WSL2-Linux-Kernel/drivers/spi/spi-sirf.c

1237 строки
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SPI bus driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/reset.h>
#define DRIVER_NAME "sirfsoc_spi"
/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE BIT(16)
#define SIRFSOC_SPI_CMD_MODE BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
#define SIRFSOC_SPI_TRAN_MSB BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE BIT(0)
#define SIRFSOC_SPI_TX_DONE BIT(1)
#define SIRFSOC_SPI_RX_OFLOW BIT(2)
#define SIRFSOC_SPI_TX_UFLOW BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA BIT(4)
#define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
#define SIRFSOC_SPI_FRM_END BIT(10)
/* TX RX enable */
#define SIRFSOC_SPI_RX_EN BIT(0)
#define SIRFSOC_SPI_TX_EN BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN BIT(2)
#define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET BIT(0)
#define SIRFSOC_SPI_FIFO_START BIT(1)
/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
/* USP related */
#define SIRFSOC_USP_SYNC_MODE BIT(0)
#define SIRFSOC_USP_SLV_MODE BIT(1)
#define SIRFSOC_USP_LSB BIT(4)
#define SIRFSOC_USP_EN BIT(5)
#define SIRFSOC_USP_RXD_FALLING_EDGE BIT(6)
#define SIRFSOC_USP_TXD_FALLING_EDGE BIT(7)
#define SIRFSOC_USP_CS_HIGH_VALID BIT(9)
#define SIRFSOC_USP_SCLK_IDLE_STAT BIT(11)
#define SIRFSOC_USP_TFS_IO_MODE BIT(14)
#define SIRFSOC_USP_TFS_IO_INPUT BIT(19)
#define SIRFSOC_USP_RXD_DELAY_LEN_MASK 0xFF
#define SIRFSOC_USP_TXD_DELAY_LEN_MASK 0xFF
#define SIRFSOC_USP_RXD_DELAY_OFFSET 0
#define SIRFSOC_USP_TXD_DELAY_OFFSET 8
#define SIRFSOC_USP_RXD_DELAY_LEN 1
#define SIRFSOC_USP_TXD_DELAY_LEN 1
#define SIRFSOC_USP_CLK_DIVISOR_OFFSET 21
#define SIRFSOC_USP_CLK_DIVISOR_MASK 0x3FF
#define SIRFSOC_USP_CLK_10_11_MASK 0x3
#define SIRFSOC_USP_CLK_10_11_OFFSET 30
#define SIRFSOC_USP_CLK_12_15_MASK 0xF
#define SIRFSOC_USP_CLK_12_15_OFFSET 24
#define SIRFSOC_USP_TX_DATA_OFFSET 0
#define SIRFSOC_USP_TX_SYNC_OFFSET 8
#define SIRFSOC_USP_TX_FRAME_OFFSET 16
#define SIRFSOC_USP_TX_SHIFTER_OFFSET 24
#define SIRFSOC_USP_TX_DATA_MASK 0xFF
#define SIRFSOC_USP_TX_SYNC_MASK 0xFF
#define SIRFSOC_USP_TX_FRAME_MASK 0xFF
#define SIRFSOC_USP_TX_SHIFTER_MASK 0x1F
#define SIRFSOC_USP_RX_DATA_OFFSET 0
#define SIRFSOC_USP_RX_FRAME_OFFSET 8
#define SIRFSOC_USP_RX_SHIFTER_OFFSET 16
#define SIRFSOC_USP_RX_DATA_MASK 0xFF
#define SIRFSOC_USP_RX_FRAME_MASK 0xFF
#define SIRFSOC_USP_RX_SHIFTER_MASK 0x1F
#define SIRFSOC_USP_CS_HIGH_VALUE BIT(1)
#define SIRFSOC_SPI_FIFO_SC_OFFSET 0
#define SIRFSOC_SPI_FIFO_LC_OFFSET 10
#define SIRFSOC_SPI_FIFO_HC_OFFSET 20
#define SIRFSOC_SPI_FIFO_FULL_MASK(s) (1 << ((s)->fifo_full_offset))
#define SIRFSOC_SPI_FIFO_EMPTY_MASK(s) (1 << ((s)->fifo_full_offset + 1))
#define SIRFSOC_SPI_FIFO_THD_MASK(s) ((s)->fifo_size - 1)
#define SIRFSOC_SPI_FIFO_THD_OFFSET 2
#define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val) \
((val) & (s)->fifo_level_chk_mask)
enum sirf_spi_type {
SIRF_REAL_SPI,
SIRF_USP_SPI_P2,
SIRF_USP_SPI_A7,
};
/*
* only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
* due to the limitation of dma controller
*/
#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
#define SIRFSOC_MAX_CMD_BYTES 4
#define SIRFSOC_SPI_DEFAULT_FRQ 1000000
struct sirf_spi_register {
/*SPI and USP-SPI common*/
u32 tx_rx_en;
u32 int_en;
u32 int_st;
u32 tx_dma_io_ctrl;
u32 tx_dma_io_len;
u32 txfifo_ctrl;
u32 txfifo_level_chk;
u32 txfifo_op;
u32 txfifo_st;
u32 txfifo_data;
u32 rx_dma_io_ctrl;
u32 rx_dma_io_len;
u32 rxfifo_ctrl;
u32 rxfifo_level_chk;
u32 rxfifo_op;
u32 rxfifo_st;
u32 rxfifo_data;
/*SPI self*/
u32 spi_ctrl;
u32 spi_cmd;
u32 spi_dummy_delay_ctrl;
/*USP-SPI self*/
u32 usp_mode1;
u32 usp_mode2;
u32 usp_tx_frame_ctrl;
u32 usp_rx_frame_ctrl;
u32 usp_pin_io_data;
u32 usp_risc_dsp_mode;
u32 usp_async_param_reg;
u32 usp_irda_x_mode_div;
u32 usp_sm_cfg;
u32 usp_int_en_clr;
};
static const struct sirf_spi_register real_spi_register = {
.tx_rx_en = 0x8,
.int_en = 0xc,
.int_st = 0x10,
.tx_dma_io_ctrl = 0x100,
.tx_dma_io_len = 0x104,
.txfifo_ctrl = 0x108,
.txfifo_level_chk = 0x10c,
.txfifo_op = 0x110,
.txfifo_st = 0x114,
.txfifo_data = 0x118,
.rx_dma_io_ctrl = 0x120,
.rx_dma_io_len = 0x124,
.rxfifo_ctrl = 0x128,
.rxfifo_level_chk = 0x12c,
.rxfifo_op = 0x130,
.rxfifo_st = 0x134,
.rxfifo_data = 0x138,
.spi_ctrl = 0x0,
.spi_cmd = 0x4,
.spi_dummy_delay_ctrl = 0x144,
};
static const struct sirf_spi_register usp_spi_register = {
.tx_rx_en = 0x10,
.int_en = 0x14,
.int_st = 0x18,
.tx_dma_io_ctrl = 0x100,
.tx_dma_io_len = 0x104,
.txfifo_ctrl = 0x108,
.txfifo_level_chk = 0x10c,
.txfifo_op = 0x110,
.txfifo_st = 0x114,
.txfifo_data = 0x118,
.rx_dma_io_ctrl = 0x120,
.rx_dma_io_len = 0x124,
.rxfifo_ctrl = 0x128,
.rxfifo_level_chk = 0x12c,
.rxfifo_op = 0x130,
.rxfifo_st = 0x134,
.rxfifo_data = 0x138,
.usp_mode1 = 0x0,
.usp_mode2 = 0x4,
.usp_tx_frame_ctrl = 0x8,
.usp_rx_frame_ctrl = 0xc,
.usp_pin_io_data = 0x1c,
.usp_risc_dsp_mode = 0x20,
.usp_async_param_reg = 0x24,
.usp_irda_x_mode_div = 0x28,
.usp_sm_cfg = 0x2c,
.usp_int_en_clr = 0x140,
};
struct sirfsoc_spi {
struct spi_bitbang bitbang;
struct completion rx_done;
struct completion tx_done;
void __iomem *base;
u32 ctrl_freq; /* SPI controller clock speed */
struct clk *clk;
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
/* place received word into rx buffer */
void (*rx_word) (struct sirfsoc_spi *);
/* get word from tx buffer for sending */
void (*tx_word) (struct sirfsoc_spi *);
/* number of words left to be tranmitted/received */
unsigned int left_tx_word;
unsigned int left_rx_word;
/* rx & tx DMA channels */
struct dma_chan *rx_chan;
struct dma_chan *tx_chan;
dma_addr_t src_start;
dma_addr_t dst_start;
int word_width; /* in bytes */
/*
* if tx size is not more than 4 and rx size is NULL, use
* command model
*/
bool tx_by_cmd;
bool hw_cs;
enum sirf_spi_type type;
const struct sirf_spi_register *regs;
unsigned int fifo_size;
/* fifo empty offset is (fifo full offset + 1)*/
unsigned int fifo_full_offset;
/* fifo_level_chk_mask is (fifo_size/4 - 1) */
unsigned int fifo_level_chk_mask;
unsigned int dat_max_frm_len;
};
struct sirf_spi_comp_data {
const struct sirf_spi_register *regs;
enum sirf_spi_type type;
unsigned int dat_max_frm_len;
unsigned int fifo_size;
void (*hwinit)(struct sirfsoc_spi *sspi);
};
static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi)
{
/* reset USP and let USP can operate */
writel(readl(sspi->base + sspi->regs->usp_mode1) &
~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
writel(readl(sspi->base + sspi->regs->usp_mode1) |
SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
}
static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data;
u8 *rx = sspi->rx;
data = readl(sspi->base + sspi->regs->rxfifo_data);
if (rx) {
*rx++ = (u8) data;
sspi->rx = rx;
}
sspi->left_rx_word--;
}
static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u8 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + sspi->regs->txfifo_data);
sspi->left_tx_word--;
}
static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data;
u16 *rx = sspi->rx;
data = readl(sspi->base + sspi->regs->rxfifo_data);
if (rx) {
*rx++ = (u16) data;
sspi->rx = rx;
}
sspi->left_rx_word--;
}
static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u16 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + sspi->regs->txfifo_data);
sspi->left_tx_word--;
}
static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data;
u32 *rx = sspi->rx;
data = readl(sspi->base + sspi->regs->rxfifo_data);
if (rx) {
*rx++ = (u32) data;
sspi->rx = rx;
}
sspi->left_rx_word--;
}
static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u32 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + sspi->regs->txfifo_data);
sspi->left_tx_word--;
}
static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
struct sirfsoc_spi *sspi = dev_id;
u32 spi_stat;
spi_stat = readl(sspi->base + sspi->regs->int_st);
if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI
&& (spi_stat & SIRFSOC_SPI_FRM_END)) {
complete(&sspi->tx_done);
writel(0x0, sspi->base + sspi->regs->int_en);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
return IRQ_HANDLED;
}
/* Error Conditions */
if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
spi_stat & SIRFSOC_SPI_TX_UFLOW) {
complete(&sspi->tx_done);
complete(&sspi->rx_done);
switch (sspi->type) {
case SIRF_REAL_SPI:
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_A7:
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
break;
}
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
return IRQ_HANDLED;
}
if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
complete(&sspi->tx_done);
while (!(readl(sspi->base + sspi->regs->int_st) &
SIRFSOC_SPI_RX_IO_DMA))
cpu_relax();
complete(&sspi->rx_done);
switch (sspi->type) {
case SIRF_REAL_SPI:
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_A7:
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
break;
}
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
return IRQ_HANDLED;
}
static void spi_sirfsoc_dma_fini_callback(void *data)
{
struct completion *dma_complete = data;
complete(dma_complete);
}
static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
u32 cmd;
sspi = spi_master_get_devdata(spi->master);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
memcpy(&cmd, sspi->tx, t->len);
if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
cmd = cpu_to_be32(cmd) >>
((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
if (sspi->word_width == 2 && t->len == 4 &&
(!(spi->mode & SPI_LSB_FIRST)))
cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
writel(cmd, sspi->base + sspi->regs->spi_cmd);
writel(SIRFSOC_SPI_FRM_END_INT_EN,
sspi->base + sspi->regs->int_en);
writel(SIRFSOC_SPI_CMD_TX_EN,
sspi->base + sspi->regs->tx_rx_en);
if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
dev_err(&spi->dev, "cmd transfer timeout\n");
return;
}
sspi->left_rx_word -= t->len;
}
static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
struct dma_async_tx_descriptor *rx_desc, *tx_desc;
int timeout = t->len * 10;
sspi = spi_master_get_devdata(spi->master);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
switch (sspi->type) {
case SIRF_REAL_SPI:
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_A7:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
break;
}
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
if (sspi->left_tx_word < sspi->dat_max_frm_len) {
switch (sspi->type) {
case SIRF_REAL_SPI:
writel(readl(sspi->base + sspi->regs->spi_ctrl) |
SIRFSOC_SPI_ENA_AUTO_CLR |
SIRFSOC_SPI_MUL_DAT_MODE,
sspi->base + sspi->regs->spi_ctrl);
writel(sspi->left_tx_word - 1,
sspi->base + sspi->regs->tx_dma_io_len);
writel(sspi->left_tx_word - 1,
sspi->base + sspi->regs->rx_dma_io_len);
break;
case SIRF_USP_SPI_P2:
case SIRF_USP_SPI_A7:
/*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/
writel(sspi->left_tx_word * sspi->word_width,
sspi->base + sspi->regs->tx_dma_io_len);
writel(sspi->left_tx_word * sspi->word_width,
sspi->base + sspi->regs->rx_dma_io_len);
break;
}
} else {
if (sspi->type == SIRF_REAL_SPI)
writel(readl(sspi->base + sspi->regs->spi_ctrl),
sspi->base + sspi->regs->spi_ctrl);
writel(0, sspi->base + sspi->regs->tx_dma_io_len);
writel(0, sspi->base + sspi->regs->rx_dma_io_len);
}
sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
(t->tx_buf != t->rx_buf) ?
DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
sspi->dst_start, t->len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
rx_desc->callback = spi_sirfsoc_dma_fini_callback;
rx_desc->callback_param = &sspi->rx_done;
sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
(t->tx_buf != t->rx_buf) ?
DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
sspi->src_start, t->len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
tx_desc->callback = spi_sirfsoc_dma_fini_callback;
tx_desc->callback_param = &sspi->tx_done;
dmaengine_submit(tx_desc);
dmaengine_submit(rx_desc);
dma_async_issue_pending(sspi->tx_chan);
dma_async_issue_pending(sspi->rx_chan);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
sspi->base + sspi->regs->tx_rx_en);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7) {
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
}
if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n");
dmaengine_terminate_all(sspi->rx_chan);
} else
sspi->left_rx_word = 0;
/*
* we only wait tx-done event if transferring by DMA. for PIO,
* we get rx data by writing tx data, so if rx is done, tx has
* done earlier
*/
if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n");
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
dmaengine_terminate_all(sspi->tx_chan);
}
dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
/* TX, RX FIFO stop */
writel(0, sspi->base + sspi->regs->rxfifo_op);
writel(0, sspi->base + sspi->regs->txfifo_op);
if (sspi->left_tx_word >= sspi->dat_max_frm_len)
writel(0, sspi->base + sspi->regs->tx_rx_en);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
}
static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
unsigned int data_units;
sspi = spi_master_get_devdata(spi->master);
do {
writel(SIRFSOC_SPI_FIFO_RESET,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_RESET,
sspi->base + sspi->regs->txfifo_op);
switch (sspi->type) {
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
writel(min((sspi->left_tx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->tx_dma_io_len);
writel(min((sspi->left_rx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->rx_dma_io_len);
break;
case SIRF_USP_SPI_A7:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
writel(min((sspi->left_tx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->tx_dma_io_len);
writel(min((sspi->left_rx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->rx_dma_io_len);
break;
case SIRF_REAL_SPI:
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
writel(readl(sspi->base + sspi->regs->spi_ctrl) |
SIRFSOC_SPI_MUL_DAT_MODE |
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + sspi->regs->spi_ctrl);
data_units = sspi->fifo_size / sspi->word_width;
writel(min(sspi->left_tx_word, data_units) - 1,
sspi->base + sspi->regs->tx_dma_io_len);
writel(min(sspi->left_rx_word, data_units) - 1,
sspi->base + sspi->regs->rx_dma_io_len);
break;
}
while (!((readl(sspi->base + sspi->regs->txfifo_st)
& SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) &&
sspi->left_tx_word)
sspi->tx_word(sspi);
writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
SIRFSOC_SPI_TX_UFLOW_INT_EN |
SIRFSOC_SPI_RX_OFLOW_INT_EN |
SIRFSOC_SPI_RX_IO_DMA_INT_EN,
sspi->base + sspi->regs->int_en);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
sspi->base + sspi->regs->tx_rx_en);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7) {
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
}
if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
dev_err(&spi->dev, "transfer timeout\n");
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
break;
}
while (!((readl(sspi->base + sspi->regs->rxfifo_st)
& SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) &&
sspi->left_rx_word)
sspi->rx_word(sspi);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
writel(0, sspi->base + sspi->regs->rxfifo_op);
writel(0, sspi->base + sspi->regs->txfifo_op);
} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
}
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
sspi = spi_master_get_devdata(spi->master);
sspi->tx = t->tx_buf;
sspi->rx = t->rx_buf;
sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
reinit_completion(&sspi->rx_done);
reinit_completion(&sspi->tx_done);
/*
* in the transfer, if transfer data using command register with rx_buf
* null, just fill command data into command register and wait for its
* completion.
*/
if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd)
spi_sirfsoc_cmd_transfer(spi, t);
else if (IS_DMA_VALID(t))
spi_sirfsoc_dma_transfer(spi, t);
else
spi_sirfsoc_pio_transfer(spi, t);
return t->len - sspi->left_rx_word * sspi->word_width;
}
static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
if (sspi->hw_cs) {
u32 regval;
switch (sspi->type) {
case SIRF_REAL_SPI:
regval = readl(sspi->base + sspi->regs->spi_ctrl);
switch (value) {
case BITBANG_CS_ACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval |= SIRFSOC_SPI_CS_IO_OUT;
else
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
break;
case BITBANG_CS_INACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
else
regval |= SIRFSOC_SPI_CS_IO_OUT;
break;
}
writel(regval, sspi->base + sspi->regs->spi_ctrl);
break;
case SIRF_USP_SPI_P2:
case SIRF_USP_SPI_A7:
regval = readl(sspi->base +
sspi->regs->usp_pin_io_data);
switch (value) {
case BITBANG_CS_ACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval |= SIRFSOC_USP_CS_HIGH_VALUE;
else
regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
break;
case BITBANG_CS_INACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
else
regval |= SIRFSOC_USP_CS_HIGH_VALUE;
break;
}
writel(regval,
sspi->base + sspi->regs->usp_pin_io_data);
break;
}
} else {
switch (value) {
case BITBANG_CS_ACTIVE:
gpio_direction_output(spi->cs_gpio,
spi->mode & SPI_CS_HIGH ? 1 : 0);
break;
case BITBANG_CS_INACTIVE:
gpio_direction_output(spi->cs_gpio,
spi->mode & SPI_CS_HIGH ? 0 : 1);
break;
}
}
}
static int spi_sirfsoc_config_mode(struct spi_device *spi)
{
struct sirfsoc_spi *sspi;
u32 regval, usp_mode1;
sspi = spi_master_get_devdata(spi->master);
regval = readl(sspi->base + sspi->regs->spi_ctrl);
usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1);
if (!(spi->mode & SPI_CS_HIGH)) {
regval |= SIRFSOC_SPI_CS_IDLE_STAT;
usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID;
} else {
regval &= ~SIRFSOC_SPI_CS_IDLE_STAT;
usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID;
}
if (!(spi->mode & SPI_LSB_FIRST)) {
regval |= SIRFSOC_SPI_TRAN_MSB;
usp_mode1 &= ~SIRFSOC_USP_LSB;
} else {
regval &= ~SIRFSOC_SPI_TRAN_MSB;
usp_mode1 |= SIRFSOC_USP_LSB;
}
if (spi->mode & SPI_CPOL) {
regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT;
} else {
regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT;
usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT;
}
/*
* Data should be driven at least 1/2 cycle before the fetch edge
* to make sure that data gets stable at the fetch edge.
*/
if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
(!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) {
regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE |
SIRFSOC_USP_RXD_FALLING_EDGE);
} else {
regval |= SIRFSOC_SPI_DRV_POS_EDGE;
usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE |
SIRFSOC_USP_TXD_FALLING_EDGE);
}
writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
SIRFSOC_SPI_FIFO_SC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
SIRFSOC_SPI_FIFO_LC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
SIRFSOC_SPI_FIFO_HC_OFFSET),
sspi->base + sspi->regs->txfifo_level_chk);
writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
SIRFSOC_SPI_FIFO_SC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
SIRFSOC_SPI_FIFO_LC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
SIRFSOC_SPI_FIFO_HC_OFFSET),
sspi->base + sspi->regs->rxfifo_level_chk);
/*
* it should never set to hardware cs mode because in hardware cs mode,
* cs signal can't controlled by driver.
*/
switch (sspi->type) {
case SIRF_REAL_SPI:
regval |= SIRFSOC_SPI_CS_IO_MODE;
writel(regval, sspi->base + sspi->regs->spi_ctrl);
break;
case SIRF_USP_SPI_P2:
case SIRF_USP_SPI_A7:
usp_mode1 |= SIRFSOC_USP_SYNC_MODE;
usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE;
usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT;
writel(usp_mode1, sspi->base + sspi->regs->usp_mode1);
break;
}
return 0;
}
static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
u8 bits_per_word = 0;
int hz = 0;
u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2;
sspi = spi_master_get_devdata(spi->master);
bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1;
if (regval > 0xFFFF || regval < 0) {
dev_err(&spi->dev, "Speed %d not supported\n", hz);
return -EINVAL;
}
switch (bits_per_word) {
case 8:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
sspi->rx_word = spi_sirfsoc_rx_word_u8;
sspi->tx_word = spi_sirfsoc_tx_word_u8;
break;
case 12:
case 16:
regval |= (bits_per_word == 12) ?
SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
sspi->rx_word = spi_sirfsoc_rx_word_u16;
sspi->tx_word = spi_sirfsoc_tx_word_u16;
break;
case 32:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
sspi->rx_word = spi_sirfsoc_rx_word_u32;
sspi->tx_word = spi_sirfsoc_tx_word_u32;
break;
default:
dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word);
return -EINVAL;
}
sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
txfifo_ctrl = (((sspi->fifo_size / 2) &
SIRFSOC_SPI_FIFO_THD_MASK(sspi))
<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
(sspi->word_width >> 1);
rxfifo_ctrl = (((sspi->fifo_size / 2) &
SIRFSOC_SPI_FIFO_THD_MASK(sspi))
<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
(sspi->word_width >> 1);
writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl);
writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7) {
tx_frm_ctl = 0;
tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK)
<< SIRFSOC_USP_TX_DATA_OFFSET;
tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
- 1) & SIRFSOC_USP_TX_SYNC_MASK) <<
SIRFSOC_USP_TX_SYNC_OFFSET;
tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
+ 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) <<
SIRFSOC_USP_TX_FRAME_OFFSET;
tx_frm_ctl |= ((bits_per_word - 1) &
SIRFSOC_USP_TX_SHIFTER_MASK) <<
SIRFSOC_USP_TX_SHIFTER_OFFSET;
rx_frm_ctl = 0;
rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK)
<< SIRFSOC_USP_RX_DATA_OFFSET;
rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN
+ 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) <<
SIRFSOC_USP_RX_FRAME_OFFSET;
rx_frm_ctl |= ((bits_per_word - 1)
& SIRFSOC_USP_RX_SHIFTER_MASK) <<
SIRFSOC_USP_RX_SHIFTER_OFFSET;
writel(tx_frm_ctl | (((usp_mode2 >> 10) &
SIRFSOC_USP_CLK_10_11_MASK) <<
SIRFSOC_USP_CLK_10_11_OFFSET),
sspi->base + sspi->regs->usp_tx_frame_ctrl);
writel(rx_frm_ctl | (((usp_mode2 >> 12) &
SIRFSOC_USP_CLK_12_15_MASK) <<
SIRFSOC_USP_CLK_12_15_OFFSET),
sspi->base + sspi->regs->usp_rx_frame_ctrl);
writel(readl(sspi->base + sspi->regs->usp_mode2) |
((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) <<
SIRFSOC_USP_CLK_DIVISOR_OFFSET) |
(SIRFSOC_USP_RXD_DELAY_LEN <<
SIRFSOC_USP_RXD_DELAY_OFFSET) |
(SIRFSOC_USP_TXD_DELAY_LEN <<
SIRFSOC_USP_TXD_DELAY_OFFSET),
sspi->base + sspi->regs->usp_mode2);
}
if (sspi->type == SIRF_REAL_SPI)
writel(regval, sspi->base + sspi->regs->spi_ctrl);
spi_sirfsoc_config_mode(spi);
if (sspi->type == SIRF_REAL_SPI) {
if (t && t->tx_buf && !t->rx_buf &&
(t->len <= SIRFSOC_MAX_CMD_BYTES)) {
sspi->tx_by_cmd = true;
writel(readl(sspi->base + sspi->regs->spi_ctrl) |
(SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
SIRFSOC_SPI_CMD_MODE),
sspi->base + sspi->regs->spi_ctrl);
} else {
sspi->tx_by_cmd = false;
writel(readl(sspi->base + sspi->regs->spi_ctrl) &
~SIRFSOC_SPI_CMD_MODE,
sspi->base + sspi->regs->spi_ctrl);
}
}
if (IS_DMA_VALID(t)) {
/* Enable DMA mode for RX, TX */
writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl);
writel(SIRFSOC_SPI_RX_DMA_FLUSH,
sspi->base + sspi->regs->rx_dma_io_ctrl);
} else {
/* Enable IO mode for RX, TX */
writel(SIRFSOC_SPI_IO_MODE_SEL,
sspi->base + sspi->regs->tx_dma_io_ctrl);
writel(SIRFSOC_SPI_IO_MODE_SEL,
sspi->base + sspi->regs->rx_dma_io_ctrl);
}
return 0;
}
static int spi_sirfsoc_setup(struct spi_device *spi)
{
struct sirfsoc_spi *sspi;
int ret = 0;
sspi = spi_master_get_devdata(spi->master);
if (spi->cs_gpio == -ENOENT)
sspi->hw_cs = true;
else {
sspi->hw_cs = false;
if (!spi_get_ctldata(spi)) {
void *cs = kmalloc(sizeof(int), GFP_KERNEL);
if (!cs) {
ret = -ENOMEM;
goto exit;
}
ret = gpio_is_valid(spi->cs_gpio);
if (!ret) {
dev_err(&spi->dev, "no valid gpio\n");
ret = -ENOENT;
goto exit;
}
ret = gpio_request(spi->cs_gpio, DRIVER_NAME);
if (ret) {
dev_err(&spi->dev, "failed to request gpio\n");
goto exit;
}
spi_set_ctldata(spi, cs);
}
}
spi_sirfsoc_config_mode(spi);
spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE);
exit:
return ret;
}
static void spi_sirfsoc_cleanup(struct spi_device *spi)
{
if (spi_get_ctldata(spi)) {
gpio_free(spi->cs_gpio);
kfree(spi_get_ctldata(spi));
}
}
static const struct sirf_spi_comp_data sirf_real_spi = {
.regs = &real_spi_register,
.type = SIRF_REAL_SPI,
.dat_max_frm_len = 64 * 1024,
.fifo_size = 256,
};
static const struct sirf_spi_comp_data sirf_usp_spi_p2 = {
.regs = &usp_spi_register,
.type = SIRF_USP_SPI_P2,
.dat_max_frm_len = 1024 * 1024,
.fifo_size = 128,
.hwinit = sirfsoc_usp_hwinit,
};
static const struct sirf_spi_comp_data sirf_usp_spi_a7 = {
.regs = &usp_spi_register,
.type = SIRF_USP_SPI_A7,
.dat_max_frm_len = 1024 * 1024,
.fifo_size = 512,
.hwinit = sirfsoc_usp_hwinit,
};
static const struct of_device_id spi_sirfsoc_of_match[] = {
{ .compatible = "sirf,prima2-spi", .data = &sirf_real_spi},
{ .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2},
{ .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7},
{}
};
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
static int spi_sirfsoc_probe(struct platform_device *pdev)
{
struct sirfsoc_spi *sspi;
struct spi_master *master;
const struct sirf_spi_comp_data *spi_comp_data;
int irq;
int ret;
const struct of_device_id *match;
ret = device_reset(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "SPI reset failed!\n");
return ret;
}
master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI master\n");
return -ENOMEM;
}
match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node);
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
sspi->fifo_full_offset = ilog2(sspi->fifo_size);
spi_comp_data = match->data;
sspi->regs = spi_comp_data->regs;
sspi->type = spi_comp_data->type;
sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1;
sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len;
sspi->fifo_size = spi_comp_data->fifo_size;
sspi->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(sspi->base)) {
ret = PTR_ERR(sspi->base);
goto free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto free_master;
}
ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
DRIVER_NAME, sspi);
if (ret)
goto free_master;
sspi->bitbang.master = master;
sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
sspi->bitbang.master->setup = spi_sirfsoc_setup;
sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
/* request DMA channels */
sspi->rx_chan = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR(sspi->rx_chan)) {
dev_err(&pdev->dev, "can not allocate rx dma channel\n");
ret = PTR_ERR(sspi->rx_chan);
goto free_master;
}
sspi->tx_chan = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR(sspi->tx_chan)) {
dev_err(&pdev->dev, "can not allocate tx dma channel\n");
ret = PTR_ERR(sspi->tx_chan);
goto free_rx_dma;
}
sspi->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sspi->clk)) {
ret = PTR_ERR(sspi->clk);
goto free_tx_dma;
}
clk_prepare_enable(sspi->clk);
if (spi_comp_data->hwinit)
spi_comp_data->hwinit(sspi);
sspi->ctrl_freq = clk_get_rate(sspi->clk);
init_completion(&sspi->rx_done);
init_completion(&sspi->tx_done);
ret = spi_bitbang_start(&sspi->bitbang);
if (ret)
goto free_clk;
dev_info(&pdev->dev, "registered, bus number = %d\n", master->bus_num);
return 0;
free_clk:
clk_disable_unprepare(sspi->clk);
clk_put(sspi->clk);
free_tx_dma:
dma_release_channel(sspi->tx_chan);
free_rx_dma:
dma_release_channel(sspi->rx_chan);
free_master:
spi_master_put(master);
return ret;
}
static int spi_sirfsoc_remove(struct platform_device *pdev)
{
struct spi_master *master;
struct sirfsoc_spi *sspi;
master = platform_get_drvdata(pdev);
sspi = spi_master_get_devdata(master);
spi_bitbang_stop(&sspi->bitbang);
clk_disable_unprepare(sspi->clk);
clk_put(sspi->clk);
dma_release_channel(sspi->rx_chan);
dma_release_channel(sspi->tx_chan);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int spi_sirfsoc_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
int ret;
ret = spi_master_suspend(master);
if (ret)
return ret;
clk_disable(sspi->clk);
return 0;
}
static int spi_sirfsoc_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
clk_enable(sspi->clk);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
spi_sirfsoc_resume);
static struct platform_driver spi_sirfsoc_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &spi_sirfsoc_pm_ops,
.of_match_table = spi_sirfsoc_of_match,
},
.probe = spi_sirfsoc_probe,
.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>");
MODULE_LICENSE("GPL v2");