WSL2-Linux-Kernel/arch/x86/kernel/vm86_32.c

865 строки
23 KiB
C

/*
* Copyright (C) 1994 Linus Torvalds
*
* 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
* stack - Manfred Spraul <manfred@colorfullife.com>
*
* 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
* them correctly. Now the emulation will be in a
* consistent state after stackfaults - Kasper Dupont
* <kasperd@daimi.au.dk>
*
* 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
* <kasperd@daimi.au.dk>
*
* ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
* caused by Kasper Dupont's changes - Stas Sergeev
*
* 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
* Kasper Dupont <kasperd@daimi.au.dk>
*
* 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
* Kasper Dupont <kasperd@daimi.au.dk>
*
* 9 apr 2002 - Changed stack access macros to jump to a label
* instead of returning to userspace. This simplifies
* do_int, and is needed by handle_vm6_fault. Kasper
* Dupont <kasperd@daimi.au.dk>
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/audit.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/tlbflush.h>
#include <asm/irq.h>
#include <asm/traps.h>
#include <asm/vm86.h>
/*
* Known problems:
*
* Interrupt handling is not guaranteed:
* - a real x86 will disable all interrupts for one instruction
* after a "mov ss,xx" to make stack handling atomic even without
* the 'lss' instruction. We can't guarantee this in v86 mode,
* as the next instruction might result in a page fault or similar.
* - a real x86 will have interrupts disabled for one instruction
* past the 'sti' that enables them. We don't bother with all the
* details yet.
*
* Let's hope these problems do not actually matter for anything.
*/
/*
* 8- and 16-bit register defines..
*/
#define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
#define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
#define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
#define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
/*
* virtual flags (16 and 32-bit versions)
*/
#define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
#define VEFLAGS (current->thread.vm86->veflags)
#define set_flags(X, new, mask) \
((X) = ((X) & ~(mask)) | ((new) & (mask)))
#define SAFE_MASK (0xDD5)
#define RETURN_MASK (0xDFF)
void save_v86_state(struct kernel_vm86_regs *regs, int retval)
{
struct tss_struct *tss;
struct task_struct *tsk = current;
struct vm86plus_struct __user *user;
struct vm86 *vm86 = current->thread.vm86;
long err = 0;
/*
* This gets called from entry.S with interrupts disabled, but
* from process context. Enable interrupts here, before trying
* to access user space.
*/
local_irq_enable();
if (!vm86 || !vm86->user_vm86) {
pr_alert("no user_vm86: BAD\n");
do_exit(SIGSEGV);
}
set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
user = vm86->user_vm86;
if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
sizeof(struct vm86plus_struct) :
sizeof(struct vm86_struct))) {
pr_alert("could not access userspace vm86 info\n");
do_exit(SIGSEGV);
}
put_user_try {
put_user_ex(regs->pt.bx, &user->regs.ebx);
put_user_ex(regs->pt.cx, &user->regs.ecx);
put_user_ex(regs->pt.dx, &user->regs.edx);
put_user_ex(regs->pt.si, &user->regs.esi);
put_user_ex(regs->pt.di, &user->regs.edi);
put_user_ex(regs->pt.bp, &user->regs.ebp);
put_user_ex(regs->pt.ax, &user->regs.eax);
put_user_ex(regs->pt.ip, &user->regs.eip);
put_user_ex(regs->pt.cs, &user->regs.cs);
put_user_ex(regs->pt.flags, &user->regs.eflags);
put_user_ex(regs->pt.sp, &user->regs.esp);
put_user_ex(regs->pt.ss, &user->regs.ss);
put_user_ex(regs->es, &user->regs.es);
put_user_ex(regs->ds, &user->regs.ds);
put_user_ex(regs->fs, &user->regs.fs);
put_user_ex(regs->gs, &user->regs.gs);
put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
} put_user_catch(err);
if (err) {
pr_alert("could not access userspace vm86 info\n");
do_exit(SIGSEGV);
}
tss = &per_cpu(cpu_tss, get_cpu());
tsk->thread.sp0 = vm86->saved_sp0;
tsk->thread.sysenter_cs = __KERNEL_CS;
load_sp0(tss, &tsk->thread);
vm86->saved_sp0 = 0;
put_cpu();
memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
lazy_load_gs(vm86->regs32.gs);
regs->pt.ax = retval;
}
static void mark_screen_rdonly(struct mm_struct *mm)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
spinlock_t *ptl;
int i;
down_write(&mm->mmap_sem);
pgd = pgd_offset(mm, 0xA0000);
if (pgd_none_or_clear_bad(pgd))
goto out;
pud = pud_offset(pgd, 0xA0000);
if (pud_none_or_clear_bad(pud))
goto out;
pmd = pmd_offset(pud, 0xA0000);
if (pmd_trans_huge(*pmd)) {
struct vm_area_struct *vma = find_vma(mm, 0xA0000);
split_huge_pmd(vma, pmd, 0xA0000);
}
if (pmd_none_or_clear_bad(pmd))
goto out;
pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
for (i = 0; i < 32; i++) {
if (pte_present(*pte))
set_pte(pte, pte_wrprotect(*pte));
pte++;
}
pte_unmap_unlock(pte, ptl);
out:
up_write(&mm->mmap_sem);
flush_tlb();
}
static int do_vm86_irq_handling(int subfunction, int irqnumber);
static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
{
return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
}
SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
{
switch (cmd) {
case VM86_REQUEST_IRQ:
case VM86_FREE_IRQ:
case VM86_GET_IRQ_BITS:
case VM86_GET_AND_RESET_IRQ:
return do_vm86_irq_handling(cmd, (int)arg);
case VM86_PLUS_INSTALL_CHECK:
/*
* NOTE: on old vm86 stuff this will return the error
* from access_ok(), because the subfunction is
* interpreted as (invalid) address to vm86_struct.
* So the installation check works.
*/
return 0;
}
/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
}
static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
{
struct tss_struct *tss;
struct task_struct *tsk = current;
struct vm86 *vm86 = tsk->thread.vm86;
struct kernel_vm86_regs vm86regs;
struct pt_regs *regs = current_pt_regs();
unsigned long err = 0;
err = security_mmap_addr(0);
if (err) {
/*
* vm86 cannot virtualize the address space, so vm86 users
* need to manage the low 1MB themselves using mmap. Given
* that BIOS places important data in the first page, vm86
* is essentially useless if mmap_min_addr != 0. DOSEMU,
* for example, won't even bother trying to use vm86 if it
* can't map a page at virtual address 0.
*
* To reduce the available kernel attack surface, simply
* disallow vm86(old) for users who cannot mmap at va 0.
*
* The implementation of security_mmap_addr will allow
* suitably privileged users to map va 0 even if
* vm.mmap_min_addr is set above 0, and we want this
* behavior for vm86 as well, as it ensures that legacy
* tools like vbetool will not fail just because of
* vm.mmap_min_addr.
*/
pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
current->comm, task_pid_nr(current),
from_kuid_munged(&init_user_ns, current_uid()));
return -EPERM;
}
if (!vm86) {
if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
return -ENOMEM;
tsk->thread.vm86 = vm86;
}
if (vm86->saved_sp0)
return -EPERM;
if (!access_ok(VERIFY_READ, user_vm86, plus ?
sizeof(struct vm86_struct) :
sizeof(struct vm86plus_struct)))
return -EFAULT;
memset(&vm86regs, 0, sizeof(vm86regs));
get_user_try {
unsigned short seg;
get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
get_user_ex(seg, &user_vm86->regs.cs);
vm86regs.pt.cs = seg;
get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
get_user_ex(seg, &user_vm86->regs.ss);
vm86regs.pt.ss = seg;
get_user_ex(vm86regs.es, &user_vm86->regs.es);
get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
get_user_ex(vm86->flags, &user_vm86->flags);
get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
} get_user_catch(err);
if (err)
return err;
if (copy_from_user(&vm86->int_revectored,
&user_vm86->int_revectored,
sizeof(struct revectored_struct)))
return -EFAULT;
if (copy_from_user(&vm86->int21_revectored,
&user_vm86->int21_revectored,
sizeof(struct revectored_struct)))
return -EFAULT;
if (plus) {
if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
sizeof(struct vm86plus_info_struct)))
return -EFAULT;
vm86->vm86plus.is_vm86pus = 1;
} else
memset(&vm86->vm86plus, 0,
sizeof(struct vm86plus_info_struct));
memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
vm86->user_vm86 = user_vm86;
/*
* The flags register is also special: we cannot trust that the user
* has set it up safely, so this makes sure interrupt etc flags are
* inherited from protected mode.
*/
VEFLAGS = vm86regs.pt.flags;
vm86regs.pt.flags &= SAFE_MASK;
vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
vm86regs.pt.flags |= X86_VM_MASK;
vm86regs.pt.orig_ax = regs->orig_ax;
switch (vm86->cpu_type) {
case CPU_286:
vm86->veflags_mask = 0;
break;
case CPU_386:
vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
break;
case CPU_486:
vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
break;
default:
vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
break;
}
/*
* Save old state
*/
vm86->saved_sp0 = tsk->thread.sp0;
lazy_save_gs(vm86->regs32.gs);
tss = &per_cpu(cpu_tss, get_cpu());
/* make room for real-mode segments */
tsk->thread.sp0 += 16;
if (static_cpu_has(X86_FEATURE_SEP))
tsk->thread.sysenter_cs = 0;
load_sp0(tss, &tsk->thread);
put_cpu();
if (vm86->flags & VM86_SCREEN_BITMAP)
mark_screen_rdonly(tsk->mm);
memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
force_iret();
return regs->ax;
}
static inline void set_IF(struct kernel_vm86_regs *regs)
{
VEFLAGS |= X86_EFLAGS_VIF;
}
static inline void clear_IF(struct kernel_vm86_regs *regs)
{
VEFLAGS &= ~X86_EFLAGS_VIF;
}
static inline void clear_TF(struct kernel_vm86_regs *regs)
{
regs->pt.flags &= ~X86_EFLAGS_TF;
}
static inline void clear_AC(struct kernel_vm86_regs *regs)
{
regs->pt.flags &= ~X86_EFLAGS_AC;
}
/*
* It is correct to call set_IF(regs) from the set_vflags_*
* functions. However someone forgot to call clear_IF(regs)
* in the opposite case.
* After the command sequence CLI PUSHF STI POPF you should
* end up with interrupts disabled, but you ended up with
* interrupts enabled.
* ( I was testing my own changes, but the only bug I
* could find was in a function I had not changed. )
* [KD]
*/
static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
{
set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
set_flags(regs->pt.flags, flags, SAFE_MASK);
if (flags & X86_EFLAGS_IF)
set_IF(regs);
else
clear_IF(regs);
}
static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
{
set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
set_flags(regs->pt.flags, flags, SAFE_MASK);
if (flags & X86_EFLAGS_IF)
set_IF(regs);
else
clear_IF(regs);
}
static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
{
unsigned long flags = regs->pt.flags & RETURN_MASK;
if (VEFLAGS & X86_EFLAGS_VIF)
flags |= X86_EFLAGS_IF;
flags |= X86_EFLAGS_IOPL;
return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
}
static inline int is_revectored(int nr, struct revectored_struct *bitmap)
{
return test_bit(nr, bitmap->__map);
}
#define val_byte(val, n) (((__u8 *)&val)[n])
#define pushb(base, ptr, val, err_label) \
do { \
__u8 __val = val; \
ptr--; \
if (put_user(__val, base + ptr) < 0) \
goto err_label; \
} while (0)
#define pushw(base, ptr, val, err_label) \
do { \
__u16 __val = val; \
ptr--; \
if (put_user(val_byte(__val, 1), base + ptr) < 0) \
goto err_label; \
ptr--; \
if (put_user(val_byte(__val, 0), base + ptr) < 0) \
goto err_label; \
} while (0)
#define pushl(base, ptr, val, err_label) \
do { \
__u32 __val = val; \
ptr--; \
if (put_user(val_byte(__val, 3), base + ptr) < 0) \
goto err_label; \
ptr--; \
if (put_user(val_byte(__val, 2), base + ptr) < 0) \
goto err_label; \
ptr--; \
if (put_user(val_byte(__val, 1), base + ptr) < 0) \
goto err_label; \
ptr--; \
if (put_user(val_byte(__val, 0), base + ptr) < 0) \
goto err_label; \
} while (0)
#define popb(base, ptr, err_label) \
({ \
__u8 __res; \
if (get_user(__res, base + ptr) < 0) \
goto err_label; \
ptr++; \
__res; \
})
#define popw(base, ptr, err_label) \
({ \
__u16 __res; \
if (get_user(val_byte(__res, 0), base + ptr) < 0) \
goto err_label; \
ptr++; \
if (get_user(val_byte(__res, 1), base + ptr) < 0) \
goto err_label; \
ptr++; \
__res; \
})
#define popl(base, ptr, err_label) \
({ \
__u32 __res; \
if (get_user(val_byte(__res, 0), base + ptr) < 0) \
goto err_label; \
ptr++; \
if (get_user(val_byte(__res, 1), base + ptr) < 0) \
goto err_label; \
ptr++; \
if (get_user(val_byte(__res, 2), base + ptr) < 0) \
goto err_label; \
ptr++; \
if (get_user(val_byte(__res, 3), base + ptr) < 0) \
goto err_label; \
ptr++; \
__res; \
})
/* There are so many possible reasons for this function to return
* VM86_INTx, so adding another doesn't bother me. We can expect
* userspace programs to be able to handle it. (Getting a problem
* in userspace is always better than an Oops anyway.) [KD]
*/
static void do_int(struct kernel_vm86_regs *regs, int i,
unsigned char __user *ssp, unsigned short sp)
{
unsigned long __user *intr_ptr;
unsigned long segoffs;
struct vm86 *vm86 = current->thread.vm86;
if (regs->pt.cs == BIOSSEG)
goto cannot_handle;
if (is_revectored(i, &vm86->int_revectored))
goto cannot_handle;
if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
goto cannot_handle;
intr_ptr = (unsigned long __user *) (i << 2);
if (get_user(segoffs, intr_ptr))
goto cannot_handle;
if ((segoffs >> 16) == BIOSSEG)
goto cannot_handle;
pushw(ssp, sp, get_vflags(regs), cannot_handle);
pushw(ssp, sp, regs->pt.cs, cannot_handle);
pushw(ssp, sp, IP(regs), cannot_handle);
regs->pt.cs = segoffs >> 16;
SP(regs) -= 6;
IP(regs) = segoffs & 0xffff;
clear_TF(regs);
clear_IF(regs);
clear_AC(regs);
return;
cannot_handle:
save_v86_state(regs, VM86_INTx + (i << 8));
}
int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
{
struct vm86 *vm86 = current->thread.vm86;
if (vm86->vm86plus.is_vm86pus) {
if ((trapno == 3) || (trapno == 1)) {
save_v86_state(regs, VM86_TRAP + (trapno << 8));
return 0;
}
do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
return 0;
}
if (trapno != 1)
return 1; /* we let this handle by the calling routine */
current->thread.trap_nr = trapno;
current->thread.error_code = error_code;
force_sig(SIGTRAP, current);
return 0;
}
void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
{
unsigned char opcode;
unsigned char __user *csp;
unsigned char __user *ssp;
unsigned short ip, sp, orig_flags;
int data32, pref_done;
struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
#define CHECK_IF_IN_TRAP \
if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
newflags |= X86_EFLAGS_TF
orig_flags = *(unsigned short *)&regs->pt.flags;
csp = (unsigned char __user *) (regs->pt.cs << 4);
ssp = (unsigned char __user *) (regs->pt.ss << 4);
sp = SP(regs);
ip = IP(regs);
data32 = 0;
pref_done = 0;
do {
switch (opcode = popb(csp, ip, simulate_sigsegv)) {
case 0x66: /* 32-bit data */ data32 = 1; break;
case 0x67: /* 32-bit address */ break;
case 0x2e: /* CS */ break;
case 0x3e: /* DS */ break;
case 0x26: /* ES */ break;
case 0x36: /* SS */ break;
case 0x65: /* GS */ break;
case 0x64: /* FS */ break;
case 0xf2: /* repnz */ break;
case 0xf3: /* rep */ break;
default: pref_done = 1;
}
} while (!pref_done);
switch (opcode) {
/* pushf */
case 0x9c:
if (data32) {
pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
SP(regs) -= 4;
} else {
pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
SP(regs) -= 2;
}
IP(regs) = ip;
goto vm86_fault_return;
/* popf */
case 0x9d:
{
unsigned long newflags;
if (data32) {
newflags = popl(ssp, sp, simulate_sigsegv);
SP(regs) += 4;
} else {
newflags = popw(ssp, sp, simulate_sigsegv);
SP(regs) += 2;
}
IP(regs) = ip;
CHECK_IF_IN_TRAP;
if (data32)
set_vflags_long(newflags, regs);
else
set_vflags_short(newflags, regs);
goto check_vip;
}
/* int xx */
case 0xcd: {
int intno = popb(csp, ip, simulate_sigsegv);
IP(regs) = ip;
if (vmpi->vm86dbg_active) {
if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
save_v86_state(regs, VM86_INTx + (intno << 8));
return;
}
}
do_int(regs, intno, ssp, sp);
return;
}
/* iret */
case 0xcf:
{
unsigned long newip;
unsigned long newcs;
unsigned long newflags;
if (data32) {
newip = popl(ssp, sp, simulate_sigsegv);
newcs = popl(ssp, sp, simulate_sigsegv);
newflags = popl(ssp, sp, simulate_sigsegv);
SP(regs) += 12;
} else {
newip = popw(ssp, sp, simulate_sigsegv);
newcs = popw(ssp, sp, simulate_sigsegv);
newflags = popw(ssp, sp, simulate_sigsegv);
SP(regs) += 6;
}
IP(regs) = newip;
regs->pt.cs = newcs;
CHECK_IF_IN_TRAP;
if (data32) {
set_vflags_long(newflags, regs);
} else {
set_vflags_short(newflags, regs);
}
goto check_vip;
}
/* cli */
case 0xfa:
IP(regs) = ip;
clear_IF(regs);
goto vm86_fault_return;
/* sti */
/*
* Damn. This is incorrect: the 'sti' instruction should actually
* enable interrupts after the /next/ instruction. Not good.
*
* Probably needs some horsing around with the TF flag. Aiee..
*/
case 0xfb:
IP(regs) = ip;
set_IF(regs);
goto check_vip;
default:
save_v86_state(regs, VM86_UNKNOWN);
}
return;
check_vip:
if (VEFLAGS & X86_EFLAGS_VIP) {
save_v86_state(regs, VM86_STI);
return;
}
vm86_fault_return:
if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
save_v86_state(regs, VM86_PICRETURN);
return;
}
if (orig_flags & X86_EFLAGS_TF)
handle_vm86_trap(regs, 0, X86_TRAP_DB);
return;
simulate_sigsegv:
/* FIXME: After a long discussion with Stas we finally
* agreed, that this is wrong. Here we should
* really send a SIGSEGV to the user program.
* But how do we create the correct context? We
* are inside a general protection fault handler
* and has just returned from a page fault handler.
* The correct context for the signal handler
* should be a mixture of the two, but how do we
* get the information? [KD]
*/
save_v86_state(regs, VM86_UNKNOWN);
}
/* ---------------- vm86 special IRQ passing stuff ----------------- */
#define VM86_IRQNAME "vm86irq"
static struct vm86_irqs {
struct task_struct *tsk;
int sig;
} vm86_irqs[16];
static DEFINE_SPINLOCK(irqbits_lock);
static int irqbits;
#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
| (1 << SIGUNUSED))
static irqreturn_t irq_handler(int intno, void *dev_id)
{
int irq_bit;
unsigned long flags;
spin_lock_irqsave(&irqbits_lock, flags);
irq_bit = 1 << intno;
if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
goto out;
irqbits |= irq_bit;
if (vm86_irqs[intno].sig)
send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
/*
* IRQ will be re-enabled when user asks for the irq (whether
* polling or as a result of the signal)
*/
disable_irq_nosync(intno);
spin_unlock_irqrestore(&irqbits_lock, flags);
return IRQ_HANDLED;
out:
spin_unlock_irqrestore(&irqbits_lock, flags);
return IRQ_NONE;
}
static inline void free_vm86_irq(int irqnumber)
{
unsigned long flags;
free_irq(irqnumber, NULL);
vm86_irqs[irqnumber].tsk = NULL;
spin_lock_irqsave(&irqbits_lock, flags);
irqbits &= ~(1 << irqnumber);
spin_unlock_irqrestore(&irqbits_lock, flags);
}
void release_vm86_irqs(struct task_struct *task)
{
int i;
for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
if (vm86_irqs[i].tsk == task)
free_vm86_irq(i);
}
static inline int get_and_reset_irq(int irqnumber)
{
int bit;
unsigned long flags;
int ret = 0;
if (invalid_vm86_irq(irqnumber)) return 0;
if (vm86_irqs[irqnumber].tsk != current) return 0;
spin_lock_irqsave(&irqbits_lock, flags);
bit = irqbits & (1 << irqnumber);
irqbits &= ~bit;
if (bit) {
enable_irq(irqnumber);
ret = 1;
}
spin_unlock_irqrestore(&irqbits_lock, flags);
return ret;
}
static int do_vm86_irq_handling(int subfunction, int irqnumber)
{
int ret;
switch (subfunction) {
case VM86_GET_AND_RESET_IRQ: {
return get_and_reset_irq(irqnumber);
}
case VM86_GET_IRQ_BITS: {
return irqbits;
}
case VM86_REQUEST_IRQ: {
int sig = irqnumber >> 8;
int irq = irqnumber & 255;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
if (invalid_vm86_irq(irq)) return -EPERM;
if (vm86_irqs[irq].tsk) return -EPERM;
ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
if (ret) return ret;
vm86_irqs[irq].sig = sig;
vm86_irqs[irq].tsk = current;
return irq;
}
case VM86_FREE_IRQ: {
if (invalid_vm86_irq(irqnumber)) return -EPERM;
if (!vm86_irqs[irqnumber].tsk) return 0;
if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
free_vm86_irq(irqnumber);
return 0;
}
}
return -EINVAL;
}