WSL2-Linux-Kernel/drivers/net/fs_enet/mac-scc.c

485 строки
12 KiB
C

/*
* Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/cpm1.h>
#endif
#include "fs_enet.h"
/*************************************************/
#if defined(CONFIG_CPM1)
/* for a 8xx __raw_xxx's are sufficient */
#define __fs_out32(addr, x) __raw_writel(x, addr)
#define __fs_out16(addr, x) __raw_writew(x, addr)
#define __fs_out8(addr, x) __raw_writeb(x, addr)
#define __fs_in32(addr) __raw_readl(addr)
#define __fs_in16(addr) __raw_readw(addr)
#define __fs_in8(addr) __raw_readb(addr)
#else
/* for others play it safe */
#define __fs_out32(addr, x) out_be32(addr, x)
#define __fs_out16(addr, x) out_be16(addr, x)
#define __fs_in32(addr) in_be32(addr)
#define __fs_in16(addr) in_be16(addr)
#define __fs_out8(addr, x) out_8(addr, x)
#define __fs_in8(addr) in_8(addr)
#endif
/* write, read, set bits, clear bits */
#define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
#define R32(_p, _m) __fs_in32(&(_p)->_m)
#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
#define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
#define R16(_p, _m) __fs_in16(&(_p)->_m)
#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
#define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
#define R8(_p, _m) __fs_in8(&(_p)->_m)
#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
#define SCC_MAX_MULTICAST_ADDRS 64
/*
* Delay to wait for SCC reset command to complete (in us)
*/
#define SCC_RESET_DELAY 50
static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
{
const struct fs_platform_info *fpi = fep->fpi;
return cpm_command(fpi->cp_command, op);
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct of_device *ofdev = to_of_device(fep->dev);
fep->interrupt = of_irq_to_resource(ofdev->node, 0, NULL);
if (fep->interrupt == NO_IRQ)
return -EINVAL;
fep->scc.sccp = of_iomap(ofdev->node, 0);
if (!fep->scc.sccp)
return -EINVAL;
fep->scc.ep = of_iomap(ofdev->node, 1);
if (!fep->scc.ep) {
iounmap(fep->scc.sccp);
return -EINVAL;
}
return 0;
}
#define SCC_NAPI_RX_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB)
#define SCC_RX_EVENT (SCCE_ENET_RXF)
#define SCC_TX_EVENT (SCCE_ENET_TXB)
#define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
do_pd_setup(fep);
fep->scc.hthi = 0;
fep->scc.htlo = 0;
fep->ev_napi_rx = SCC_NAPI_RX_EVENT_MSK;
fep->ev_rx = SCC_RX_EVENT;
fep->ev_tx = SCC_TX_EVENT | SCCE_ENET_TXE;
fep->ev_err = SCC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), 8);
if (IS_ERR_VALUE(fep->ring_mem_addr))
return -ENOMEM;
fep->ring_base = (void __iomem __force*)
cpm_dpram_addr(fep->ring_mem_addr);
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (fep->ring_base)
cpm_dpfree(fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
S16(sccp, scc_psmr, SCC_PSMR_PRO);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_enet_t __iomem *ep = fep->scc.ep;
W16(ep, sen_gaddr1, 0);
W16(ep, sen_gaddr2, 0);
W16(ep, sen_gaddr3, 0);
W16(ep, sen_gaddr4, 0);
}
static void set_multicast_one(struct net_device *dev, const u8 * mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_enet_t __iomem *ep = fep->scc.ep;
u16 taddrh, taddrm, taddrl;
taddrh = ((u16) mac[5] << 8) | mac[4];
taddrm = ((u16) mac[3] << 8) | mac[2];
taddrl = ((u16) mac[1] << 8) | mac[0];
W16(ep, sen_taddrh, taddrh);
W16(ep, sen_taddrm, taddrm);
W16(ep, sen_taddrl, taddrl);
scc_cr_cmd(fep, CPM_CR_SET_GADDR);
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
scc_enet_t __iomem *ep = fep->scc.ep;
/* clear promiscuous always */
C16(sccp, scc_psmr, SCC_PSMR_PRO);
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
W16(ep, sen_gaddr1, 0xffff);
W16(ep, sen_gaddr2, 0xffff);
W16(ep, sen_gaddr3, 0xffff);
W16(ep, sen_gaddr4, 0xffff);
}
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
netdev_for_each_mc_addr(pmc, dev)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
/*
* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
scc_enet_t __iomem *ep = fep->scc.ep;
const struct fs_platform_info *fpi = fep->fpi;
u16 paddrh, paddrm, paddrl;
const unsigned char *mac;
int i;
C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
/* clear everything (slow & steady does it) */
for (i = 0; i < sizeof(*ep); i++)
__fs_out8((u8 __iomem *)ep + i, 0);
/* point to bds */
W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
W16(ep, sen_genscc.scc_tbase,
fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
/* Initialize function code registers for big-endian.
*/
#ifndef CONFIG_NOT_COHERENT_CACHE
W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
#else
W8(ep, sen_genscc.scc_rfcr, SCC_EB);
W8(ep, sen_genscc.scc_tfcr, SCC_EB);
#endif
/* Set maximum bytes per receive buffer.
* This appears to be an Ethernet frame size, not the buffer
* fragment size. It must be a multiple of four.
*/
W16(ep, sen_genscc.scc_mrblr, 0x5f0);
/* Set CRC preset and mask.
*/
W32(ep, sen_cpres, 0xffffffff);
W32(ep, sen_cmask, 0xdebb20e3);
W32(ep, sen_crcec, 0); /* CRC Error counter */
W32(ep, sen_alec, 0); /* alignment error counter */
W32(ep, sen_disfc, 0); /* discard frame counter */
W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */
W16(ep, sen_retlim, 15); /* Retry limit threshold */
W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */
W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */
W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */
/* Clear hash tables.
*/
W16(ep, sen_gaddr1, 0);
W16(ep, sen_gaddr2, 0);
W16(ep, sen_gaddr3, 0);
W16(ep, sen_gaddr4, 0);
W16(ep, sen_iaddr1, 0);
W16(ep, sen_iaddr2, 0);
W16(ep, sen_iaddr3, 0);
W16(ep, sen_iaddr4, 0);
/* set address
*/
mac = dev->dev_addr;
paddrh = ((u16) mac[5] << 8) | mac[4];
paddrm = ((u16) mac[3] << 8) | mac[2];
paddrl = ((u16) mac[1] << 8) | mac[0];
W16(ep, sen_paddrh, paddrh);
W16(ep, sen_paddrm, paddrm);
W16(ep, sen_paddrl, paddrl);
W16(ep, sen_pper, 0);
W16(ep, sen_taddrl, 0);
W16(ep, sen_taddrm, 0);
W16(ep, sen_taddrh, 0);
fs_init_bds(dev);
scc_cr_cmd(fep, CPM_CR_INIT_TRX);
W16(sccp, scc_scce, 0xffff);
/* Enable interrupts we wish to service.
*/
W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
/* Set GSMR_H to enable all normal operating modes.
* Set GSMR_L to enable Ethernet to MC68160.
*/
W32(sccp, scc_gsmrh, 0);
W32(sccp, scc_gsmrl,
SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
SCC_GSMRL_MODE_ENET);
/* Set sync/delimiters.
*/
W16(sccp, scc_dsr, 0xd555);
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
* start frame search 22 bit times after RENA.
*/
W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
/* Set full duplex mode if needed */
if (fep->phydev->duplex)
S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
int i;
for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
udelay(1);
if (i == SCC_RESET_DELAY)
dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
W16(sccp, scc_sccm, 0);
C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
fs_cleanup_bds(dev);
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
W16(sccp, scc_scce, SCC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
S16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
C16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
/* nothing */
}
static void tx_kickstart(struct net_device *dev)
{
/* nothing */
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
return (u32) R16(sccp, scc_scce);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t __iomem *sccp = fep->scc.sccp;
W16(sccp, scc_scce, int_events & 0xffff);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
}
static int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
return -EINVAL;
memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
p = (char *)p + sizeof(scc_t);
memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
return 0;
}
static int get_regs_len(struct net_device *dev)
{
return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
}
static void tx_restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_cr_cmd(fep, CPM_CR_RESTART_TX);
}
/*************************************************************************/
const struct fs_ops fs_scc_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};