874 строки
24 KiB
C
874 строки
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2018-2021 Linaro Ltd.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/device.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/io.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/qcom_scm.h>
|
|
#include <linux/soc/qcom/mdt_loader.h>
|
|
|
|
#include "ipa.h"
|
|
#include "ipa_power.h"
|
|
#include "ipa_data.h"
|
|
#include "ipa_endpoint.h"
|
|
#include "ipa_resource.h"
|
|
#include "ipa_cmd.h"
|
|
#include "ipa_reg.h"
|
|
#include "ipa_mem.h"
|
|
#include "ipa_table.h"
|
|
#include "ipa_smp2p.h"
|
|
#include "ipa_modem.h"
|
|
#include "ipa_uc.h"
|
|
#include "ipa_interrupt.h"
|
|
#include "gsi_trans.h"
|
|
#include "ipa_sysfs.h"
|
|
|
|
/**
|
|
* DOC: The IP Accelerator
|
|
*
|
|
* This driver supports the Qualcomm IP Accelerator (IPA), which is a
|
|
* networking component found in many Qualcomm SoCs. The IPA is connected
|
|
* to the application processor (AP), but is also connected (and partially
|
|
* controlled by) other "execution environments" (EEs), such as a modem.
|
|
*
|
|
* The IPA is the conduit between the AP and the modem that carries network
|
|
* traffic. This driver presents a network interface representing the
|
|
* connection of the modem to external (e.g. LTE) networks.
|
|
*
|
|
* The IPA provides protocol checksum calculation, offloading this work
|
|
* from the AP. The IPA offers additional functionality, including routing,
|
|
* filtering, and NAT support, but that more advanced functionality is not
|
|
* currently supported. Despite that, some resources--including routing
|
|
* tables and filter tables--are defined in this driver because they must
|
|
* be initialized even when the advanced hardware features are not used.
|
|
*
|
|
* There are two distinct layers that implement the IPA hardware, and this
|
|
* is reflected in the organization of the driver. The generic software
|
|
* interface (GSI) is an integral component of the IPA, providing a
|
|
* well-defined communication layer between the AP subsystem and the IPA
|
|
* core. The GSI implements a set of "channels" used for communication
|
|
* between the AP and the IPA.
|
|
*
|
|
* The IPA layer uses GSI channels to implement its "endpoints". And while
|
|
* a GSI channel carries data between the AP and the IPA, a pair of IPA
|
|
* endpoints is used to carry traffic between two EEs. Specifically, the main
|
|
* modem network interface is implemented by two pairs of endpoints: a TX
|
|
* endpoint on the AP coupled with an RX endpoint on the modem; and another
|
|
* RX endpoint on the AP receiving data from a TX endpoint on the modem.
|
|
*/
|
|
|
|
/* The name of the GSI firmware file relative to /lib/firmware */
|
|
#define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
|
|
#define IPA_PAS_ID 15
|
|
|
|
/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
|
|
#define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
|
|
#define TAG_TIMESTAMP_SHIFT 14
|
|
#define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
|
|
|
|
/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
|
|
#define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
|
|
|
|
/**
|
|
* ipa_setup() - Set up IPA hardware
|
|
* @ipa: IPA pointer
|
|
*
|
|
* Perform initialization that requires issuing immediate commands on
|
|
* the command TX endpoint. If the modem is doing GSI firmware load
|
|
* and initialization, this function will be called when an SMP2P
|
|
* interrupt has been signaled by the modem. Otherwise it will be
|
|
* called from ipa_probe() after GSI firmware has been successfully
|
|
* loaded, authenticated, and started by Trust Zone.
|
|
*/
|
|
int ipa_setup(struct ipa *ipa)
|
|
{
|
|
struct ipa_endpoint *exception_endpoint;
|
|
struct ipa_endpoint *command_endpoint;
|
|
struct device *dev = &ipa->pdev->dev;
|
|
int ret;
|
|
|
|
ret = gsi_setup(&ipa->gsi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ipa_power_setup(ipa);
|
|
if (ret)
|
|
goto err_gsi_teardown;
|
|
|
|
ipa_endpoint_setup(ipa);
|
|
|
|
/* We need to use the AP command TX endpoint to perform other
|
|
* initialization, so we enable first.
|
|
*/
|
|
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
|
|
ret = ipa_endpoint_enable_one(command_endpoint);
|
|
if (ret)
|
|
goto err_endpoint_teardown;
|
|
|
|
ret = ipa_mem_setup(ipa); /* No matching teardown required */
|
|
if (ret)
|
|
goto err_command_disable;
|
|
|
|
ret = ipa_table_setup(ipa); /* No matching teardown required */
|
|
if (ret)
|
|
goto err_command_disable;
|
|
|
|
/* Enable the exception handling endpoint, and tell the hardware
|
|
* to use it by default.
|
|
*/
|
|
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
|
|
ret = ipa_endpoint_enable_one(exception_endpoint);
|
|
if (ret)
|
|
goto err_command_disable;
|
|
|
|
ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
|
|
|
|
/* We're all set. Now prepare for communication with the modem */
|
|
ret = ipa_qmi_setup(ipa);
|
|
if (ret)
|
|
goto err_default_route_clear;
|
|
|
|
ipa->setup_complete = true;
|
|
|
|
dev_info(dev, "IPA driver setup completed successfully\n");
|
|
|
|
return 0;
|
|
|
|
err_default_route_clear:
|
|
ipa_endpoint_default_route_clear(ipa);
|
|
ipa_endpoint_disable_one(exception_endpoint);
|
|
err_command_disable:
|
|
ipa_endpoint_disable_one(command_endpoint);
|
|
err_endpoint_teardown:
|
|
ipa_endpoint_teardown(ipa);
|
|
ipa_power_teardown(ipa);
|
|
err_gsi_teardown:
|
|
gsi_teardown(&ipa->gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipa_teardown() - Inverse of ipa_setup()
|
|
* @ipa: IPA pointer
|
|
*/
|
|
static void ipa_teardown(struct ipa *ipa)
|
|
{
|
|
struct ipa_endpoint *exception_endpoint;
|
|
struct ipa_endpoint *command_endpoint;
|
|
|
|
/* We're going to tear everything down, as if setup never completed */
|
|
ipa->setup_complete = false;
|
|
|
|
ipa_qmi_teardown(ipa);
|
|
ipa_endpoint_default_route_clear(ipa);
|
|
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
|
|
ipa_endpoint_disable_one(exception_endpoint);
|
|
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
|
|
ipa_endpoint_disable_one(command_endpoint);
|
|
ipa_endpoint_teardown(ipa);
|
|
ipa_power_teardown(ipa);
|
|
gsi_teardown(&ipa->gsi);
|
|
}
|
|
|
|
/* Configure bus access behavior for IPA components */
|
|
static void ipa_hardware_config_comp(struct ipa *ipa)
|
|
{
|
|
u32 val;
|
|
|
|
/* Nothing to configure prior to IPA v4.0 */
|
|
if (ipa->version < IPA_VERSION_4_0)
|
|
return;
|
|
|
|
val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
|
|
|
|
if (ipa->version == IPA_VERSION_4_0) {
|
|
val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
|
|
val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
|
|
val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
|
|
} else if (ipa->version < IPA_VERSION_4_5) {
|
|
val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
|
|
} else {
|
|
/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
|
|
}
|
|
|
|
val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
|
|
val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
|
|
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
|
|
}
|
|
|
|
/* Configure DDR and (possibly) PCIe max read/write QSB values */
|
|
static void
|
|
ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
const struct ipa_qsb_data *data0;
|
|
const struct ipa_qsb_data *data1;
|
|
u32 val;
|
|
|
|
/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
|
|
data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
|
|
if (data->qsb_count > 1)
|
|
data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
|
|
|
|
/* Max outstanding write accesses for QSB masters */
|
|
val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
|
|
if (data->qsb_count > 1)
|
|
val |= u32_encode_bits(data1->max_writes,
|
|
GEN_QMB_1_MAX_WRITES_FMASK);
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
|
|
|
|
/* Max outstanding read accesses for QSB masters */
|
|
val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
|
|
if (ipa->version >= IPA_VERSION_4_0)
|
|
val |= u32_encode_bits(data0->max_reads_beats,
|
|
GEN_QMB_0_MAX_READS_BEATS_FMASK);
|
|
if (data->qsb_count > 1) {
|
|
val |= u32_encode_bits(data1->max_reads,
|
|
GEN_QMB_1_MAX_READS_FMASK);
|
|
if (ipa->version >= IPA_VERSION_4_0)
|
|
val |= u32_encode_bits(data1->max_reads_beats,
|
|
GEN_QMB_1_MAX_READS_BEATS_FMASK);
|
|
}
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
|
|
}
|
|
|
|
/* The internal inactivity timer clock is used for the aggregation timer */
|
|
#define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
|
|
|
|
/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
|
|
* field to represent the given number of microseconds. The value is one
|
|
* less than the number of timer ticks in the requested period. 0 is not
|
|
* a valid granularity value (so for example @usec must be at least 16 for
|
|
* a TIMER_FREQUENCY of 32000).
|
|
*/
|
|
static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
|
|
{
|
|
return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
|
|
}
|
|
|
|
/* IPA uses unified Qtime starting at IPA v4.5, implementing various
|
|
* timestamps and timers independent of the IPA core clock rate. The
|
|
* Qtimer is based on a 56-bit timestamp incremented at each tick of
|
|
* a 19.2 MHz SoC crystal oscillator (XO clock).
|
|
*
|
|
* For IPA timestamps (tag, NAT, data path logging) a lower resolution
|
|
* timestamp is achieved by shifting the Qtimer timestamp value right
|
|
* some number of bits to produce the low-order bits of the coarser
|
|
* granularity timestamp.
|
|
*
|
|
* For timers, a common timer clock is derived from the XO clock using
|
|
* a divider (we use 192, to produce a 100kHz timer clock). From
|
|
* this common clock, three "pulse generators" are used to produce
|
|
* timer ticks at a configurable frequency. IPA timers (such as
|
|
* those used for aggregation or head-of-line block handling) now
|
|
* define their period based on one of these pulse generators.
|
|
*/
|
|
static void ipa_qtime_config(struct ipa *ipa)
|
|
{
|
|
u32 val;
|
|
|
|
/* Timer clock divider must be disabled when we change the rate */
|
|
iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
|
|
|
|
/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
|
|
val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
|
|
val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
|
|
/* Configure tag and NAT Qtime timestamp resolution as well */
|
|
val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
|
|
val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
|
|
|
|
/* Set granularity of pulse generators used for other timers */
|
|
val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
|
|
val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
|
|
val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
|
|
|
|
/* Actual divider is 1 more than value supplied here */
|
|
val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
|
|
|
|
/* Divider value is set; re-enable the common timer clock divider */
|
|
val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
|
|
}
|
|
|
|
static void ipa_idle_indication_cfg(struct ipa *ipa,
|
|
u32 enter_idle_debounce_thresh,
|
|
bool const_non_idle_enable)
|
|
{
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
val = u32_encode_bits(enter_idle_debounce_thresh,
|
|
ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
|
|
if (const_non_idle_enable)
|
|
val |= CONST_NON_IDLE_ENABLE_FMASK;
|
|
|
|
offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
|
|
iowrite32(val, ipa->reg_virt + offset);
|
|
}
|
|
|
|
/**
|
|
* ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
|
|
* @ipa: IPA pointer
|
|
*
|
|
* Configures when the IPA signals it is idle to the global clock
|
|
* controller, which can respond by scaling down the clock to save
|
|
* power.
|
|
*/
|
|
static void ipa_hardware_dcd_config(struct ipa *ipa)
|
|
{
|
|
/* Recommended values for IPA 3.5 and later according to IPA HPG */
|
|
ipa_idle_indication_cfg(ipa, 256, false);
|
|
}
|
|
|
|
static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
|
|
{
|
|
/* Power-on reset values */
|
|
ipa_idle_indication_cfg(ipa, 0, true);
|
|
}
|
|
|
|
/**
|
|
* ipa_hardware_config() - Primitive hardware initialization
|
|
* @ipa: IPA pointer
|
|
* @data: IPA configuration data
|
|
*/
|
|
static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
enum ipa_version version = ipa->version;
|
|
u32 granularity;
|
|
u32 val;
|
|
|
|
/* IPA v4.5+ has no backward compatibility register */
|
|
if (version < IPA_VERSION_4_5) {
|
|
val = data->backward_compat;
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
|
|
}
|
|
|
|
/* Implement some hardware workarounds */
|
|
if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
|
|
/* Disable PA mask to allow HOLB drop */
|
|
val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
|
|
val &= ~PA_MASK_EN_FMASK;
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
|
|
|
|
/* Enable open global clocks in the CLKON configuration */
|
|
val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
|
|
} else if (version == IPA_VERSION_3_1) {
|
|
val = MISC_FMASK; /* Disable MISC clock gating */
|
|
} else {
|
|
val = 0; /* No CLKON configuration needed */
|
|
}
|
|
if (val)
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
|
|
|
|
ipa_hardware_config_comp(ipa);
|
|
|
|
/* Configure system bus limits */
|
|
ipa_hardware_config_qsb(ipa, data);
|
|
|
|
if (version < IPA_VERSION_4_5) {
|
|
/* Configure aggregation timer granularity */
|
|
granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
|
|
val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
|
|
iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
|
|
} else {
|
|
ipa_qtime_config(ipa);
|
|
}
|
|
|
|
/* IPA v4.2 does not support hashed tables, so disable them */
|
|
if (version == IPA_VERSION_4_2) {
|
|
u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
|
|
|
|
iowrite32(0, ipa->reg_virt + offset);
|
|
}
|
|
|
|
/* Enable dynamic clock division */
|
|
ipa_hardware_dcd_config(ipa);
|
|
}
|
|
|
|
/**
|
|
* ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
|
|
* @ipa: IPA pointer
|
|
*
|
|
* This restores the power-on reset values (even if they aren't different)
|
|
*/
|
|
static void ipa_hardware_deconfig(struct ipa *ipa)
|
|
{
|
|
/* Mostly we just leave things as we set them. */
|
|
ipa_hardware_dcd_deconfig(ipa);
|
|
}
|
|
|
|
/**
|
|
* ipa_config() - Configure IPA hardware
|
|
* @ipa: IPA pointer
|
|
* @data: IPA configuration data
|
|
*
|
|
* Perform initialization requiring IPA power to be enabled.
|
|
*/
|
|
static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
int ret;
|
|
|
|
ipa_hardware_config(ipa, data);
|
|
|
|
ret = ipa_mem_config(ipa);
|
|
if (ret)
|
|
goto err_hardware_deconfig;
|
|
|
|
ipa->interrupt = ipa_interrupt_config(ipa);
|
|
if (IS_ERR(ipa->interrupt)) {
|
|
ret = PTR_ERR(ipa->interrupt);
|
|
ipa->interrupt = NULL;
|
|
goto err_mem_deconfig;
|
|
}
|
|
|
|
ipa_uc_config(ipa);
|
|
|
|
ret = ipa_endpoint_config(ipa);
|
|
if (ret)
|
|
goto err_uc_deconfig;
|
|
|
|
ipa_table_config(ipa); /* No deconfig required */
|
|
|
|
/* Assign resource limitation to each group; no deconfig required */
|
|
ret = ipa_resource_config(ipa, data->resource_data);
|
|
if (ret)
|
|
goto err_endpoint_deconfig;
|
|
|
|
ret = ipa_modem_config(ipa);
|
|
if (ret)
|
|
goto err_endpoint_deconfig;
|
|
|
|
return 0;
|
|
|
|
err_endpoint_deconfig:
|
|
ipa_endpoint_deconfig(ipa);
|
|
err_uc_deconfig:
|
|
ipa_uc_deconfig(ipa);
|
|
ipa_interrupt_deconfig(ipa->interrupt);
|
|
ipa->interrupt = NULL;
|
|
err_mem_deconfig:
|
|
ipa_mem_deconfig(ipa);
|
|
err_hardware_deconfig:
|
|
ipa_hardware_deconfig(ipa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipa_deconfig() - Inverse of ipa_config()
|
|
* @ipa: IPA pointer
|
|
*/
|
|
static void ipa_deconfig(struct ipa *ipa)
|
|
{
|
|
ipa_modem_deconfig(ipa);
|
|
ipa_endpoint_deconfig(ipa);
|
|
ipa_uc_deconfig(ipa);
|
|
ipa_interrupt_deconfig(ipa->interrupt);
|
|
ipa->interrupt = NULL;
|
|
ipa_mem_deconfig(ipa);
|
|
ipa_hardware_deconfig(ipa);
|
|
}
|
|
|
|
static int ipa_firmware_load(struct device *dev)
|
|
{
|
|
const struct firmware *fw;
|
|
struct device_node *node;
|
|
struct resource res;
|
|
phys_addr_t phys;
|
|
const char *path;
|
|
ssize_t size;
|
|
void *virt;
|
|
int ret;
|
|
|
|
node = of_parse_phandle(dev->of_node, "memory-region", 0);
|
|
if (!node) {
|
|
dev_err(dev, "DT error getting \"memory-region\" property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = of_address_to_resource(node, 0, &res);
|
|
of_node_put(node);
|
|
if (ret) {
|
|
dev_err(dev, "error %d getting \"memory-region\" resource\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Use name from DTB if specified; use default for *any* error */
|
|
ret = of_property_read_string(dev->of_node, "firmware-name", &path);
|
|
if (ret) {
|
|
dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
|
|
ret);
|
|
path = IPA_FW_PATH_DEFAULT;
|
|
}
|
|
|
|
ret = request_firmware(&fw, path, dev);
|
|
if (ret) {
|
|
dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
|
|
return ret;
|
|
}
|
|
|
|
phys = res.start;
|
|
size = (size_t)resource_size(&res);
|
|
virt = memremap(phys, size, MEMREMAP_WC);
|
|
if (!virt) {
|
|
dev_err(dev, "unable to remap firmware memory\n");
|
|
ret = -ENOMEM;
|
|
goto out_release_firmware;
|
|
}
|
|
|
|
ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
|
|
if (ret)
|
|
dev_err(dev, "error %d loading \"%s\"\n", ret, path);
|
|
else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
|
|
dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
|
|
|
|
memunmap(virt);
|
|
out_release_firmware:
|
|
release_firmware(fw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id ipa_match[] = {
|
|
{
|
|
.compatible = "qcom,msm8998-ipa",
|
|
.data = &ipa_data_v3_1,
|
|
},
|
|
{
|
|
.compatible = "qcom,sdm845-ipa",
|
|
.data = &ipa_data_v3_5_1,
|
|
},
|
|
{
|
|
.compatible = "qcom,sc7180-ipa",
|
|
.data = &ipa_data_v4_2,
|
|
},
|
|
{
|
|
.compatible = "qcom,sdx55-ipa",
|
|
.data = &ipa_data_v4_5,
|
|
},
|
|
{
|
|
.compatible = "qcom,sm8350-ipa",
|
|
.data = &ipa_data_v4_9,
|
|
},
|
|
{
|
|
.compatible = "qcom,sc7280-ipa",
|
|
.data = &ipa_data_v4_11,
|
|
},
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ipa_match);
|
|
|
|
/* Check things that can be validated at build time. This just
|
|
* groups these things BUILD_BUG_ON() calls don't clutter the rest
|
|
* of the code.
|
|
* */
|
|
static void ipa_validate_build(void)
|
|
{
|
|
/* At one time we assumed a 64-bit build, allowing some do_div()
|
|
* calls to be replaced by simple division or modulo operations.
|
|
* We currently only perform divide and modulo operations on u32,
|
|
* u16, or size_t objects, and of those only size_t has any chance
|
|
* of being a 64-bit value. (It should be guaranteed 32 bits wide
|
|
* on a 32-bit build, but there is no harm in verifying that.)
|
|
*/
|
|
BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
|
|
|
|
/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
|
|
BUILD_BUG_ON(GSI_EE_AP != 0);
|
|
|
|
/* There's no point if we have no channels or event rings */
|
|
BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
|
|
BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
|
|
|
|
/* GSI hardware design limits */
|
|
BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
|
|
BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
|
|
|
|
/* The number of TREs in a transaction is limited by the channel's
|
|
* TLV FIFO size. A transaction structure uses 8-bit fields
|
|
* to represents the number of TREs it has allocated and used.
|
|
*/
|
|
BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
|
|
|
|
/* This is used as a divisor */
|
|
BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
|
|
|
|
/* Aggregation granularity value can't be 0, and must fit */
|
|
BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
|
|
BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
|
|
field_max(AGGR_GRANULARITY_FMASK));
|
|
}
|
|
|
|
static bool ipa_version_valid(enum ipa_version version)
|
|
{
|
|
switch (version) {
|
|
case IPA_VERSION_3_0:
|
|
case IPA_VERSION_3_1:
|
|
case IPA_VERSION_3_5:
|
|
case IPA_VERSION_3_5_1:
|
|
case IPA_VERSION_4_0:
|
|
case IPA_VERSION_4_1:
|
|
case IPA_VERSION_4_2:
|
|
case IPA_VERSION_4_5:
|
|
case IPA_VERSION_4_7:
|
|
case IPA_VERSION_4_9:
|
|
case IPA_VERSION_4_11:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ipa_probe() - IPA platform driver probe function
|
|
* @pdev: Platform device pointer
|
|
*
|
|
* Return: 0 if successful, or a negative error code (possibly
|
|
* EPROBE_DEFER)
|
|
*
|
|
* This is the main entry point for the IPA driver. Initialization proceeds
|
|
* in several stages:
|
|
* - The "init" stage involves activities that can be initialized without
|
|
* access to the IPA hardware.
|
|
* - The "config" stage requires IPA power to be active so IPA registers
|
|
* can be accessed, but does not require the use of IPA immediate commands.
|
|
* - The "setup" stage uses IPA immediate commands, and so requires the GSI
|
|
* layer to be initialized.
|
|
*
|
|
* A Boolean Device Tree "modem-init" property determines whether GSI
|
|
* initialization will be performed by the AP (Trust Zone) or the modem.
|
|
* If the AP does GSI initialization, the setup phase is entered after
|
|
* this has completed successfully. Otherwise the modem initializes
|
|
* the GSI layer and signals it has finished by sending an SMP2P interrupt
|
|
* to the AP; this triggers the start if IPA setup.
|
|
*/
|
|
static int ipa_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
const struct ipa_data *data;
|
|
struct ipa_power *power;
|
|
bool modem_init;
|
|
struct ipa *ipa;
|
|
int ret;
|
|
|
|
ipa_validate_build();
|
|
|
|
/* Get configuration data early; needed for power initialization */
|
|
data = of_device_get_match_data(dev);
|
|
if (!data) {
|
|
dev_err(dev, "matched hardware not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!ipa_version_valid(data->version)) {
|
|
dev_err(dev, "invalid IPA version\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If we need Trust Zone, make sure it's available */
|
|
modem_init = of_property_read_bool(dev->of_node, "modem-init");
|
|
if (!modem_init)
|
|
if (!qcom_scm_is_available())
|
|
return -EPROBE_DEFER;
|
|
|
|
/* The clock and interconnects might not be ready when we're
|
|
* probed, so might return -EPROBE_DEFER.
|
|
*/
|
|
power = ipa_power_init(dev, data->power_data);
|
|
if (IS_ERR(power))
|
|
return PTR_ERR(power);
|
|
|
|
/* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
|
|
ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
|
|
if (!ipa) {
|
|
ret = -ENOMEM;
|
|
goto err_power_exit;
|
|
}
|
|
|
|
ipa->pdev = pdev;
|
|
dev_set_drvdata(dev, ipa);
|
|
ipa->power = power;
|
|
ipa->version = data->version;
|
|
init_completion(&ipa->completion);
|
|
|
|
ret = ipa_reg_init(ipa);
|
|
if (ret)
|
|
goto err_kfree_ipa;
|
|
|
|
ret = ipa_mem_init(ipa, data->mem_data);
|
|
if (ret)
|
|
goto err_reg_exit;
|
|
|
|
ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
|
|
data->endpoint_data);
|
|
if (ret)
|
|
goto err_mem_exit;
|
|
|
|
/* Result is a non-zero mask of endpoints that support filtering */
|
|
ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
|
|
data->endpoint_data);
|
|
if (!ipa->filter_map) {
|
|
ret = -EINVAL;
|
|
goto err_gsi_exit;
|
|
}
|
|
|
|
ret = ipa_table_init(ipa);
|
|
if (ret)
|
|
goto err_endpoint_exit;
|
|
|
|
ret = ipa_smp2p_init(ipa, modem_init);
|
|
if (ret)
|
|
goto err_table_exit;
|
|
|
|
/* Power needs to be active for config and setup */
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (WARN_ON(ret < 0))
|
|
goto err_power_put;
|
|
|
|
ret = ipa_config(ipa, data);
|
|
if (ret)
|
|
goto err_power_put;
|
|
|
|
dev_info(dev, "IPA driver initialized");
|
|
|
|
/* If the modem is doing early initialization, it will trigger a
|
|
* call to ipa_setup() when it has finished. In that case we're
|
|
* done here.
|
|
*/
|
|
if (modem_init)
|
|
goto done;
|
|
|
|
/* Otherwise we need to load the firmware and have Trust Zone validate
|
|
* and install it. If that succeeds we can proceed with setup.
|
|
*/
|
|
ret = ipa_firmware_load(dev);
|
|
if (ret)
|
|
goto err_deconfig;
|
|
|
|
ret = ipa_setup(ipa);
|
|
if (ret)
|
|
goto err_deconfig;
|
|
done:
|
|
pm_runtime_mark_last_busy(dev);
|
|
(void)pm_runtime_put_autosuspend(dev);
|
|
|
|
return 0;
|
|
|
|
err_deconfig:
|
|
ipa_deconfig(ipa);
|
|
err_power_put:
|
|
pm_runtime_put_noidle(dev);
|
|
ipa_smp2p_exit(ipa);
|
|
err_table_exit:
|
|
ipa_table_exit(ipa);
|
|
err_endpoint_exit:
|
|
ipa_endpoint_exit(ipa);
|
|
err_gsi_exit:
|
|
gsi_exit(&ipa->gsi);
|
|
err_mem_exit:
|
|
ipa_mem_exit(ipa);
|
|
err_reg_exit:
|
|
ipa_reg_exit(ipa);
|
|
err_kfree_ipa:
|
|
kfree(ipa);
|
|
err_power_exit:
|
|
ipa_power_exit(power);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ipa_remove(struct platform_device *pdev)
|
|
{
|
|
struct ipa *ipa = dev_get_drvdata(&pdev->dev);
|
|
struct ipa_power *power = ipa->power;
|
|
struct device *dev = &pdev->dev;
|
|
int ret;
|
|
|
|
/* Prevent the modem from triggering a call to ipa_setup(). This
|
|
* also ensures a modem-initiated setup that's underway completes.
|
|
*/
|
|
ipa_smp2p_irq_disable_setup(ipa);
|
|
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (WARN_ON(ret < 0))
|
|
goto out_power_put;
|
|
|
|
if (ipa->setup_complete) {
|
|
ret = ipa_modem_stop(ipa);
|
|
/* If starting or stopping is in progress, try once more */
|
|
if (ret == -EBUSY) {
|
|
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
|
|
ret = ipa_modem_stop(ipa);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
ipa_teardown(ipa);
|
|
}
|
|
|
|
ipa_deconfig(ipa);
|
|
out_power_put:
|
|
pm_runtime_put_noidle(dev);
|
|
ipa_smp2p_exit(ipa);
|
|
ipa_table_exit(ipa);
|
|
ipa_endpoint_exit(ipa);
|
|
gsi_exit(&ipa->gsi);
|
|
ipa_mem_exit(ipa);
|
|
ipa_reg_exit(ipa);
|
|
kfree(ipa);
|
|
ipa_power_exit(power);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ipa_shutdown(struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = ipa_remove(pdev);
|
|
if (ret)
|
|
dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
|
|
}
|
|
|
|
static const struct attribute_group *ipa_attribute_groups[] = {
|
|
&ipa_attribute_group,
|
|
&ipa_feature_attribute_group,
|
|
&ipa_modem_attribute_group,
|
|
NULL,
|
|
};
|
|
|
|
static struct platform_driver ipa_driver = {
|
|
.probe = ipa_probe,
|
|
.remove = ipa_remove,
|
|
.shutdown = ipa_shutdown,
|
|
.driver = {
|
|
.name = "ipa",
|
|
.pm = &ipa_pm_ops,
|
|
.of_match_table = ipa_match,
|
|
.dev_groups = ipa_attribute_groups,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(ipa_driver);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
|