid_bits();
|
|
}
|
|
|
|
static void
|
|
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
|
|
for (; caps->matches; caps++)
|
|
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
|
|
pr_crit("CPU%d: missing HWCAP: %s\n",
|
|
smp_processor_id(), caps->desc);
|
|
cpu_die_early();
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
for (; caps->matches; caps++) {
|
|
if (!cpus_have_cap(caps->capability))
|
|
continue;
|
|
/*
|
|
* If the new CPU misses an advertised feature, we cannot proceed
|
|
* further, park the cpu.
|
|
*/
|
|
if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
|
|
pr_crit("CPU%d: missing feature: %s\n",
|
|
smp_processor_id(), caps->desc);
|
|
cpu_die_early();
|
|
}
|
|
if (caps->enable)
|
|
caps->enable(NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled system capabilities and enable() it on this CPU.
|
|
* The capabilities were decided based on the available CPUs at the boot time.
|
|
* Any new CPU should match the system wide status of the capability. If the
|
|
* new CPU doesn't have a capability which the system now has enabled, we
|
|
* cannot do anything to fix it up and could cause unexpected failures. So
|
|
* we park the CPU.
|
|
*/
|
|
void verify_local_cpu_capabilities(void)
|
|
{
|
|
|
|
check_early_cpu_features();
|
|
|
|
/*
|
|
* If we haven't computed the system capabilities, there is nothing
|
|
* to verify.
|
|
*/
|
|
if (!sys_caps_initialised)
|
|
return;
|
|
|
|
verify_local_cpu_errata();
|
|
verify_local_cpu_features(arm64_features);
|
|
verify_local_elf_hwcaps(arm64_elf_hwcaps);
|
|
if (system_supports_32bit_el0())
|
|
verify_local_elf_hwcaps(compat_elf_hwcaps);
|
|
}
|
|
|
|
static void __init setup_feature_capabilities(void)
|
|
{
|
|
update_cpu_capabilities(arm64_features, "detected feature:");
|
|
enable_cpu_capabilities(arm64_features);
|
|
}
|
|
|
|
/*
|
|
* Check if the current CPU has a given feature capability.
|
|
* Should be called from non-preemptible context.
|
|
*/
|
|
bool this_cpu_has_cap(unsigned int cap)
|
|
{
|
|
const struct arm64_cpu_capabilities *caps;
|
|
|
|
if (WARN_ON(preemptible()))
|
|
return false;
|
|
|
|
for (caps = arm64_features; caps->desc; caps++)
|
|
if (caps->capability == cap && caps->matches)
|
|
return caps->matches(caps, SCOPE_LOCAL_CPU);
|
|
|
|
return false;
|
|
}
|
|
|
|
void __init setup_cpu_features(void)
|
|
{
|
|
u32 cwg;
|
|
int cls;
|
|
|
|
/* Set the CPU feature capabilies */
|
|
setup_feature_capabilities();
|
|
setup_elf_hwcaps(arm64_elf_hwcaps);
|
|
|
|
if (system_supports_32bit_el0())
|
|
setup_elf_hwcaps(compat_elf_hwcaps);
|
|
|
|
/* Advertise that we have computed the system capabilities */
|
|
set_sys_caps_initialised();
|
|
|
|
/*
|
|
* Check for sane CTR_EL0.CWG value.
|
|
*/
|
|
cwg = cache_type_cwg();
|
|
cls = cache_line_size();
|
|
if (!cwg)
|
|
pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
|
|
cls);
|
|
if (L1_CACHE_BYTES < cls)
|
|
pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
|
|
L1_CACHE_BYTES, cls);
|
|
}
|
|
|
|
static bool __maybe_unused
|
|
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
|
|
}
|