WSL2-Linux-Kernel/fs/btrfs/delayed-inode.c

1977 строки
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2011 Fujitsu. All rights reserved.
* Written by Miao Xie <miaox@cn.fujitsu.com>
*/
#include <linux/slab.h>
#include <linux/iversion.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
#include "ctree.h"
#include "qgroup.h"
#define BTRFS_DELAYED_WRITEBACK 512
#define BTRFS_DELAYED_BACKGROUND 128
#define BTRFS_DELAYED_BATCH 16
static struct kmem_cache *delayed_node_cache;
int __init btrfs_delayed_inode_init(void)
{
delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
sizeof(struct btrfs_delayed_node),
0,
SLAB_MEM_SPREAD,
NULL);
if (!delayed_node_cache)
return -ENOMEM;
return 0;
}
void __cold btrfs_delayed_inode_exit(void)
{
kmem_cache_destroy(delayed_node_cache);
}
static inline void btrfs_init_delayed_node(
struct btrfs_delayed_node *delayed_node,
struct btrfs_root *root, u64 inode_id)
{
delayed_node->root = root;
delayed_node->inode_id = inode_id;
refcount_set(&delayed_node->refs, 0);
delayed_node->ins_root = RB_ROOT_CACHED;
delayed_node->del_root = RB_ROOT_CACHED;
mutex_init(&delayed_node->mutex);
INIT_LIST_HEAD(&delayed_node->n_list);
INIT_LIST_HEAD(&delayed_node->p_list);
}
static inline int btrfs_is_continuous_delayed_item(
struct btrfs_delayed_item *item1,
struct btrfs_delayed_item *item2)
{
if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
item1->key.objectid == item2->key.objectid &&
item1->key.type == item2->key.type &&
item1->key.offset + 1 == item2->key.offset)
return 1;
return 0;
}
static struct btrfs_delayed_node *btrfs_get_delayed_node(
struct btrfs_inode *btrfs_inode)
{
struct btrfs_root *root = btrfs_inode->root;
u64 ino = btrfs_ino(btrfs_inode);
struct btrfs_delayed_node *node;
node = READ_ONCE(btrfs_inode->delayed_node);
if (node) {
refcount_inc(&node->refs);
return node;
}
spin_lock(&root->inode_lock);
node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
if (node) {
if (btrfs_inode->delayed_node) {
refcount_inc(&node->refs); /* can be accessed */
BUG_ON(btrfs_inode->delayed_node != node);
spin_unlock(&root->inode_lock);
return node;
}
/*
* It's possible that we're racing into the middle of removing
* this node from the radix tree. In this case, the refcount
* was zero and it should never go back to one. Just return
* NULL like it was never in the radix at all; our release
* function is in the process of removing it.
*
* Some implementations of refcount_inc refuse to bump the
* refcount once it has hit zero. If we don't do this dance
* here, refcount_inc() may decide to just WARN_ONCE() instead
* of actually bumping the refcount.
*
* If this node is properly in the radix, we want to bump the
* refcount twice, once for the inode and once for this get
* operation.
*/
if (refcount_inc_not_zero(&node->refs)) {
refcount_inc(&node->refs);
btrfs_inode->delayed_node = node;
} else {
node = NULL;
}
spin_unlock(&root->inode_lock);
return node;
}
spin_unlock(&root->inode_lock);
return NULL;
}
/* Will return either the node or PTR_ERR(-ENOMEM) */
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
struct btrfs_inode *btrfs_inode)
{
struct btrfs_delayed_node *node;
struct btrfs_root *root = btrfs_inode->root;
u64 ino = btrfs_ino(btrfs_inode);
int ret;
again:
node = btrfs_get_delayed_node(btrfs_inode);
if (node)
return node;
node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
if (!node)
return ERR_PTR(-ENOMEM);
btrfs_init_delayed_node(node, root, ino);
/* cached in the btrfs inode and can be accessed */
refcount_set(&node->refs, 2);
ret = radix_tree_preload(GFP_NOFS);
if (ret) {
kmem_cache_free(delayed_node_cache, node);
return ERR_PTR(ret);
}
spin_lock(&root->inode_lock);
ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
if (ret == -EEXIST) {
spin_unlock(&root->inode_lock);
kmem_cache_free(delayed_node_cache, node);
radix_tree_preload_end();
goto again;
}
btrfs_inode->delayed_node = node;
spin_unlock(&root->inode_lock);
radix_tree_preload_end();
return node;
}
/*
* Call it when holding delayed_node->mutex
*
* If mod = 1, add this node into the prepared list.
*/
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
struct btrfs_delayed_node *node,
int mod)
{
spin_lock(&root->lock);
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
if (!list_empty(&node->p_list))
list_move_tail(&node->p_list, &root->prepare_list);
else if (mod)
list_add_tail(&node->p_list, &root->prepare_list);
} else {
list_add_tail(&node->n_list, &root->node_list);
list_add_tail(&node->p_list, &root->prepare_list);
refcount_inc(&node->refs); /* inserted into list */
root->nodes++;
set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
}
spin_unlock(&root->lock);
}
/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
struct btrfs_delayed_node *node)
{
spin_lock(&root->lock);
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
root->nodes--;
refcount_dec(&node->refs); /* not in the list */
list_del_init(&node->n_list);
if (!list_empty(&node->p_list))
list_del_init(&node->p_list);
clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
}
spin_unlock(&root->lock);
}
static struct btrfs_delayed_node *btrfs_first_delayed_node(
struct btrfs_delayed_root *delayed_root)
{
struct list_head *p;
struct btrfs_delayed_node *node = NULL;
spin_lock(&delayed_root->lock);
if (list_empty(&delayed_root->node_list))
goto out;
p = delayed_root->node_list.next;
node = list_entry(p, struct btrfs_delayed_node, n_list);
refcount_inc(&node->refs);
out:
spin_unlock(&delayed_root->lock);
return node;
}
static struct btrfs_delayed_node *btrfs_next_delayed_node(
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_root *delayed_root;
struct list_head *p;
struct btrfs_delayed_node *next = NULL;
delayed_root = node->root->fs_info->delayed_root;
spin_lock(&delayed_root->lock);
if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
/* not in the list */
if (list_empty(&delayed_root->node_list))
goto out;
p = delayed_root->node_list.next;
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
goto out;
else
p = node->n_list.next;
next = list_entry(p, struct btrfs_delayed_node, n_list);
refcount_inc(&next->refs);
out:
spin_unlock(&delayed_root->lock);
return next;
}
static void __btrfs_release_delayed_node(
struct btrfs_delayed_node *delayed_node,
int mod)
{
struct btrfs_delayed_root *delayed_root;
if (!delayed_node)
return;
delayed_root = delayed_node->root->fs_info->delayed_root;
mutex_lock(&delayed_node->mutex);
if (delayed_node->count)
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
else
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
mutex_unlock(&delayed_node->mutex);
if (refcount_dec_and_test(&delayed_node->refs)) {
struct btrfs_root *root = delayed_node->root;
spin_lock(&root->inode_lock);
/*
* Once our refcount goes to zero, nobody is allowed to bump it
* back up. We can delete it now.
*/
ASSERT(refcount_read(&delayed_node->refs) == 0);
radix_tree_delete(&root->delayed_nodes_tree,
delayed_node->inode_id);
spin_unlock(&root->inode_lock);
kmem_cache_free(delayed_node_cache, delayed_node);
}
}
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
__btrfs_release_delayed_node(node, 0);
}
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
struct btrfs_delayed_root *delayed_root)
{
struct list_head *p;
struct btrfs_delayed_node *node = NULL;
spin_lock(&delayed_root->lock);
if (list_empty(&delayed_root->prepare_list))
goto out;
p = delayed_root->prepare_list.next;
list_del_init(p);
node = list_entry(p, struct btrfs_delayed_node, p_list);
refcount_inc(&node->refs);
out:
spin_unlock(&delayed_root->lock);
return node;
}
static inline void btrfs_release_prepared_delayed_node(
struct btrfs_delayed_node *node)
{
__btrfs_release_delayed_node(node, 1);
}
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
{
struct btrfs_delayed_item *item;
item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
if (item) {
item->data_len = data_len;
item->ins_or_del = 0;
item->bytes_reserved = 0;
item->delayed_node = NULL;
refcount_set(&item->refs, 1);
}
return item;
}
/*
* __btrfs_lookup_delayed_item - look up the delayed item by key
* @delayed_node: pointer to the delayed node
* @key: the key to look up
* @prev: used to store the prev item if the right item isn't found
* @next: used to store the next item if the right item isn't found
*
* Note: if we don't find the right item, we will return the prev item and
* the next item.
*/
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
struct rb_root *root,
struct btrfs_key *key,
struct btrfs_delayed_item **prev,
struct btrfs_delayed_item **next)
{
struct rb_node *node, *prev_node = NULL;
struct btrfs_delayed_item *delayed_item = NULL;
int ret = 0;
node = root->rb_node;
while (node) {
delayed_item = rb_entry(node, struct btrfs_delayed_item,
rb_node);
prev_node = node;
ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
if (ret < 0)
node = node->rb_right;
else if (ret > 0)
node = node->rb_left;
else
return delayed_item;
}
if (prev) {
if (!prev_node)
*prev = NULL;
else if (ret < 0)
*prev = delayed_item;
else if ((node = rb_prev(prev_node)) != NULL) {
*prev = rb_entry(node, struct btrfs_delayed_item,
rb_node);
} else
*prev = NULL;
}
if (next) {
if (!prev_node)
*next = NULL;
else if (ret > 0)
*next = delayed_item;
else if ((node = rb_next(prev_node)) != NULL) {
*next = rb_entry(node, struct btrfs_delayed_item,
rb_node);
} else
*next = NULL;
}
return NULL;
}
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node,
struct btrfs_key *key)
{
return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
NULL, NULL);
}
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
struct btrfs_delayed_item *ins,
int action)
{
struct rb_node **p, *node;
struct rb_node *parent_node = NULL;
struct rb_root_cached *root;
struct btrfs_delayed_item *item;
int cmp;
bool leftmost = true;
if (action == BTRFS_DELAYED_INSERTION_ITEM)
root = &delayed_node->ins_root;
else if (action == BTRFS_DELAYED_DELETION_ITEM)
root = &delayed_node->del_root;
else
BUG();
p = &root->rb_root.rb_node;
node = &ins->rb_node;
while (*p) {
parent_node = *p;
item = rb_entry(parent_node, struct btrfs_delayed_item,
rb_node);
cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
if (cmp < 0) {
p = &(*p)->rb_right;
leftmost = false;
} else if (cmp > 0) {
p = &(*p)->rb_left;
} else {
return -EEXIST;
}
}
rb_link_node(node, parent_node, p);
rb_insert_color_cached(node, root, leftmost);
ins->delayed_node = delayed_node;
ins->ins_or_del = action;
if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
action == BTRFS_DELAYED_INSERTION_ITEM &&
ins->key.offset >= delayed_node->index_cnt)
delayed_node->index_cnt = ins->key.offset + 1;
delayed_node->count++;
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
return 0;
}
static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
struct btrfs_delayed_item *item)
{
return __btrfs_add_delayed_item(node, item,
BTRFS_DELAYED_INSERTION_ITEM);
}
static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
struct btrfs_delayed_item *item)
{
return __btrfs_add_delayed_item(node, item,
BTRFS_DELAYED_DELETION_ITEM);
}
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
int seq = atomic_inc_return(&delayed_root->items_seq);
/* atomic_dec_return implies a barrier */
if ((atomic_dec_return(&delayed_root->items) <
BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
cond_wake_up_nomb(&delayed_root->wait);
}
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
struct rb_root_cached *root;
struct btrfs_delayed_root *delayed_root;
/* Not associated with any delayed_node */
if (!delayed_item->delayed_node)
return;
delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
BUG_ON(!delayed_root);
BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
root = &delayed_item->delayed_node->ins_root;
else
root = &delayed_item->delayed_node->del_root;
rb_erase_cached(&delayed_item->rb_node, root);
delayed_item->delayed_node->count--;
finish_one_item(delayed_root);
}
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
if (item) {
__btrfs_remove_delayed_item(item);
if (refcount_dec_and_test(&item->refs))
kfree(item);
}
}
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node)
{
struct rb_node *p;
struct btrfs_delayed_item *item = NULL;
p = rb_first_cached(&delayed_node->ins_root);
if (p)
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
return item;
}
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
struct btrfs_delayed_node *delayed_node)
{
struct rb_node *p;
struct btrfs_delayed_item *item = NULL;
p = rb_first_cached(&delayed_node->del_root);
if (p)
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
return item;
}
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
struct btrfs_delayed_item *item)
{
struct rb_node *p;
struct btrfs_delayed_item *next = NULL;
p = rb_next(&item->rb_node);
if (p)
next = rb_entry(p, struct btrfs_delayed_item, rb_node);
return next;
}
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_item *item)
{
struct btrfs_block_rsv *src_rsv;
struct btrfs_block_rsv *dst_rsv;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 num_bytes;
int ret;
if (!trans->bytes_reserved)
return 0;
src_rsv = trans->block_rsv;
dst_rsv = &fs_info->delayed_block_rsv;
num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
/*
* Here we migrate space rsv from transaction rsv, since have already
* reserved space when starting a transaction. So no need to reserve
* qgroup space here.
*/
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
if (!ret) {
trace_btrfs_space_reservation(fs_info, "delayed_item",
item->key.objectid,
num_bytes, 1);
item->bytes_reserved = num_bytes;
}
return ret;
}
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
struct btrfs_delayed_item *item)
{
struct btrfs_block_rsv *rsv;
struct btrfs_fs_info *fs_info = root->fs_info;
if (!item->bytes_reserved)
return;
rsv = &fs_info->delayed_block_rsv;
/*
* Check btrfs_delayed_item_reserve_metadata() to see why we don't need
* to release/reserve qgroup space.
*/
trace_btrfs_space_reservation(fs_info, "delayed_item",
item->key.objectid, item->bytes_reserved,
0);
btrfs_block_rsv_release(fs_info, rsv,
item->bytes_reserved);
}
static int btrfs_delayed_inode_reserve_metadata(
struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode *inode,
struct btrfs_delayed_node *node)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_rsv *src_rsv;
struct btrfs_block_rsv *dst_rsv;
u64 num_bytes;
int ret;
src_rsv = trans->block_rsv;
dst_rsv = &fs_info->delayed_block_rsv;
num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
/*
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
* which doesn't reserve space for speed. This is a problem since we
* still need to reserve space for this update, so try to reserve the
* space.
*
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
* we always reserve enough to update the inode item.
*/
if (!src_rsv || (!trans->bytes_reserved &&
src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
ret = btrfs_qgroup_reserve_meta_prealloc(root,
fs_info->nodesize, true);
if (ret < 0)
return ret;
ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
BTRFS_RESERVE_NO_FLUSH);
/*
* Since we're under a transaction reserve_metadata_bytes could
* try to commit the transaction which will make it return
* EAGAIN to make us stop the transaction we have, so return
* ENOSPC instead so that btrfs_dirty_inode knows what to do.
*/
if (ret == -EAGAIN) {
ret = -ENOSPC;
btrfs_qgroup_free_meta_prealloc(root, num_bytes);
}
if (!ret) {
node->bytes_reserved = num_bytes;
trace_btrfs_space_reservation(fs_info,
"delayed_inode",
btrfs_ino(inode),
num_bytes, 1);
} else {
btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
}
return ret;
}
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
if (!ret) {
trace_btrfs_space_reservation(fs_info, "delayed_inode",
btrfs_ino(inode), num_bytes, 1);
node->bytes_reserved = num_bytes;
}
return ret;
}
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_node *node,
bool qgroup_free)
{
struct btrfs_block_rsv *rsv;
if (!node->bytes_reserved)
return;
rsv = &fs_info->delayed_block_rsv;
trace_btrfs_space_reservation(fs_info, "delayed_inode",
node->inode_id, node->bytes_reserved, 0);
btrfs_block_rsv_release(fs_info, rsv,
node->bytes_reserved);
if (qgroup_free)
btrfs_qgroup_free_meta_prealloc(node->root,
node->bytes_reserved);
else
btrfs_qgroup_convert_reserved_meta(node->root,
node->bytes_reserved);
node->bytes_reserved = 0;
}
/*
* This helper will insert some continuous items into the same leaf according
* to the free space of the leaf.
*/
static int btrfs_batch_insert_items(struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *item)
{
struct btrfs_delayed_item *curr, *next;
int free_space;
int total_data_size = 0, total_size = 0;
struct extent_buffer *leaf;
char *data_ptr;
struct btrfs_key *keys;
u32 *data_size;
struct list_head head;
int slot;
int nitems;
int i;
int ret = 0;
BUG_ON(!path->nodes[0]);
leaf = path->nodes[0];
free_space = btrfs_leaf_free_space(leaf);
INIT_LIST_HEAD(&head);
next = item;
nitems = 0;
/*
* count the number of the continuous items that we can insert in batch
*/
while (total_size + next->data_len + sizeof(struct btrfs_item) <=
free_space) {
total_data_size += next->data_len;
total_size += next->data_len + sizeof(struct btrfs_item);
list_add_tail(&next->tree_list, &head);
nitems++;
curr = next;
next = __btrfs_next_delayed_item(curr);
if (!next)
break;
if (!btrfs_is_continuous_delayed_item(curr, next))
break;
}
if (!nitems) {
ret = 0;
goto out;
}
/*
* we need allocate some memory space, but it might cause the task
* to sleep, so we set all locked nodes in the path to blocking locks
* first.
*/
btrfs_set_path_blocking(path);
keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
if (!keys) {
ret = -ENOMEM;
goto out;
}
data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
if (!data_size) {
ret = -ENOMEM;
goto error;
}
/* get keys of all the delayed items */
i = 0;
list_for_each_entry(next, &head, tree_list) {
keys[i] = next->key;
data_size[i] = next->data_len;
i++;
}
/* insert the keys of the items */
setup_items_for_insert(root, path, keys, data_size,
total_data_size, total_size, nitems);
/* insert the dir index items */
slot = path->slots[0];
list_for_each_entry_safe(curr, next, &head, tree_list) {
data_ptr = btrfs_item_ptr(leaf, slot, char);
write_extent_buffer(leaf, &curr->data,
(unsigned long)data_ptr,
curr->data_len);
slot++;
btrfs_delayed_item_release_metadata(root, curr);
list_del(&curr->tree_list);
btrfs_release_delayed_item(curr);
}
error:
kfree(data_size);
kfree(keys);
out:
return ret;
}
/*
* This helper can just do simple insertion that needn't extend item for new
* data, such as directory name index insertion, inode insertion.
*/
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *delayed_item)
{
struct extent_buffer *leaf;
char *ptr;
int ret;
ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
delayed_item->data_len);
if (ret < 0 && ret != -EEXIST)
return ret;
leaf = path->nodes[0];
ptr = btrfs_item_ptr(leaf, path->slots[0], char);
write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
delayed_item->data_len);
btrfs_mark_buffer_dirty(leaf);
btrfs_delayed_item_release_metadata(root, delayed_item);
return 0;
}
/*
* we insert an item first, then if there are some continuous items, we try
* to insert those items into the same leaf.
*/
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_item *curr, *prev;
int ret = 0;
do_again:
mutex_lock(&node->mutex);
curr = __btrfs_first_delayed_insertion_item(node);
if (!curr)
goto insert_end;
ret = btrfs_insert_delayed_item(trans, root, path, curr);
if (ret < 0) {
btrfs_release_path(path);
goto insert_end;
}
prev = curr;
curr = __btrfs_next_delayed_item(prev);
if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
/* insert the continuous items into the same leaf */
path->slots[0]++;
btrfs_batch_insert_items(root, path, curr);
}
btrfs_release_delayed_item(prev);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
mutex_unlock(&node->mutex);
goto do_again;
insert_end:
mutex_unlock(&node->mutex);
return ret;
}
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *item)
{
struct btrfs_delayed_item *curr, *next;
struct extent_buffer *leaf;
struct btrfs_key key;
struct list_head head;
int nitems, i, last_item;
int ret = 0;
BUG_ON(!path->nodes[0]);
leaf = path->nodes[0];
i = path->slots[0];
last_item = btrfs_header_nritems(leaf) - 1;
if (i > last_item)
return -ENOENT; /* FIXME: Is errno suitable? */
next = item;
INIT_LIST_HEAD(&head);
btrfs_item_key_to_cpu(leaf, &key, i);
nitems = 0;
/*
* count the number of the dir index items that we can delete in batch
*/
while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
list_add_tail(&next->tree_list, &head);
nitems++;
curr = next;
next = __btrfs_next_delayed_item(curr);
if (!next)
break;
if (!btrfs_is_continuous_delayed_item(curr, next))
break;
i++;
if (i > last_item)
break;
btrfs_item_key_to_cpu(leaf, &key, i);
}
if (!nitems)
return 0;
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
if (ret)
goto out;
list_for_each_entry_safe(curr, next, &head, tree_list) {
btrfs_delayed_item_release_metadata(root, curr);
list_del(&curr->tree_list);
btrfs_release_delayed_item(curr);
}
out:
return ret;
}
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_item *curr, *prev;
int ret = 0;
do_again:
mutex_lock(&node->mutex);
curr = __btrfs_first_delayed_deletion_item(node);
if (!curr)
goto delete_fail;
ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
if (ret < 0)
goto delete_fail;
else if (ret > 0) {
/*
* can't find the item which the node points to, so this node
* is invalid, just drop it.
*/
prev = curr;
curr = __btrfs_next_delayed_item(prev);
btrfs_release_delayed_item(prev);
ret = 0;
btrfs_release_path(path);
if (curr) {
mutex_unlock(&node->mutex);
goto do_again;
} else
goto delete_fail;
}
btrfs_batch_delete_items(trans, root, path, curr);
btrfs_release_path(path);
mutex_unlock(&node->mutex);
goto do_again;
delete_fail:
btrfs_release_path(path);
mutex_unlock(&node->mutex);
return ret;
}
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_delayed_root *delayed_root;
if (delayed_node &&
test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
BUG_ON(!delayed_node->root);
clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
delayed_node->count--;
delayed_root = delayed_node->root->fs_info->delayed_root;
finish_one_item(delayed_root);
}
}
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_delayed_root *delayed_root;
ASSERT(delayed_node->root);
clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
delayed_node->count--;
delayed_root = delayed_node->root->fs_info->delayed_root;
finish_one_item(delayed_root);
}
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_key key;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
int mod;
int ret;
key.objectid = node->inode_id;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
mod = -1;
else
mod = 1;
ret = btrfs_lookup_inode(trans, root, path, &key, mod);
if (ret > 0) {
btrfs_release_path(path);
return -ENOENT;
} else if (ret < 0) {
return ret;
}
leaf = path->nodes[0];
inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item);
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
sizeof(struct btrfs_inode_item));
btrfs_mark_buffer_dirty(leaf);
if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
goto no_iref;
path->slots[0]++;
if (path->slots[0] >= btrfs_header_nritems(leaf))
goto search;
again:
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != node->inode_id)
goto out;
if (key.type != BTRFS_INODE_REF_KEY &&
key.type != BTRFS_INODE_EXTREF_KEY)
goto out;
/*
* Delayed iref deletion is for the inode who has only one link,
* so there is only one iref. The case that several irefs are
* in the same item doesn't exist.
*/
btrfs_del_item(trans, root, path);
out:
btrfs_release_delayed_iref(node);
no_iref:
btrfs_release_path(path);
err_out:
btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
btrfs_release_delayed_inode(node);
return ret;
search:
btrfs_release_path(path);
key.type = BTRFS_INODE_EXTREF_KEY;
key.offset = -1;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto err_out;
ASSERT(ret);
ret = 0;
leaf = path->nodes[0];
path->slots[0]--;
goto again;
}
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
int ret;
mutex_lock(&node->mutex);
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
mutex_unlock(&node->mutex);
return 0;
}
ret = __btrfs_update_delayed_inode(trans, root, path, node);
mutex_unlock(&node->mutex);
return ret;
}
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
int ret;
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
if (ret)
return ret;
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
if (ret)
return ret;
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
return ret;
}
/*
* Called when committing the transaction.
* Returns 0 on success.
* Returns < 0 on error and returns with an aborted transaction with any
* outstanding delayed items cleaned up.
*/
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_delayed_root *delayed_root;
struct btrfs_delayed_node *curr_node, *prev_node;
struct btrfs_path *path;
struct btrfs_block_rsv *block_rsv;
int ret = 0;
bool count = (nr > 0);
if (trans->aborted)
return -EIO;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
block_rsv = trans->block_rsv;
trans->block_rsv = &fs_info->delayed_block_rsv;
delayed_root = fs_info->delayed_root;
curr_node = btrfs_first_delayed_node(delayed_root);
while (curr_node && (!count || (count && nr--))) {
ret = __btrfs_commit_inode_delayed_items(trans, path,
curr_node);
if (ret) {
btrfs_release_delayed_node(curr_node);
curr_node = NULL;
btrfs_abort_transaction(trans, ret);
break;
}
prev_node = curr_node;
curr_node = btrfs_next_delayed_node(curr_node);
btrfs_release_delayed_node(prev_node);
}
if (curr_node)
btrfs_release_delayed_node(curr_node);
btrfs_free_path(path);
trans->block_rsv = block_rsv;
return ret;
}
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
{
return __btrfs_run_delayed_items(trans, -1);
}
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
{
return __btrfs_run_delayed_items(trans, nr);
}
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_inode *inode)
{
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
struct btrfs_path *path;
struct btrfs_block_rsv *block_rsv;
int ret;
if (!delayed_node)
return 0;
mutex_lock(&delayed_node->mutex);
if (!delayed_node->count) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
mutex_unlock(&delayed_node->mutex);
path = btrfs_alloc_path();
if (!path) {
btrfs_release_delayed_node(delayed_node);
return -ENOMEM;
}
path->leave_spinning = 1;
block_rsv = trans->block_rsv;
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
btrfs_release_delayed_node(delayed_node);
btrfs_free_path(path);
trans->block_rsv = block_rsv;
return ret;
}
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct btrfs_trans_handle *trans;
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
struct btrfs_path *path;
struct btrfs_block_rsv *block_rsv;
int ret;
if (!delayed_node)
return 0;
mutex_lock(&delayed_node->mutex);
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
mutex_unlock(&delayed_node->mutex);
trans = btrfs_join_transaction(delayed_node->root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto trans_out;
}
path->leave_spinning = 1;
block_rsv = trans->block_rsv;
trans->block_rsv = &fs_info->delayed_block_rsv;
mutex_lock(&delayed_node->mutex);
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
path, delayed_node);
else
ret = 0;
mutex_unlock(&delayed_node->mutex);
btrfs_free_path(path);
trans->block_rsv = block_rsv;
trans_out:
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(fs_info);
out:
btrfs_release_delayed_node(delayed_node);
return ret;
}
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
{
struct btrfs_delayed_node *delayed_node;
delayed_node = READ_ONCE(inode->delayed_node);
if (!delayed_node)
return;
inode->delayed_node = NULL;
btrfs_release_delayed_node(delayed_node);
}
struct btrfs_async_delayed_work {
struct btrfs_delayed_root *delayed_root;
int nr;
struct btrfs_work work;
};
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
{
struct btrfs_async_delayed_work *async_work;
struct btrfs_delayed_root *delayed_root;
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_delayed_node *delayed_node = NULL;
struct btrfs_root *root;
struct btrfs_block_rsv *block_rsv;
int total_done = 0;
async_work = container_of(work, struct btrfs_async_delayed_work, work);
delayed_root = async_work->delayed_root;
path = btrfs_alloc_path();
if (!path)
goto out;
do {
if (atomic_read(&delayed_root->items) <
BTRFS_DELAYED_BACKGROUND / 2)
break;
delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
if (!delayed_node)
break;
path->leave_spinning = 1;
root = delayed_node->root;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
btrfs_release_path(path);
btrfs_release_prepared_delayed_node(delayed_node);
total_done++;
continue;
}
block_rsv = trans->block_rsv;
trans->block_rsv = &root->fs_info->delayed_block_rsv;
__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
trans->block_rsv = block_rsv;
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty_nodelay(root->fs_info);
btrfs_release_path(path);
btrfs_release_prepared_delayed_node(delayed_node);
total_done++;
} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
|| total_done < async_work->nr);
btrfs_free_path(path);
out:
wake_up(&delayed_root->wait);
kfree(async_work);
}
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
struct btrfs_fs_info *fs_info, int nr)
{
struct btrfs_async_delayed_work *async_work;
async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
if (!async_work)
return -ENOMEM;
async_work->delayed_root = delayed_root;
btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
btrfs_async_run_delayed_root, NULL, NULL);
async_work->nr = nr;
btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
return 0;
}
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
{
WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
}
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
{
int val = atomic_read(&delayed_root->items_seq);
if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
return 1;
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
return 1;
return 0;
}
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
{
struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
btrfs_workqueue_normal_congested(fs_info->delayed_workers))
return;
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
int seq;
int ret;
seq = atomic_read(&delayed_root->items_seq);
ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
if (ret)
return;
wait_event_interruptible(delayed_root->wait,
could_end_wait(delayed_root, seq));
return;
}
btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
}
/* Will return 0 or -ENOMEM */
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
const char *name, int name_len,
struct btrfs_inode *dir,
struct btrfs_disk_key *disk_key, u8 type,
u64 index)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *delayed_item;
struct btrfs_dir_item *dir_item;
int ret;
delayed_node = btrfs_get_or_create_delayed_node(dir);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
if (!delayed_item) {
ret = -ENOMEM;
goto release_node;
}
delayed_item->key.objectid = btrfs_ino(dir);
delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
delayed_item->key.offset = index;
dir_item = (struct btrfs_dir_item *)delayed_item->data;
dir_item->location = *disk_key;
btrfs_set_stack_dir_transid(dir_item, trans->transid);
btrfs_set_stack_dir_data_len(dir_item, 0);
btrfs_set_stack_dir_name_len(dir_item, name_len);
btrfs_set_stack_dir_type(dir_item, type);
memcpy((char *)(dir_item + 1), name, name_len);
ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
/*
* we have reserved enough space when we start a new transaction,
* so reserving metadata failure is impossible
*/
BUG_ON(ret);
mutex_lock(&delayed_node->mutex);
ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
if (unlikely(ret)) {
btrfs_err(trans->fs_info,
"err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
name_len, name, delayed_node->root->root_key.objectid,
delayed_node->inode_id, ret);
BUG();
}
mutex_unlock(&delayed_node->mutex);
release_node:
btrfs_release_delayed_node(delayed_node);
return ret;
}
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_node *node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item;
mutex_lock(&node->mutex);
item = __btrfs_lookup_delayed_insertion_item(node, key);
if (!item) {
mutex_unlock(&node->mutex);
return 1;
}
btrfs_delayed_item_release_metadata(node->root, item);
btrfs_release_delayed_item(item);
mutex_unlock(&node->mutex);
return 0;
}
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_inode *dir, u64 index)
{
struct btrfs_delayed_node *node;
struct btrfs_delayed_item *item;
struct btrfs_key item_key;
int ret;
node = btrfs_get_or_create_delayed_node(dir);
if (IS_ERR(node))
return PTR_ERR(node);
item_key.objectid = btrfs_ino(dir);
item_key.type = BTRFS_DIR_INDEX_KEY;
item_key.offset = index;
ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
&item_key);
if (!ret)
goto end;
item = btrfs_alloc_delayed_item(0);
if (!item) {
ret = -ENOMEM;
goto end;
}
item->key = item_key;
ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
/*
* we have reserved enough space when we start a new transaction,
* so reserving metadata failure is impossible.
*/
if (ret < 0) {
btrfs_err(trans->fs_info,
"metadata reservation failed for delayed dir item deltiona, should have been reserved");
btrfs_release_delayed_item(item);
goto end;
}
mutex_lock(&node->mutex);
ret = __btrfs_add_delayed_deletion_item(node, item);
if (unlikely(ret)) {
btrfs_err(trans->fs_info,
"err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
index, node->root->root_key.objectid,
node->inode_id, ret);
btrfs_delayed_item_release_metadata(dir->root, item);
btrfs_release_delayed_item(item);
}
mutex_unlock(&node->mutex);
end:
btrfs_release_delayed_node(node);
return ret;
}
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
{
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return -ENOENT;
/*
* Since we have held i_mutex of this directory, it is impossible that
* a new directory index is added into the delayed node and index_cnt
* is updated now. So we needn't lock the delayed node.
*/
if (!delayed_node->index_cnt) {
btrfs_release_delayed_node(delayed_node);
return -EINVAL;
}
inode->index_cnt = delayed_node->index_cnt;
btrfs_release_delayed_node(delayed_node);
return 0;
}
bool btrfs_readdir_get_delayed_items(struct inode *inode,
struct list_head *ins_list,
struct list_head *del_list)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *item;
delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
if (!delayed_node)
return false;
/*
* We can only do one readdir with delayed items at a time because of
* item->readdir_list.
*/
inode_unlock_shared(inode);
inode_lock(inode);
mutex_lock(&delayed_node->mutex);
item = __btrfs_first_delayed_insertion_item(delayed_node);
while (item) {
refcount_inc(&item->refs);
list_add_tail(&item->readdir_list, ins_list);
item = __btrfs_next_delayed_item(item);
}
item = __btrfs_first_delayed_deletion_item(delayed_node);
while (item) {
refcount_inc(&item->refs);
list_add_tail(&item->readdir_list, del_list);
item = __btrfs_next_delayed_item(item);
}
mutex_unlock(&delayed_node->mutex);
/*
* This delayed node is still cached in the btrfs inode, so refs
* must be > 1 now, and we needn't check it is going to be freed
* or not.
*
* Besides that, this function is used to read dir, we do not
* insert/delete delayed items in this period. So we also needn't
* requeue or dequeue this delayed node.
*/
refcount_dec(&delayed_node->refs);
return true;
}
void btrfs_readdir_put_delayed_items(struct inode *inode,
struct list_head *ins_list,
struct list_head *del_list)
{
struct btrfs_delayed_item *curr, *next;
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
list_del(&curr->readdir_list);
if (refcount_dec_and_test(&curr->refs))
kfree(curr);
}
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
list_del(&curr->readdir_list);
if (refcount_dec_and_test(&curr->refs))
kfree(curr);
}
/*
* The VFS is going to do up_read(), so we need to downgrade back to a
* read lock.
*/
downgrade_write(&inode->i_rwsem);
}
int btrfs_should_delete_dir_index(struct list_head *del_list,
u64 index)
{
struct btrfs_delayed_item *curr;
int ret = 0;
list_for_each_entry(curr, del_list, readdir_list) {
if (curr->key.offset > index)
break;
if (curr->key.offset == index) {
ret = 1;
break;
}
}
return ret;
}
/*
* btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
*
*/
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
struct list_head *ins_list)
{
struct btrfs_dir_item *di;
struct btrfs_delayed_item *curr, *next;
struct btrfs_key location;
char *name;
int name_len;
int over = 0;
unsigned char d_type;
if (list_empty(ins_list))
return 0;
/*
* Changing the data of the delayed item is impossible. So
* we needn't lock them. And we have held i_mutex of the
* directory, nobody can delete any directory indexes now.
*/
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
list_del(&curr->readdir_list);
if (curr->key.offset < ctx->pos) {
if (refcount_dec_and_test(&curr->refs))
kfree(curr);
continue;
}
ctx->pos = curr->key.offset;
di = (struct btrfs_dir_item *)curr->data;
name = (char *)(di + 1);
name_len = btrfs_stack_dir_name_len(di);
d_type = fs_ftype_to_dtype(di->type);
btrfs_disk_key_to_cpu(&location, &di->location);
over = !dir_emit(ctx, name, name_len,
location.objectid, d_type);
if (refcount_dec_and_test(&curr->refs))
kfree(curr);
if (over)
return 1;
ctx->pos++;
}
return 0;
}
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_inode_item *inode_item,
struct inode *inode)
{
btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
btrfs_set_stack_inode_generation(inode_item,
BTRFS_I(inode)->generation);
btrfs_set_stack_inode_sequence(inode_item,
inode_peek_iversion(inode));
btrfs_set_stack_inode_transid(inode_item, trans->transid);
btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
btrfs_set_stack_inode_block_group(inode_item, 0);
btrfs_set_stack_timespec_sec(&inode_item->atime,
inode->i_atime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->atime,
inode->i_atime.tv_nsec);
btrfs_set_stack_timespec_sec(&inode_item->mtime,
inode->i_mtime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->mtime,
inode->i_mtime.tv_nsec);
btrfs_set_stack_timespec_sec(&inode_item->ctime,
inode->i_ctime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->ctime,
inode->i_ctime.tv_nsec);
btrfs_set_stack_timespec_sec(&inode_item->otime,
BTRFS_I(inode)->i_otime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->otime,
BTRFS_I(inode)->i_otime.tv_nsec);
}
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_inode_item *inode_item;
delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
if (!delayed_node)
return -ENOENT;
mutex_lock(&delayed_node->mutex);
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return -ENOENT;
}
inode_item = &delayed_node->inode_item;
i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
inode->i_mode = btrfs_stack_inode_mode(inode_item);
set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
inode_set_iversion_queried(inode,
btrfs_stack_inode_sequence(inode_item));
inode->i_rdev = 0;
*rdev = btrfs_stack_inode_rdev(inode_item);
BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
BTRFS_I(inode)->i_otime.tv_sec =
btrfs_stack_timespec_sec(&inode_item->otime);
BTRFS_I(inode)->i_otime.tv_nsec =
btrfs_stack_timespec_nsec(&inode_item->otime);
inode->i_generation = BTRFS_I(inode)->generation;
BTRFS_I(inode)->index_cnt = (u64)-1;
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
int ret = 0;
delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
mutex_lock(&delayed_node->mutex);
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
goto release_node;
}
ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
delayed_node);
if (ret)
goto release_node;
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
delayed_node->count++;
atomic_inc(&root->fs_info->delayed_root->items);
release_node:
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return ret;
}
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct btrfs_delayed_node *delayed_node;
/*
* we don't do delayed inode updates during log recovery because it
* leads to enospc problems. This means we also can't do
* delayed inode refs
*/
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
return -EAGAIN;
delayed_node = btrfs_get_or_create_delayed_node(inode);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
/*
* We don't reserve space for inode ref deletion is because:
* - We ONLY do async inode ref deletion for the inode who has only
* one link(i_nlink == 1), it means there is only one inode ref.
* And in most case, the inode ref and the inode item are in the
* same leaf, and we will deal with them at the same time.
* Since we are sure we will reserve the space for the inode item,
* it is unnecessary to reserve space for inode ref deletion.
* - If the inode ref and the inode item are not in the same leaf,
* We also needn't worry about enospc problem, because we reserve
* much more space for the inode update than it needs.
* - At the worst, we can steal some space from the global reservation.
* It is very rare.
*/
mutex_lock(&delayed_node->mutex);
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
goto release_node;
set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
delayed_node->count++;
atomic_inc(&fs_info->delayed_root->items);
release_node:
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_root *root = delayed_node->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_delayed_item *curr_item, *prev_item;
mutex_lock(&delayed_node->mutex);
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
while (curr_item) {
btrfs_delayed_item_release_metadata(root, curr_item);
prev_item = curr_item;
curr_item = __btrfs_next_delayed_item(prev_item);
btrfs_release_delayed_item(prev_item);
}
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
while (curr_item) {
btrfs_delayed_item_release_metadata(root, curr_item);
prev_item = curr_item;
curr_item = __btrfs_next_delayed_item(prev_item);
btrfs_release_delayed_item(prev_item);
}
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
btrfs_release_delayed_iref(delayed_node);
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
btrfs_release_delayed_inode(delayed_node);
}
mutex_unlock(&delayed_node->mutex);
}
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
{
struct btrfs_delayed_node *delayed_node;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return;
__btrfs_kill_delayed_node(delayed_node);
btrfs_release_delayed_node(delayed_node);
}
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
u64 inode_id = 0;
struct btrfs_delayed_node *delayed_nodes[8];
int i, n;
while (1) {
spin_lock(&root->inode_lock);
n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
(void **)delayed_nodes, inode_id,
ARRAY_SIZE(delayed_nodes));
if (!n) {
spin_unlock(&root->inode_lock);
break;
}
inode_id = delayed_nodes[n - 1]->inode_id + 1;
for (i = 0; i < n; i++)
refcount_inc(&delayed_nodes[i]->refs);
spin_unlock(&root->inode_lock);
for (i = 0; i < n; i++) {
__btrfs_kill_delayed_node(delayed_nodes[i]);
btrfs_release_delayed_node(delayed_nodes[i]);
}
}
}
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
{
struct btrfs_delayed_node *curr_node, *prev_node;
curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
while (curr_node) {
__btrfs_kill_delayed_node(curr_node);
prev_node = curr_node;
curr_node = btrfs_next_delayed_node(curr_node);
btrfs_release_delayed_node(prev_node);
}
}