e4a886e811
The first read on an Alea takes about 1.8 seconds, more than the timeout value waiting for the read. As a consequence, later URB reuse causes the warning given below. To avoid this, we increase the wait time for the first read on the Alea. [ 78.293247] WARNING: CPU: 3 PID: 1892 at drivers/usb/core/urb.c:338 usb_submit_urb+0x2b4/0x580 [usbcore] [ 78.293250] URB ffff8802135be3c0 submitted while active [ 78.293252] Modules linked in: chaoskey(+) rng_core rfcomm binfmt_misc bnep cfg80211 nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc bridge stp llc tun snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic iTCO_wdt iTCO_vendor_support nls_utf8 nls_cp437 vfat fat intel_rapl x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel efi_pstore kvm irqbypass pcspkr btusb btrtl btbcm btintel uvcvideo joydev bluetooth videobuf2_vmalloc videobuf2_memops efivars videobuf2_v4l2 serio_raw i2c_i801 videobuf2_core videodev cdc_mbim media lpc_ich shpchp mfd_core cdc_ncm usbnet mii cdc_wdm cdc_acm evdev snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core i915 snd_pcm snd_timer i2c_algo_bit drm_kms_helper wmi thinkpad_acpi drm nvram mei_me mei snd soundcore rfkill ac battery i2c_core [ 78.293335] video button tpm_tis tpm fuse parport_pc ppdev lp parport autofs4 ext4 crc16 jbd2 mbcache algif_skcipher af_alg hid_generic usbhid hid dm_crypt dm_mod sg sr_mod cdrom sd_mod crct10dif_pclmul crc32_pclmul crc32c_intel jitterentropy_rng sha256_generic hmac drbg aesni_intel xhci_pci aes_x86_64 ahci glue_helper xhci_hcd ehci_pci lrw libahci gf128mul ablk_helper cryptd libata sdhci_pci psmouse sdhci scsi_mod ehci_hcd mmc_core usbcore usb_common thermal [ 78.293402] CPU: 3 PID: 1892 Comm: hwrng Not tainted 4.7.0-rc1-linux-14+ #16 [ 78.293405] Hardware name: LENOVO 232577G/232577G, BIOS G2ET92WW (2.52 ) 02/22/2013 [ 78.293408] 0000000000000000 ffffffff812dfa0f ffff8801fa5b3d68 0000000000000000 [ 78.293413] ffffffff81072224 ffff8802135be3c0 ffff8801fa5b3db8 ffff880212e44210 [ 78.293418] 0000000000000040 ffff880209fb32c0 ffff880212e44200 ffffffff8107228f [ 78.293422] Call Trace: [ 78.293432] [<ffffffff812dfa0f>] ? dump_stack+0x5c/0x7d [ 78.293437] [<ffffffff81072224>] ? __warn+0xc4/0xe0 [ 78.293441] [<ffffffff8107228f>] ? warn_slowpath_fmt+0x4f/0x60 [ 78.293451] [<ffffffff810a46a2>] ? enqueue_task_fair+0xcd2/0x1260 [ 78.293463] [<ffffffffa001ec54>] ? usb_submit_urb+0x2b4/0x580 [usbcore] [ 78.293474] [<ffffffff8140c2e5>] ? __pm_runtime_resume+0x55/0x70 [ 78.293484] [<ffffffffa0825212>] ? _chaoskey_fill+0x132/0x250 [chaoskey] [ 78.293485] usbcore: registered new interface driver chaoskey [ 78.293493] [<ffffffff810aed50>] ? wait_woken+0x90/0x90 [ 78.293500] [<ffffffffa06448c0>] ? devm_hwrng_register+0x80/0x80 [rng_core] [ 78.293505] [<ffffffffa0825907>] ? chaoskey_rng_read+0x127/0x140 [chaoskey] [ 78.293511] [<ffffffffa06448c0>] ? devm_hwrng_register+0x80/0x80 [rng_core] [ 78.293515] [<ffffffffa064492e>] ? hwrng_fillfn+0x6e/0x120 [rng_core] [ 78.293520] [<ffffffff8108fb5f>] ? kthread+0xcf/0xf0 [ 78.293529] [<ffffffff81596d5f>] ? ret_from_fork+0x1f/0x40 [ 78.293535] [<ffffffff8108fa90>] ? kthread_park+0x50/0x50 Signed-off-by: Bob Ham <bob.ham@collabora.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
common | ||
core | ||
dwc2 | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
isp1760 | ||
misc | ||
mon | ||
musb | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
usbip | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
README
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("hub_wq"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.