WSL2-Linux-Kernel/net/tls/tls_sw.c

2389 строки
59 KiB
C

/*
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
* Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/sched/signal.h>
#include <linux/module.h>
#include <crypto/aead.h>
#include <net/strparser.h>
#include <net/tls.h>
static int __skb_nsg(struct sk_buff *skb, int offset, int len,
unsigned int recursion_level)
{
int start = skb_headlen(skb);
int i, chunk = start - offset;
struct sk_buff *frag_iter;
int elt = 0;
if (unlikely(recursion_level >= 24))
return -EMSGSIZE;
if (chunk > 0) {
if (chunk > len)
chunk = len;
elt++;
len -= chunk;
if (len == 0)
return elt;
offset += chunk;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
chunk = end - offset;
if (chunk > 0) {
if (chunk > len)
chunk = len;
elt++;
len -= chunk;
if (len == 0)
return elt;
offset += chunk;
}
start = end;
}
if (unlikely(skb_has_frag_list(skb))) {
skb_walk_frags(skb, frag_iter) {
int end, ret;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
chunk = end - offset;
if (chunk > 0) {
if (chunk > len)
chunk = len;
ret = __skb_nsg(frag_iter, offset - start, chunk,
recursion_level + 1);
if (unlikely(ret < 0))
return ret;
elt += ret;
len -= chunk;
if (len == 0)
return elt;
offset += chunk;
}
start = end;
}
}
BUG_ON(len);
return elt;
}
/* Return the number of scatterlist elements required to completely map the
* skb, or -EMSGSIZE if the recursion depth is exceeded.
*/
static int skb_nsg(struct sk_buff *skb, int offset, int len)
{
return __skb_nsg(skb, offset, len, 0);
}
static int padding_length(struct tls_sw_context_rx *ctx,
struct tls_prot_info *prot, struct sk_buff *skb)
{
struct strp_msg *rxm = strp_msg(skb);
int sub = 0;
/* Determine zero-padding length */
if (prot->version == TLS_1_3_VERSION) {
char content_type = 0;
int err;
int back = 17;
while (content_type == 0) {
if (back > rxm->full_len - prot->prepend_size)
return -EBADMSG;
err = skb_copy_bits(skb,
rxm->offset + rxm->full_len - back,
&content_type, 1);
if (err)
return err;
if (content_type)
break;
sub++;
back++;
}
ctx->control = content_type;
}
return sub;
}
static void tls_decrypt_done(struct crypto_async_request *req, int err)
{
struct aead_request *aead_req = (struct aead_request *)req;
struct scatterlist *sgout = aead_req->dst;
struct scatterlist *sgin = aead_req->src;
struct tls_sw_context_rx *ctx;
struct tls_context *tls_ctx;
struct tls_prot_info *prot;
struct scatterlist *sg;
struct sk_buff *skb;
unsigned int pages;
int pending;
skb = (struct sk_buff *)req->data;
tls_ctx = tls_get_ctx(skb->sk);
ctx = tls_sw_ctx_rx(tls_ctx);
prot = &tls_ctx->prot_info;
/* Propagate if there was an err */
if (err) {
ctx->async_wait.err = err;
tls_err_abort(skb->sk, err);
} else {
struct strp_msg *rxm = strp_msg(skb);
int pad;
pad = padding_length(ctx, prot, skb);
if (pad < 0) {
ctx->async_wait.err = pad;
tls_err_abort(skb->sk, pad);
} else {
rxm->full_len -= pad;
rxm->offset += prot->prepend_size;
rxm->full_len -= prot->overhead_size;
}
}
/* After using skb->sk to propagate sk through crypto async callback
* we need to NULL it again.
*/
skb->sk = NULL;
/* Free the destination pages if skb was not decrypted inplace */
if (sgout != sgin) {
/* Skip the first S/G entry as it points to AAD */
for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
if (!sg)
break;
put_page(sg_page(sg));
}
}
kfree(aead_req);
pending = atomic_dec_return(&ctx->decrypt_pending);
if (!pending && READ_ONCE(ctx->async_notify))
complete(&ctx->async_wait.completion);
}
static int tls_do_decryption(struct sock *sk,
struct sk_buff *skb,
struct scatterlist *sgin,
struct scatterlist *sgout,
char *iv_recv,
size_t data_len,
struct aead_request *aead_req,
bool async)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
int ret;
aead_request_set_tfm(aead_req, ctx->aead_recv);
aead_request_set_ad(aead_req, prot->aad_size);
aead_request_set_crypt(aead_req, sgin, sgout,
data_len + prot->tag_size,
(u8 *)iv_recv);
if (async) {
/* Using skb->sk to push sk through to crypto async callback
* handler. This allows propagating errors up to the socket
* if needed. It _must_ be cleared in the async handler
* before consume_skb is called. We _know_ skb->sk is NULL
* because it is a clone from strparser.
*/
skb->sk = sk;
aead_request_set_callback(aead_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
tls_decrypt_done, skb);
atomic_inc(&ctx->decrypt_pending);
} else {
aead_request_set_callback(aead_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &ctx->async_wait);
}
ret = crypto_aead_decrypt(aead_req);
if (ret == -EINPROGRESS) {
if (async)
return ret;
ret = crypto_wait_req(ret, &ctx->async_wait);
}
if (async)
atomic_dec(&ctx->decrypt_pending);
return ret;
}
static void tls_trim_both_msgs(struct sock *sk, int target_size)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec = ctx->open_rec;
sk_msg_trim(sk, &rec->msg_plaintext, target_size);
if (target_size > 0)
target_size += prot->overhead_size;
sk_msg_trim(sk, &rec->msg_encrypted, target_size);
}
static int tls_alloc_encrypted_msg(struct sock *sk, int len)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec = ctx->open_rec;
struct sk_msg *msg_en = &rec->msg_encrypted;
return sk_msg_alloc(sk, msg_en, len, 0);
}
static int tls_clone_plaintext_msg(struct sock *sk, int required)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec = ctx->open_rec;
struct sk_msg *msg_pl = &rec->msg_plaintext;
struct sk_msg *msg_en = &rec->msg_encrypted;
int skip, len;
/* We add page references worth len bytes from encrypted sg
* at the end of plaintext sg. It is guaranteed that msg_en
* has enough required room (ensured by caller).
*/
len = required - msg_pl->sg.size;
/* Skip initial bytes in msg_en's data to be able to use
* same offset of both plain and encrypted data.
*/
skip = prot->prepend_size + msg_pl->sg.size;
return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
}
static struct tls_rec *tls_get_rec(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct sk_msg *msg_pl, *msg_en;
struct tls_rec *rec;
int mem_size;
mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
rec = kzalloc(mem_size, sk->sk_allocation);
if (!rec)
return NULL;
msg_pl = &rec->msg_plaintext;
msg_en = &rec->msg_encrypted;
sk_msg_init(msg_pl);
sk_msg_init(msg_en);
sg_init_table(rec->sg_aead_in, 2);
sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
sg_unmark_end(&rec->sg_aead_in[1]);
sg_init_table(rec->sg_aead_out, 2);
sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
sg_unmark_end(&rec->sg_aead_out[1]);
return rec;
}
static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
{
sk_msg_free(sk, &rec->msg_encrypted);
sk_msg_free(sk, &rec->msg_plaintext);
kfree(rec);
}
static void tls_free_open_rec(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec = ctx->open_rec;
if (rec) {
tls_free_rec(sk, rec);
ctx->open_rec = NULL;
}
}
int tls_tx_records(struct sock *sk, int flags)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec, *tmp;
struct sk_msg *msg_en;
int tx_flags, rc = 0;
if (tls_is_partially_sent_record(tls_ctx)) {
rec = list_first_entry(&ctx->tx_list,
struct tls_rec, list);
if (flags == -1)
tx_flags = rec->tx_flags;
else
tx_flags = flags;
rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
if (rc)
goto tx_err;
/* Full record has been transmitted.
* Remove the head of tx_list
*/
list_del(&rec->list);
sk_msg_free(sk, &rec->msg_plaintext);
kfree(rec);
}
/* Tx all ready records */
list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
if (READ_ONCE(rec->tx_ready)) {
if (flags == -1)
tx_flags = rec->tx_flags;
else
tx_flags = flags;
msg_en = &rec->msg_encrypted;
rc = tls_push_sg(sk, tls_ctx,
&msg_en->sg.data[msg_en->sg.curr],
0, tx_flags);
if (rc)
goto tx_err;
list_del(&rec->list);
sk_msg_free(sk, &rec->msg_plaintext);
kfree(rec);
} else {
break;
}
}
tx_err:
if (rc < 0 && rc != -EAGAIN)
tls_err_abort(sk, EBADMSG);
return rc;
}
static void tls_encrypt_done(struct crypto_async_request *req, int err)
{
struct aead_request *aead_req = (struct aead_request *)req;
struct sock *sk = req->data;
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct scatterlist *sge;
struct sk_msg *msg_en;
struct tls_rec *rec;
bool ready = false;
int pending;
rec = container_of(aead_req, struct tls_rec, aead_req);
msg_en = &rec->msg_encrypted;
sge = sk_msg_elem(msg_en, msg_en->sg.curr);
sge->offset -= prot->prepend_size;
sge->length += prot->prepend_size;
/* Check if error is previously set on socket */
if (err || sk->sk_err) {
rec = NULL;
/* If err is already set on socket, return the same code */
if (sk->sk_err) {
ctx->async_wait.err = sk->sk_err;
} else {
ctx->async_wait.err = err;
tls_err_abort(sk, err);
}
}
if (rec) {
struct tls_rec *first_rec;
/* Mark the record as ready for transmission */
smp_store_mb(rec->tx_ready, true);
/* If received record is at head of tx_list, schedule tx */
first_rec = list_first_entry(&ctx->tx_list,
struct tls_rec, list);
if (rec == first_rec)
ready = true;
}
pending = atomic_dec_return(&ctx->encrypt_pending);
if (!pending && READ_ONCE(ctx->async_notify))
complete(&ctx->async_wait.completion);
if (!ready)
return;
/* Schedule the transmission */
if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
schedule_delayed_work(&ctx->tx_work.work, 1);
}
static int tls_do_encryption(struct sock *sk,
struct tls_context *tls_ctx,
struct tls_sw_context_tx *ctx,
struct aead_request *aead_req,
size_t data_len, u32 start)
{
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_rec *rec = ctx->open_rec;
struct sk_msg *msg_en = &rec->msg_encrypted;
struct scatterlist *sge = sk_msg_elem(msg_en, start);
int rc, iv_offset = 0;
/* For CCM based ciphers, first byte of IV is a constant */
if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
iv_offset = 1;
}
memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
prot->iv_size + prot->salt_size);
xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
sge->offset += prot->prepend_size;
sge->length -= prot->prepend_size;
msg_en->sg.curr = start;
aead_request_set_tfm(aead_req, ctx->aead_send);
aead_request_set_ad(aead_req, prot->aad_size);
aead_request_set_crypt(aead_req, rec->sg_aead_in,
rec->sg_aead_out,
data_len, rec->iv_data);
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tls_encrypt_done, sk);
/* Add the record in tx_list */
list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
atomic_inc(&ctx->encrypt_pending);
rc = crypto_aead_encrypt(aead_req);
if (!rc || rc != -EINPROGRESS) {
atomic_dec(&ctx->encrypt_pending);
sge->offset -= prot->prepend_size;
sge->length += prot->prepend_size;
}
if (!rc) {
WRITE_ONCE(rec->tx_ready, true);
} else if (rc != -EINPROGRESS) {
list_del(&rec->list);
return rc;
}
/* Unhook the record from context if encryption is not failure */
ctx->open_rec = NULL;
tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
return rc;
}
static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
struct tls_rec **to, struct sk_msg *msg_opl,
struct sk_msg *msg_oen, u32 split_point,
u32 tx_overhead_size, u32 *orig_end)
{
u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
struct scatterlist *sge, *osge, *nsge;
u32 orig_size = msg_opl->sg.size;
struct scatterlist tmp = { };
struct sk_msg *msg_npl;
struct tls_rec *new;
int ret;
new = tls_get_rec(sk);
if (!new)
return -ENOMEM;
ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
tx_overhead_size, 0);
if (ret < 0) {
tls_free_rec(sk, new);
return ret;
}
*orig_end = msg_opl->sg.end;
i = msg_opl->sg.start;
sge = sk_msg_elem(msg_opl, i);
while (apply && sge->length) {
if (sge->length > apply) {
u32 len = sge->length - apply;
get_page(sg_page(sge));
sg_set_page(&tmp, sg_page(sge), len,
sge->offset + apply);
sge->length = apply;
bytes += apply;
apply = 0;
} else {
apply -= sge->length;
bytes += sge->length;
}
sk_msg_iter_var_next(i);
if (i == msg_opl->sg.end)
break;
sge = sk_msg_elem(msg_opl, i);
}
msg_opl->sg.end = i;
msg_opl->sg.curr = i;
msg_opl->sg.copybreak = 0;
msg_opl->apply_bytes = 0;
msg_opl->sg.size = bytes;
msg_npl = &new->msg_plaintext;
msg_npl->apply_bytes = apply;
msg_npl->sg.size = orig_size - bytes;
j = msg_npl->sg.start;
nsge = sk_msg_elem(msg_npl, j);
if (tmp.length) {
memcpy(nsge, &tmp, sizeof(*nsge));
sk_msg_iter_var_next(j);
nsge = sk_msg_elem(msg_npl, j);
}
osge = sk_msg_elem(msg_opl, i);
while (osge->length) {
memcpy(nsge, osge, sizeof(*nsge));
sg_unmark_end(nsge);
sk_msg_iter_var_next(i);
sk_msg_iter_var_next(j);
if (i == *orig_end)
break;
osge = sk_msg_elem(msg_opl, i);
nsge = sk_msg_elem(msg_npl, j);
}
msg_npl->sg.end = j;
msg_npl->sg.curr = j;
msg_npl->sg.copybreak = 0;
*to = new;
return 0;
}
static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
struct tls_rec *from, u32 orig_end)
{
struct sk_msg *msg_npl = &from->msg_plaintext;
struct sk_msg *msg_opl = &to->msg_plaintext;
struct scatterlist *osge, *nsge;
u32 i, j;
i = msg_opl->sg.end;
sk_msg_iter_var_prev(i);
j = msg_npl->sg.start;
osge = sk_msg_elem(msg_opl, i);
nsge = sk_msg_elem(msg_npl, j);
if (sg_page(osge) == sg_page(nsge) &&
osge->offset + osge->length == nsge->offset) {
osge->length += nsge->length;
put_page(sg_page(nsge));
}
msg_opl->sg.end = orig_end;
msg_opl->sg.curr = orig_end;
msg_opl->sg.copybreak = 0;
msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
msg_opl->sg.size += msg_npl->sg.size;
sk_msg_free(sk, &to->msg_encrypted);
sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
kfree(from);
}
static int tls_push_record(struct sock *sk, int flags,
unsigned char record_type)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
u32 i, split_point, uninitialized_var(orig_end);
struct sk_msg *msg_pl, *msg_en;
struct aead_request *req;
bool split;
int rc;
if (!rec)
return 0;
msg_pl = &rec->msg_plaintext;
msg_en = &rec->msg_encrypted;
split_point = msg_pl->apply_bytes;
split = split_point && split_point < msg_pl->sg.size;
if (split) {
rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
split_point, prot->overhead_size,
&orig_end);
if (rc < 0)
return rc;
sk_msg_trim(sk, msg_en, msg_pl->sg.size +
prot->overhead_size);
}
rec->tx_flags = flags;
req = &rec->aead_req;
i = msg_pl->sg.end;
sk_msg_iter_var_prev(i);
rec->content_type = record_type;
if (prot->version == TLS_1_3_VERSION) {
/* Add content type to end of message. No padding added */
sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
sg_mark_end(&rec->sg_content_type);
sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
&rec->sg_content_type);
} else {
sg_mark_end(sk_msg_elem(msg_pl, i));
}
i = msg_pl->sg.start;
sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
&msg_en->sg.data[i] : &msg_pl->sg.data[i]);
i = msg_en->sg.end;
sk_msg_iter_var_prev(i);
sg_mark_end(sk_msg_elem(msg_en, i));
i = msg_en->sg.start;
sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
tls_ctx->tx.rec_seq, prot->rec_seq_size,
record_type, prot->version);
tls_fill_prepend(tls_ctx,
page_address(sg_page(&msg_en->sg.data[i])) +
msg_en->sg.data[i].offset,
msg_pl->sg.size + prot->tail_size,
record_type, prot->version);
tls_ctx->pending_open_record_frags = false;
rc = tls_do_encryption(sk, tls_ctx, ctx, req,
msg_pl->sg.size + prot->tail_size, i);
if (rc < 0) {
if (rc != -EINPROGRESS) {
tls_err_abort(sk, EBADMSG);
if (split) {
tls_ctx->pending_open_record_frags = true;
tls_merge_open_record(sk, rec, tmp, orig_end);
}
}
ctx->async_capable = 1;
return rc;
} else if (split) {
msg_pl = &tmp->msg_plaintext;
msg_en = &tmp->msg_encrypted;
sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
tls_ctx->pending_open_record_frags = true;
ctx->open_rec = tmp;
}
return tls_tx_records(sk, flags);
}
static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
bool full_record, u8 record_type,
size_t *copied, int flags)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct sk_msg msg_redir = { };
struct sk_psock *psock;
struct sock *sk_redir;
struct tls_rec *rec;
bool enospc, policy;
int err = 0, send;
u32 delta = 0;
policy = !(flags & MSG_SENDPAGE_NOPOLICY);
psock = sk_psock_get(sk);
if (!psock || !policy)
return tls_push_record(sk, flags, record_type);
more_data:
enospc = sk_msg_full(msg);
if (psock->eval == __SK_NONE) {
delta = msg->sg.size;
psock->eval = sk_psock_msg_verdict(sk, psock, msg);
if (delta < msg->sg.size)
delta -= msg->sg.size;
else
delta = 0;
}
if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
!enospc && !full_record) {
err = -ENOSPC;
goto out_err;
}
msg->cork_bytes = 0;
send = msg->sg.size;
if (msg->apply_bytes && msg->apply_bytes < send)
send = msg->apply_bytes;
switch (psock->eval) {
case __SK_PASS:
err = tls_push_record(sk, flags, record_type);
if (err < 0) {
*copied -= sk_msg_free(sk, msg);
tls_free_open_rec(sk);
goto out_err;
}
break;
case __SK_REDIRECT:
sk_redir = psock->sk_redir;
memcpy(&msg_redir, msg, sizeof(*msg));
if (msg->apply_bytes < send)
msg->apply_bytes = 0;
else
msg->apply_bytes -= send;
sk_msg_return_zero(sk, msg, send);
msg->sg.size -= send;
release_sock(sk);
err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
lock_sock(sk);
if (err < 0) {
*copied -= sk_msg_free_nocharge(sk, &msg_redir);
msg->sg.size = 0;
}
if (msg->sg.size == 0)
tls_free_open_rec(sk);
break;
case __SK_DROP:
default:
sk_msg_free_partial(sk, msg, send);
if (msg->apply_bytes < send)
msg->apply_bytes = 0;
else
msg->apply_bytes -= send;
if (msg->sg.size == 0)
tls_free_open_rec(sk);
*copied -= (send + delta);
err = -EACCES;
}
if (likely(!err)) {
bool reset_eval = !ctx->open_rec;
rec = ctx->open_rec;
if (rec) {
msg = &rec->msg_plaintext;
if (!msg->apply_bytes)
reset_eval = true;
}
if (reset_eval) {
psock->eval = __SK_NONE;
if (psock->sk_redir) {
sock_put(psock->sk_redir);
psock->sk_redir = NULL;
}
}
if (rec)
goto more_data;
}
out_err:
sk_psock_put(sk, psock);
return err;
}
static int tls_sw_push_pending_record(struct sock *sk, int flags)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec = ctx->open_rec;
struct sk_msg *msg_pl;
size_t copied;
if (!rec)
return 0;
msg_pl = &rec->msg_plaintext;
copied = msg_pl->sg.size;
if (!copied)
return 0;
return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
&copied, flags);
}
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
bool async_capable = ctx->async_capable;
unsigned char record_type = TLS_RECORD_TYPE_DATA;
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
bool eor = !(msg->msg_flags & MSG_MORE);
size_t try_to_copy, copied = 0;
struct sk_msg *msg_pl, *msg_en;
struct tls_rec *rec;
int required_size;
int num_async = 0;
bool full_record;
int record_room;
int num_zc = 0;
int orig_size;
int ret = 0;
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
return -ENOTSUPP;
lock_sock(sk);
/* Wait till there is any pending write on socket */
if (unlikely(sk->sk_write_pending)) {
ret = wait_on_pending_writer(sk, &timeo);
if (unlikely(ret))
goto send_end;
}
if (unlikely(msg->msg_controllen)) {
ret = tls_proccess_cmsg(sk, msg, &record_type);
if (ret) {
if (ret == -EINPROGRESS)
num_async++;
else if (ret != -EAGAIN)
goto send_end;
}
}
while (msg_data_left(msg)) {
if (sk->sk_err) {
ret = -sk->sk_err;
goto send_end;
}
if (ctx->open_rec)
rec = ctx->open_rec;
else
rec = ctx->open_rec = tls_get_rec(sk);
if (!rec) {
ret = -ENOMEM;
goto send_end;
}
msg_pl = &rec->msg_plaintext;
msg_en = &rec->msg_encrypted;
orig_size = msg_pl->sg.size;
full_record = false;
try_to_copy = msg_data_left(msg);
record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
if (try_to_copy >= record_room) {
try_to_copy = record_room;
full_record = true;
}
required_size = msg_pl->sg.size + try_to_copy +
prot->overhead_size;
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf;
alloc_encrypted:
ret = tls_alloc_encrypted_msg(sk, required_size);
if (ret) {
if (ret != -ENOSPC)
goto wait_for_memory;
/* Adjust try_to_copy according to the amount that was
* actually allocated. The difference is due
* to max sg elements limit
*/
try_to_copy -= required_size - msg_en->sg.size;
full_record = true;
}
if (!is_kvec && (full_record || eor) && !async_capable) {
u32 first = msg_pl->sg.end;
ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
msg_pl, try_to_copy);
if (ret)
goto fallback_to_reg_send;
rec->inplace_crypto = 0;
num_zc++;
copied += try_to_copy;
sk_msg_sg_copy_set(msg_pl, first);
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
record_type, &copied,
msg->msg_flags);
if (ret) {
if (ret == -EINPROGRESS)
num_async++;
else if (ret == -ENOMEM)
goto wait_for_memory;
else if (ret == -ENOSPC)
goto rollback_iter;
else if (ret != -EAGAIN)
goto send_end;
}
continue;
rollback_iter:
copied -= try_to_copy;
sk_msg_sg_copy_clear(msg_pl, first);
iov_iter_revert(&msg->msg_iter,
msg_pl->sg.size - orig_size);
fallback_to_reg_send:
sk_msg_trim(sk, msg_pl, orig_size);
}
required_size = msg_pl->sg.size + try_to_copy;
ret = tls_clone_plaintext_msg(sk, required_size);
if (ret) {
if (ret != -ENOSPC)
goto send_end;
/* Adjust try_to_copy according to the amount that was
* actually allocated. The difference is due
* to max sg elements limit
*/
try_to_copy -= required_size - msg_pl->sg.size;
full_record = true;
sk_msg_trim(sk, msg_en,
msg_pl->sg.size + prot->overhead_size);
}
if (try_to_copy) {
ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
msg_pl, try_to_copy);
if (ret < 0)
goto trim_sgl;
}
/* Open records defined only if successfully copied, otherwise
* we would trim the sg but not reset the open record frags.
*/
tls_ctx->pending_open_record_frags = true;
copied += try_to_copy;
if (full_record || eor) {
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
record_type, &copied,
msg->msg_flags);
if (ret) {
if (ret == -EINPROGRESS)
num_async++;
else if (ret == -ENOMEM)
goto wait_for_memory;
else if (ret != -EAGAIN) {
if (ret == -ENOSPC)
ret = 0;
goto send_end;
}
}
}
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
ret = sk_stream_wait_memory(sk, &timeo);
if (ret) {
trim_sgl:
tls_trim_both_msgs(sk, orig_size);
goto send_end;
}
if (msg_en->sg.size < required_size)
goto alloc_encrypted;
}
if (!num_async) {
goto send_end;
} else if (num_zc) {
/* Wait for pending encryptions to get completed */
smp_store_mb(ctx->async_notify, true);
if (atomic_read(&ctx->encrypt_pending))
crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
else
reinit_completion(&ctx->async_wait.completion);
WRITE_ONCE(ctx->async_notify, false);
if (ctx->async_wait.err) {
ret = ctx->async_wait.err;
copied = 0;
}
}
/* Transmit if any encryptions have completed */
if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
cancel_delayed_work(&ctx->tx_work.work);
tls_tx_records(sk, msg->msg_flags);
}
send_end:
ret = sk_stream_error(sk, msg->msg_flags, ret);
release_sock(sk);
return copied ? copied : ret;
}
static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags)
{
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
unsigned char record_type = TLS_RECORD_TYPE_DATA;
struct sk_msg *msg_pl;
struct tls_rec *rec;
int num_async = 0;
size_t copied = 0;
bool full_record;
int record_room;
int ret = 0;
bool eor;
eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
/* Wait till there is any pending write on socket */
if (unlikely(sk->sk_write_pending)) {
ret = wait_on_pending_writer(sk, &timeo);
if (unlikely(ret))
goto sendpage_end;
}
/* Call the sk_stream functions to manage the sndbuf mem. */
while (size > 0) {
size_t copy, required_size;
if (sk->sk_err) {
ret = -sk->sk_err;
goto sendpage_end;
}
if (ctx->open_rec)
rec = ctx->open_rec;
else
rec = ctx->open_rec = tls_get_rec(sk);
if (!rec) {
ret = -ENOMEM;
goto sendpage_end;
}
msg_pl = &rec->msg_plaintext;
full_record = false;
record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
copied = 0;
copy = size;
if (copy >= record_room) {
copy = record_room;
full_record = true;
}
required_size = msg_pl->sg.size + copy + prot->overhead_size;
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf;
alloc_payload:
ret = tls_alloc_encrypted_msg(sk, required_size);
if (ret) {
if (ret != -ENOSPC)
goto wait_for_memory;
/* Adjust copy according to the amount that was
* actually allocated. The difference is due
* to max sg elements limit
*/
copy -= required_size - msg_pl->sg.size;
full_record = true;
}
sk_msg_page_add(msg_pl, page, copy, offset);
sk_mem_charge(sk, copy);
offset += copy;
size -= copy;
copied += copy;
tls_ctx->pending_open_record_frags = true;
if (full_record || eor || sk_msg_full(msg_pl)) {
rec->inplace_crypto = 0;
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
record_type, &copied, flags);
if (ret) {
if (ret == -EINPROGRESS)
num_async++;
else if (ret == -ENOMEM)
goto wait_for_memory;
else if (ret != -EAGAIN) {
if (ret == -ENOSPC)
ret = 0;
goto sendpage_end;
}
}
}
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
ret = sk_stream_wait_memory(sk, &timeo);
if (ret) {
tls_trim_both_msgs(sk, msg_pl->sg.size);
goto sendpage_end;
}
goto alloc_payload;
}
if (num_async) {
/* Transmit if any encryptions have completed */
if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
cancel_delayed_work(&ctx->tx_work.work);
tls_tx_records(sk, flags);
}
}
sendpage_end:
ret = sk_stream_error(sk, flags, ret);
return copied ? copied : ret;
}
int tls_sw_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags)
{
int ret;
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
return -ENOTSUPP;
lock_sock(sk);
ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
release_sock(sk);
return ret;
}
static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
int flags, long timeo, int *err)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct sk_buff *skb;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
if (sk->sk_err) {
*err = sock_error(sk);
return NULL;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
return NULL;
if (sock_flag(sk, SOCK_DONE))
return NULL;
if ((flags & MSG_DONTWAIT) || !timeo) {
*err = -EAGAIN;
return NULL;
}
add_wait_queue(sk_sleep(sk), &wait);
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
sk_wait_event(sk, &timeo,
ctx->recv_pkt != skb ||
!sk_psock_queue_empty(psock),
&wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
remove_wait_queue(sk_sleep(sk), &wait);
/* Handle signals */
if (signal_pending(current)) {
*err = sock_intr_errno(timeo);
return NULL;
}
}
return skb;
}
static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
int length, int *pages_used,
unsigned int *size_used,
struct scatterlist *to,
int to_max_pages)
{
int rc = 0, i = 0, num_elem = *pages_used, maxpages;
struct page *pages[MAX_SKB_FRAGS];
unsigned int size = *size_used;
ssize_t copied, use;
size_t offset;
while (length > 0) {
i = 0;
maxpages = to_max_pages - num_elem;
if (maxpages == 0) {
rc = -EFAULT;
goto out;
}
copied = iov_iter_get_pages(from, pages,
length,
maxpages, &offset);
if (copied <= 0) {
rc = -EFAULT;
goto out;
}
iov_iter_advance(from, copied);
length -= copied;
size += copied;
while (copied) {
use = min_t(int, copied, PAGE_SIZE - offset);
sg_set_page(&to[num_elem],
pages[i], use, offset);
sg_unmark_end(&to[num_elem]);
/* We do not uncharge memory from this API */
offset = 0;
copied -= use;
i++;
num_elem++;
}
}
/* Mark the end in the last sg entry if newly added */
if (num_elem > *pages_used)
sg_mark_end(&to[num_elem - 1]);
out:
if (rc)
iov_iter_revert(from, size - *size_used);
*size_used = size;
*pages_used = num_elem;
return rc;
}
/* This function decrypts the input skb into either out_iov or in out_sg
* or in skb buffers itself. The input parameter 'zc' indicates if
* zero-copy mode needs to be tried or not. With zero-copy mode, either
* out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
* NULL, then the decryption happens inside skb buffers itself, i.e.
* zero-copy gets disabled and 'zc' is updated.
*/
static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
struct iov_iter *out_iov,
struct scatterlist *out_sg,
int *chunk, bool *zc, bool async)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct strp_msg *rxm = strp_msg(skb);
int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
struct aead_request *aead_req;
struct sk_buff *unused;
u8 *aad, *iv, *mem = NULL;
struct scatterlist *sgin = NULL;
struct scatterlist *sgout = NULL;
const int data_len = rxm->full_len - prot->overhead_size +
prot->tail_size;
int iv_offset = 0;
if (*zc && (out_iov || out_sg)) {
if (out_iov)
n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
else
n_sgout = sg_nents(out_sg);
n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
rxm->full_len - prot->prepend_size);
} else {
n_sgout = 0;
*zc = false;
n_sgin = skb_cow_data(skb, 0, &unused);
}
if (n_sgin < 1)
return -EBADMSG;
/* Increment to accommodate AAD */
n_sgin = n_sgin + 1;
nsg = n_sgin + n_sgout;
aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
mem_size = aead_size + (nsg * sizeof(struct scatterlist));
mem_size = mem_size + prot->aad_size;
mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
/* Allocate a single block of memory which contains
* aead_req || sgin[] || sgout[] || aad || iv.
* This order achieves correct alignment for aead_req, sgin, sgout.
*/
mem = kmalloc(mem_size, sk->sk_allocation);
if (!mem)
return -ENOMEM;
/* Segment the allocated memory */
aead_req = (struct aead_request *)mem;
sgin = (struct scatterlist *)(mem + aead_size);
sgout = sgin + n_sgin;
aad = (u8 *)(sgout + n_sgout);
iv = aad + prot->aad_size;
/* For CCM based ciphers, first byte of nonce+iv is always '2' */
if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
iv[0] = 2;
iv_offset = 1;
}
/* Prepare IV */
err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
iv + iv_offset + prot->salt_size,
prot->iv_size);
if (err < 0) {
kfree(mem);
return err;
}
if (prot->version == TLS_1_3_VERSION)
memcpy(iv + iv_offset, tls_ctx->rx.iv,
crypto_aead_ivsize(ctx->aead_recv));
else
memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
/* Prepare AAD */
tls_make_aad(aad, rxm->full_len - prot->overhead_size +
prot->tail_size,
tls_ctx->rx.rec_seq, prot->rec_seq_size,
ctx->control, prot->version);
/* Prepare sgin */
sg_init_table(sgin, n_sgin);
sg_set_buf(&sgin[0], aad, prot->aad_size);
err = skb_to_sgvec(skb, &sgin[1],
rxm->offset + prot->prepend_size,
rxm->full_len - prot->prepend_size);
if (err < 0) {
kfree(mem);
return err;
}
if (n_sgout) {
if (out_iov) {
sg_init_table(sgout, n_sgout);
sg_set_buf(&sgout[0], aad, prot->aad_size);
*chunk = 0;
err = tls_setup_from_iter(sk, out_iov, data_len,
&pages, chunk, &sgout[1],
(n_sgout - 1));
if (err < 0)
goto fallback_to_reg_recv;
} else if (out_sg) {
memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
} else {
goto fallback_to_reg_recv;
}
} else {
fallback_to_reg_recv:
sgout = sgin;
pages = 0;
*chunk = data_len;
*zc = false;
}
/* Prepare and submit AEAD request */
err = tls_do_decryption(sk, skb, sgin, sgout, iv,
data_len, aead_req, async);
if (err == -EINPROGRESS)
return err;
/* Release the pages in case iov was mapped to pages */
for (; pages > 0; pages--)
put_page(sg_page(&sgout[pages]));
kfree(mem);
return err;
}
static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
struct iov_iter *dest, int *chunk, bool *zc,
bool async)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
int version = prot->version;
struct strp_msg *rxm = strp_msg(skb);
int pad, err = 0;
if (!ctx->decrypted) {
#ifdef CONFIG_TLS_DEVICE
err = tls_device_decrypted(sk, skb);
if (err < 0)
return err;
#endif
/* Still not decrypted after tls_device */
if (!ctx->decrypted) {
err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
async);
if (err < 0) {
if (err == -EINPROGRESS)
tls_advance_record_sn(sk, &tls_ctx->rx,
version);
return err;
}
} else {
*zc = false;
}
pad = padding_length(ctx, prot, skb);
if (pad < 0)
return pad;
rxm->full_len -= pad;
rxm->offset += prot->prepend_size;
rxm->full_len -= prot->overhead_size;
tls_advance_record_sn(sk, &tls_ctx->rx, version);
ctx->decrypted = true;
ctx->saved_data_ready(sk);
} else {
*zc = false;
}
return err;
}
int decrypt_skb(struct sock *sk, struct sk_buff *skb,
struct scatterlist *sgout)
{
bool zc = true;
int chunk;
return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
}
static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
unsigned int len)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
if (skb) {
struct strp_msg *rxm = strp_msg(skb);
if (len < rxm->full_len) {
rxm->offset += len;
rxm->full_len -= len;
return false;
}
consume_skb(skb);
}
/* Finished with message */
ctx->recv_pkt = NULL;
__strp_unpause(&ctx->strp);
return true;
}
/* This function traverses the rx_list in tls receive context to copies the
* decrypted records into the buffer provided by caller zero copy is not
* true. Further, the records are removed from the rx_list if it is not a peek
* case and the record has been consumed completely.
*/
static int process_rx_list(struct tls_sw_context_rx *ctx,
struct msghdr *msg,
u8 *control,
bool *cmsg,
size_t skip,
size_t len,
bool zc,
bool is_peek)
{
struct sk_buff *skb = skb_peek(&ctx->rx_list);
u8 ctrl = *control;
u8 msgc = *cmsg;
struct tls_msg *tlm;
ssize_t copied = 0;
/* Set the record type in 'control' if caller didn't pass it */
if (!ctrl && skb) {
tlm = tls_msg(skb);
ctrl = tlm->control;
}
while (skip && skb) {
struct strp_msg *rxm = strp_msg(skb);
tlm = tls_msg(skb);
/* Cannot process a record of different type */
if (ctrl != tlm->control)
return 0;
if (skip < rxm->full_len)
break;
skip = skip - rxm->full_len;
skb = skb_peek_next(skb, &ctx->rx_list);
}
while (len && skb) {
struct sk_buff *next_skb;
struct strp_msg *rxm = strp_msg(skb);
int chunk = min_t(unsigned int, rxm->full_len - skip, len);
tlm = tls_msg(skb);
/* Cannot process a record of different type */
if (ctrl != tlm->control)
return 0;
/* Set record type if not already done. For a non-data record,
* do not proceed if record type could not be copied.
*/
if (!msgc) {
int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
sizeof(ctrl), &ctrl);
msgc = true;
if (ctrl != TLS_RECORD_TYPE_DATA) {
if (cerr || msg->msg_flags & MSG_CTRUNC)
return -EIO;
*cmsg = msgc;
}
}
if (!zc || (rxm->full_len - skip) > len) {
int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
msg, chunk);
if (err < 0)
return err;
}
len = len - chunk;
copied = copied + chunk;
/* Consume the data from record if it is non-peek case*/
if (!is_peek) {
rxm->offset = rxm->offset + chunk;
rxm->full_len = rxm->full_len - chunk;
/* Return if there is unconsumed data in the record */
if (rxm->full_len - skip)
break;
}
/* The remaining skip-bytes must lie in 1st record in rx_list.
* So from the 2nd record, 'skip' should be 0.
*/
skip = 0;
if (msg)
msg->msg_flags |= MSG_EOR;
next_skb = skb_peek_next(skb, &ctx->rx_list);
if (!is_peek) {
skb_unlink(skb, &ctx->rx_list);
consume_skb(skb);
}
skb = next_skb;
}
*control = ctrl;
return copied;
}
int tls_sw_recvmsg(struct sock *sk,
struct msghdr *msg,
size_t len,
int nonblock,
int flags,
int *addr_len)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct sk_psock *psock;
unsigned char control = 0;
ssize_t decrypted = 0;
struct strp_msg *rxm;
struct tls_msg *tlm;
struct sk_buff *skb;
ssize_t copied = 0;
bool cmsg = false;
int target, err = 0;
long timeo;
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
bool is_peek = flags & MSG_PEEK;
int num_async = 0;
flags |= nonblock;
if (unlikely(flags & MSG_ERRQUEUE))
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
psock = sk_psock_get(sk);
lock_sock(sk);
/* Process pending decrypted records. It must be non-zero-copy */
err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
is_peek);
if (err < 0) {
tls_err_abort(sk, err);
goto end;
} else {
copied = err;
}
if (len <= copied)
goto recv_end;
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
len = len - copied;
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
while (len && (decrypted + copied < target || ctx->recv_pkt)) {
bool retain_skb = false;
bool zc = false;
int to_decrypt;
int chunk = 0;
bool async_capable;
bool async = false;
skb = tls_wait_data(sk, psock, flags, timeo, &err);
if (!skb) {
if (psock) {
int ret = __tcp_bpf_recvmsg(sk, psock,
msg, len, flags);
if (ret > 0) {
decrypted += ret;
len -= ret;
continue;
}
}
goto recv_end;
} else {
tlm = tls_msg(skb);
if (prot->version == TLS_1_3_VERSION)
tlm->control = 0;
else
tlm->control = ctx->control;
}
rxm = strp_msg(skb);
to_decrypt = rxm->full_len - prot->overhead_size;
if (to_decrypt <= len && !is_kvec && !is_peek &&
ctx->control == TLS_RECORD_TYPE_DATA &&
prot->version != TLS_1_3_VERSION)
zc = true;
/* Do not use async mode if record is non-data */
if (ctx->control == TLS_RECORD_TYPE_DATA)
async_capable = ctx->async_capable;
else
async_capable = false;
err = decrypt_skb_update(sk, skb, &msg->msg_iter,
&chunk, &zc, async_capable);
if (err < 0 && err != -EINPROGRESS) {
tls_err_abort(sk, EBADMSG);
goto recv_end;
}
if (err == -EINPROGRESS) {
async = true;
num_async++;
} else if (prot->version == TLS_1_3_VERSION) {
tlm->control = ctx->control;
}
/* If the type of records being processed is not known yet,
* set it to record type just dequeued. If it is already known,
* but does not match the record type just dequeued, go to end.
* We always get record type here since for tls1.2, record type
* is known just after record is dequeued from stream parser.
* For tls1.3, we disable async.
*/
if (!control)
control = tlm->control;
else if (control != tlm->control)
goto recv_end;
if (!cmsg) {
int cerr;
cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
sizeof(control), &control);
cmsg = true;
if (control != TLS_RECORD_TYPE_DATA) {
if (cerr || msg->msg_flags & MSG_CTRUNC) {
err = -EIO;
goto recv_end;
}
}
}
if (async)
goto pick_next_record;
if (!zc) {
if (rxm->full_len > len) {
retain_skb = true;
chunk = len;
} else {
chunk = rxm->full_len;
}
err = skb_copy_datagram_msg(skb, rxm->offset,
msg, chunk);
if (err < 0)
goto recv_end;
if (!is_peek) {
rxm->offset = rxm->offset + chunk;
rxm->full_len = rxm->full_len - chunk;
}
}
pick_next_record:
if (chunk > len)
chunk = len;
decrypted += chunk;
len -= chunk;
/* For async or peek case, queue the current skb */
if (async || is_peek || retain_skb) {
skb_queue_tail(&ctx->rx_list, skb);
skb = NULL;
}
if (tls_sw_advance_skb(sk, skb, chunk)) {
/* Return full control message to
* userspace before trying to parse
* another message type
*/
msg->msg_flags |= MSG_EOR;
if (ctx->control != TLS_RECORD_TYPE_DATA)
goto recv_end;
} else {
break;
}
}
recv_end:
if (num_async) {
/* Wait for all previously submitted records to be decrypted */
smp_store_mb(ctx->async_notify, true);
if (atomic_read(&ctx->decrypt_pending)) {
err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
if (err) {
/* one of async decrypt failed */
tls_err_abort(sk, err);
copied = 0;
decrypted = 0;
goto end;
}
} else {
reinit_completion(&ctx->async_wait.completion);
}
WRITE_ONCE(ctx->async_notify, false);
/* Drain records from the rx_list & copy if required */
if (is_peek || is_kvec)
err = process_rx_list(ctx, msg, &control, &cmsg, copied,
decrypted, false, is_peek);
else
err = process_rx_list(ctx, msg, &control, &cmsg, 0,
decrypted, true, is_peek);
if (err < 0) {
tls_err_abort(sk, err);
copied = 0;
goto end;
}
}
copied += decrypted;
end:
release_sock(sk);
if (psock)
sk_psock_put(sk, psock);
return copied ? : err;
}
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags)
{
struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct strp_msg *rxm = NULL;
struct sock *sk = sock->sk;
struct sk_buff *skb;
ssize_t copied = 0;
int err = 0;
long timeo;
int chunk;
bool zc = false;
lock_sock(sk);
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
skb = tls_wait_data(sk, NULL, flags, timeo, &err);
if (!skb)
goto splice_read_end;
if (!ctx->decrypted) {
err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
/* splice does not support reading control messages */
if (ctx->control != TLS_RECORD_TYPE_DATA) {
err = -ENOTSUPP;
goto splice_read_end;
}
if (err < 0) {
tls_err_abort(sk, EBADMSG);
goto splice_read_end;
}
ctx->decrypted = true;
}
rxm = strp_msg(skb);
chunk = min_t(unsigned int, rxm->full_len, len);
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
if (copied < 0)
goto splice_read_end;
if (likely(!(flags & MSG_PEEK)))
tls_sw_advance_skb(sk, skb, copied);
splice_read_end:
release_sock(sk);
return copied ? : err;
}
bool tls_sw_stream_read(const struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
bool ingress_empty = true;
struct sk_psock *psock;
rcu_read_lock();
psock = sk_psock(sk);
if (psock)
ingress_empty = list_empty(&psock->ingress_msg);
rcu_read_unlock();
return !ingress_empty || ctx->recv_pkt;
}
static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
{
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
struct strp_msg *rxm = strp_msg(skb);
size_t cipher_overhead;
size_t data_len = 0;
int ret;
/* Verify that we have a full TLS header, or wait for more data */
if (rxm->offset + prot->prepend_size > skb->len)
return 0;
/* Sanity-check size of on-stack buffer. */
if (WARN_ON(prot->prepend_size > sizeof(header))) {
ret = -EINVAL;
goto read_failure;
}
/* Linearize header to local buffer */
ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
if (ret < 0)
goto read_failure;
ctx->control = header[0];
data_len = ((header[4] & 0xFF) | (header[3] << 8));
cipher_overhead = prot->tag_size;
if (prot->version != TLS_1_3_VERSION)
cipher_overhead += prot->iv_size;
if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
prot->tail_size) {
ret = -EMSGSIZE;
goto read_failure;
}
if (data_len < cipher_overhead) {
ret = -EBADMSG;
goto read_failure;
}
/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
if (header[1] != TLS_1_2_VERSION_MINOR ||
header[2] != TLS_1_2_VERSION_MAJOR) {
ret = -EINVAL;
goto read_failure;
}
#ifdef CONFIG_TLS_DEVICE
handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
*(u64*)tls_ctx->rx.rec_seq);
#endif
return data_len + TLS_HEADER_SIZE;
read_failure:
tls_err_abort(strp->sk, ret);
return ret;
}
static void tls_queue(struct strparser *strp, struct sk_buff *skb)
{
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
ctx->decrypted = false;
ctx->recv_pkt = skb;
strp_pause(strp);
ctx->saved_data_ready(strp->sk);
}
static void tls_data_ready(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct sk_psock *psock;
strp_data_ready(&ctx->strp);
psock = sk_psock_get(sk);
if (psock && !list_empty(&psock->ingress_msg)) {
ctx->saved_data_ready(sk);
sk_psock_put(sk, psock);
}
}
void tls_sw_free_resources_tx(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
struct tls_rec *rec, *tmp;
/* Wait for any pending async encryptions to complete */
smp_store_mb(ctx->async_notify, true);
if (atomic_read(&ctx->encrypt_pending))
crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
release_sock(sk);
cancel_delayed_work_sync(&ctx->tx_work.work);
lock_sock(sk);
/* Tx whatever records we can transmit and abandon the rest */
tls_tx_records(sk, -1);
/* Free up un-sent records in tx_list. First, free
* the partially sent record if any at head of tx_list.
*/
if (tls_free_partial_record(sk, tls_ctx)) {
rec = list_first_entry(&ctx->tx_list,
struct tls_rec, list);
list_del(&rec->list);
sk_msg_free(sk, &rec->msg_plaintext);
kfree(rec);
}
list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
list_del(&rec->list);
sk_msg_free(sk, &rec->msg_encrypted);
sk_msg_free(sk, &rec->msg_plaintext);
kfree(rec);
}
crypto_free_aead(ctx->aead_send);
tls_free_open_rec(sk);
kfree(ctx);
}
void tls_sw_release_resources_rx(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
kfree(tls_ctx->rx.rec_seq);
kfree(tls_ctx->rx.iv);
if (ctx->aead_recv) {
kfree_skb(ctx->recv_pkt);
ctx->recv_pkt = NULL;
skb_queue_purge(&ctx->rx_list);
crypto_free_aead(ctx->aead_recv);
strp_stop(&ctx->strp);
write_lock_bh(&sk->sk_callback_lock);
sk->sk_data_ready = ctx->saved_data_ready;
write_unlock_bh(&sk->sk_callback_lock);
release_sock(sk);
strp_done(&ctx->strp);
lock_sock(sk);
}
}
void tls_sw_free_resources_rx(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
tls_sw_release_resources_rx(sk);
kfree(ctx);
}
/* The work handler to transmitt the encrypted records in tx_list */
static void tx_work_handler(struct work_struct *work)
{
struct delayed_work *delayed_work = to_delayed_work(work);
struct tx_work *tx_work = container_of(delayed_work,
struct tx_work, work);
struct sock *sk = tx_work->sk;
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
return;
lock_sock(sk);
tls_tx_records(sk, -1);
release_sock(sk);
}
void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
{
struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
/* Schedule the transmission if tx list is ready */
if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
/* Schedule the transmission */
if (!test_and_set_bit(BIT_TX_SCHEDULED,
&tx_ctx->tx_bitmask))
schedule_delayed_work(&tx_ctx->tx_work.work, 0);
}
}
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_crypto_info *crypto_info;
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
struct tls_sw_context_tx *sw_ctx_tx = NULL;
struct tls_sw_context_rx *sw_ctx_rx = NULL;
struct cipher_context *cctx;
struct crypto_aead **aead;
struct strp_callbacks cb;
u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
struct crypto_tfm *tfm;
char *iv, *rec_seq, *key, *salt, *cipher_name;
size_t keysize;
int rc = 0;
if (!ctx) {
rc = -EINVAL;
goto out;
}
if (tx) {
if (!ctx->priv_ctx_tx) {
sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
if (!sw_ctx_tx) {
rc = -ENOMEM;
goto out;
}
ctx->priv_ctx_tx = sw_ctx_tx;
} else {
sw_ctx_tx =
(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
}
} else {
if (!ctx->priv_ctx_rx) {
sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
if (!sw_ctx_rx) {
rc = -ENOMEM;
goto out;
}
ctx->priv_ctx_rx = sw_ctx_rx;
} else {
sw_ctx_rx =
(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
}
}
if (tx) {
crypto_init_wait(&sw_ctx_tx->async_wait);
crypto_info = &ctx->crypto_send.info;
cctx = &ctx->tx;
aead = &sw_ctx_tx->aead_send;
INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
sw_ctx_tx->tx_work.sk = sk;
} else {
crypto_init_wait(&sw_ctx_rx->async_wait);
crypto_info = &ctx->crypto_recv.info;
cctx = &ctx->rx;
skb_queue_head_init(&sw_ctx_rx->rx_list);
aead = &sw_ctx_rx->aead_recv;
}
switch (crypto_info->cipher_type) {
case TLS_CIPHER_AES_GCM_128: {
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
rec_seq =
((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
gcm_128_info =
(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
key = gcm_128_info->key;
salt = gcm_128_info->salt;
salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
cipher_name = "gcm(aes)";
break;
}
case TLS_CIPHER_AES_GCM_256: {
nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
rec_seq =
((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
gcm_256_info =
(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
key = gcm_256_info->key;
salt = gcm_256_info->salt;
salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
cipher_name = "gcm(aes)";
break;
}
case TLS_CIPHER_AES_CCM_128: {
nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
rec_seq =
((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
ccm_128_info =
(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
key = ccm_128_info->key;
salt = ccm_128_info->salt;
salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
cipher_name = "ccm(aes)";
break;
}
default:
rc = -EINVAL;
goto free_priv;
}
/* Sanity-check the IV size for stack allocations. */
if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
rc = -EINVAL;
goto free_priv;
}
if (crypto_info->version == TLS_1_3_VERSION) {
nonce_size = 0;
prot->aad_size = TLS_HEADER_SIZE;
prot->tail_size = 1;
} else {
prot->aad_size = TLS_AAD_SPACE_SIZE;
prot->tail_size = 0;
}
prot->version = crypto_info->version;
prot->cipher_type = crypto_info->cipher_type;
prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
prot->tag_size = tag_size;
prot->overhead_size = prot->prepend_size +
prot->tag_size + prot->tail_size;
prot->iv_size = iv_size;
prot->salt_size = salt_size;
cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
if (!cctx->iv) {
rc = -ENOMEM;
goto free_priv;
}
/* Note: 128 & 256 bit salt are the same size */
prot->rec_seq_size = rec_seq_size;
memcpy(cctx->iv, salt, salt_size);
memcpy(cctx->iv + salt_size, iv, iv_size);
cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
if (!cctx->rec_seq) {
rc = -ENOMEM;
goto free_iv;
}
if (!*aead) {
*aead = crypto_alloc_aead(cipher_name, 0, 0);
if (IS_ERR(*aead)) {
rc = PTR_ERR(*aead);
*aead = NULL;
goto free_rec_seq;
}
}
ctx->push_pending_record = tls_sw_push_pending_record;
rc = crypto_aead_setkey(*aead, key, keysize);
if (rc)
goto free_aead;
rc = crypto_aead_setauthsize(*aead, prot->tag_size);
if (rc)
goto free_aead;
if (sw_ctx_rx) {
tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
if (crypto_info->version == TLS_1_3_VERSION)
sw_ctx_rx->async_capable = false;
else
sw_ctx_rx->async_capable =
tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
/* Set up strparser */
memset(&cb, 0, sizeof(cb));
cb.rcv_msg = tls_queue;
cb.parse_msg = tls_read_size;
strp_init(&sw_ctx_rx->strp, sk, &cb);
write_lock_bh(&sk->sk_callback_lock);
sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
sk->sk_data_ready = tls_data_ready;
write_unlock_bh(&sk->sk_callback_lock);
strp_check_rcv(&sw_ctx_rx->strp);
}
goto out;
free_aead:
crypto_free_aead(*aead);
*aead = NULL;
free_rec_seq:
kfree(cctx->rec_seq);
cctx->rec_seq = NULL;
free_iv:
kfree(cctx->iv);
cctx->iv = NULL;
free_priv:
if (tx) {
kfree(ctx->priv_ctx_tx);
ctx->priv_ctx_tx = NULL;
} else {
kfree(ctx->priv_ctx_rx);
ctx->priv_ctx_rx = NULL;
}
out:
return rc;
}