WSL2-Linux-Kernel/drivers/ssb/pci.c

939 строки
26 KiB
C

/*
* Sonics Silicon Backplane PCI-Hostbus related functions.
*
* Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
*
* Derived from the Broadcom 4400 device driver.
* Copyright (C) 2002 David S. Miller (davem@redhat.com)
* Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
/* Lowlevel coreswitching */
int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
{
int err;
int attempts = 0;
u32 cur_core;
while (1) {
err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
(coreidx * SSB_CORE_SIZE)
+ SSB_ENUM_BASE);
if (err)
goto error;
err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
&cur_core);
if (err)
goto error;
cur_core = (cur_core - SSB_ENUM_BASE)
/ SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
unsigned long flags;
#if SSB_VERBOSE_PCICORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
spin_lock_irqsave(&bus->bar_lock, flags);
err = ssb_pci_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
}
/* Enable/disable the on board crystal oscillator and/or PLL. */
int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
{
int err;
u32 in, out, outenable;
u16 pci_status;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
if (err)
goto err_pci;
outenable |= what;
if (turn_on) {
/* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (!(in & SSB_GPIO_XTAL)) {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal on */
out |= SSB_GPIO_XTAL;
if (what & SSB_GPIO_PLL)
out |= SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
outenable);
if (err)
goto err_pci;
msleep(1);
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL on */
out &= ~SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
msleep(5);
}
}
err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
if (err)
goto err_pci;
pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
if (err)
goto err_pci;
} else {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal off */
out &= ~SSB_GPIO_XTAL;
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL off */
out |= SSB_GPIO_PLL;
}
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
if (err)
goto err_pci;
}
out:
return err;
err_pci:
printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
err = -EBUSY;
goto out;
}
/* Get the word-offset for a SSB_SPROM_XXX define. */
#define SPOFF(offset) ((offset) / sizeof(u16))
/* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
#define SPEX16(_outvar, _offset, _mask, _shift) \
out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
#define SPEX32(_outvar, _offset, _mask, _shift) \
out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \
in[SPOFF(_offset)]) & (_mask)) >> (_shift))
#define SPEX(_outvar, _offset, _mask, _shift) \
SPEX16(_outvar, _offset, _mask, _shift)
static inline u8 ssb_crc8(u8 crc, u8 data)
{
/* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
static const u8 t[] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
};
return t[crc ^ data];
}
static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
{
int word;
u8 crc = 0xFF;
for (word = 0; word < size - 1; word++) {
crc = ssb_crc8(crc, sprom[word] & 0x00FF);
crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
}
crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
crc ^= 0xFF;
return crc;
}
static int sprom_check_crc(const u16 *sprom, size_t size)
{
u8 crc;
u8 expected_crc;
u16 tmp;
crc = ssb_sprom_crc(sprom, size);
tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
if (crc != expected_crc)
return -EPROTO;
return 0;
}
static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
{
int i;
for (i = 0; i < bus->sprom_size; i++)
sprom[i] = ioread16(bus->mmio + bus->sprom_offset + (i * 2));
return 0;
}
static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
{
struct pci_dev *pdev = bus->host_pci;
int i, err;
u32 spromctl;
u16 size = bus->sprom_size;
ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl |= SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
ssb_printk(KERN_NOTICE PFX "[ 0%%");
msleep(500);
for (i = 0; i < size; i++) {
if (i == size / 4)
ssb_printk("25%%");
else if (i == size / 2)
ssb_printk("50%%");
else if (i == (size * 3) / 4)
ssb_printk("75%%");
else if (i % 2)
ssb_printk(".");
writew(sprom[i], bus->mmio + bus->sprom_offset + (i * 2));
mmiowb();
msleep(20);
}
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl &= ~SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
msleep(500);
ssb_printk("100%% ]\n");
ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
return 0;
err_ctlreg:
ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
return err;
}
static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
u16 mask, u16 shift)
{
u16 v;
u8 gain;
v = in[SPOFF(SSB_SPROM1_AGAIN)];
gain = (v & mask) >> shift;
if (gain == 0xFF)
gain = 2; /* If unset use 2dBm */
if (sprom_revision == 1) {
/* Convert to Q5.2 */
gain <<= 2;
} else {
/* Q5.2 Fractional part is stored in 0xC0 */
gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
}
return (s8)gain;
}
static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
s8 gain;
u16 loc[3];
if (out->revision == 3) /* rev 3 moved MAC */
loc[0] = SSB_SPROM3_IL0MAC;
else {
loc[0] = SSB_SPROM1_IL0MAC;
loc[1] = SSB_SPROM1_ET0MAC;
loc[2] = SSB_SPROM1_ET1MAC;
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[0]) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
if (out->revision < 3) { /* only rev 1-2 have et0, et1 */
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[1]) + i];
*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[2]) + i];
*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
}
}
SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
SSB_SPROM1_ETHPHY_ET1A_SHIFT);
SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
SSB_SPROM1_BINF_CCODE_SHIFT);
SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
SSB_SPROM1_BINF_ANTA_SHIFT);
SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
SSB_SPROM1_BINF_ANTBG_SHIFT);
SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
SSB_SPROM1_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
SSB_SPROM1_GPIOB_P3_SHIFT);
SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
SSB_SPROM1_MAXPWR_A_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
SSB_SPROM1_ITSSI_A_SHIFT);
SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
if (out->revision >= 2)
SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
/* Extract the antenna gain values. */
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_BG,
SSB_SPROM1_AGAIN_BG_SHIFT);
out->antenna_gain.ghz24.a0 = gain;
out->antenna_gain.ghz24.a1 = gain;
out->antenna_gain.ghz24.a2 = gain;
out->antenna_gain.ghz24.a3 = gain;
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_A,
SSB_SPROM1_AGAIN_A_SHIFT);
out->antenna_gain.ghz5.a0 = gain;
out->antenna_gain.ghz5.a1 = gain;
out->antenna_gain.ghz5.a2 = gain;
out->antenna_gain.ghz5.a3 = gain;
}
static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
u16 il0mac_offset;
if (out->revision == 4)
il0mac_offset = SSB_SPROM4_IL0MAC;
else
il0mac_offset = SSB_SPROM5_IL0MAC;
/* extract the MAC address */
for (i = 0; i < 3; i++) {
v = in[SPOFF(il0mac_offset) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
SSB_SPROM4_ETHPHY_ET1A_SHIFT);
if (out->revision == 4) {
SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
} else {
SPEX(country_code, SSB_SPROM5_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
}
SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
SSB_SPROM4_ANTAVAIL_A_SHIFT);
SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
SSB_SPROM4_ANTAVAIL_BG_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
SSB_SPROM4_ITSSI_BG_SHIFT);
SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
SSB_SPROM4_ITSSI_A_SHIFT);
if (out->revision == 4) {
SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
SSB_SPROM4_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
SSB_SPROM4_GPIOB_P3_SHIFT);
} else {
SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
SSB_SPROM5_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
SSB_SPROM5_GPIOB_P3_SHIFT);
}
/* Extract the antenna gain values. */
SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
sizeof(out->antenna_gain.ghz5));
/* TODO - get remaining rev 4 stuff needed */
}
static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
/* extract the MAC address */
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM8_IL0MAC) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
SPEX(country_code, SSB_SPROM8_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0);
SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0);
SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0);
SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
SSB_SPROM8_ANTAVAIL_A_SHIFT);
SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
SSB_SPROM8_ANTAVAIL_BG_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
SSB_SPROM8_ITSSI_BG_SHIFT);
SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
SSB_SPROM8_ITSSI_A_SHIFT);
SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
SSB_SPROM8_MAXP_AL_SHIFT);
SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
SSB_SPROM8_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
SSB_SPROM8_GPIOB_P3_SHIFT);
SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
SSB_SPROM8_TRI5G_SHIFT);
SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
SSB_SPROM8_TRI5GH_SHIFT);
SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0);
SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
SSB_SPROM8_RXPO5G_SHIFT);
SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
SSB_SPROM8_RSSISMC2G_SHIFT);
SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
SSB_SPROM8_RSSISAV2G_SHIFT);
SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
SSB_SPROM8_BXA2G_SHIFT);
SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
SSB_SPROM8_RSSISMC5G_SHIFT);
SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
SSB_SPROM8_RSSISAV5G_SHIFT);
SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
SSB_SPROM8_BXA5G_SHIFT);
SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0);
SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0);
SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0);
SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0);
SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0);
SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0);
SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0);
SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0);
SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0);
SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0);
SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0);
SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0);
/* Extract the antenna gain values. */
SPEX(antenna_gain.ghz24.a0, SSB_SPROM8_AGAIN01,
SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT);
SPEX(antenna_gain.ghz24.a1, SSB_SPROM8_AGAIN01,
SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT);
SPEX(antenna_gain.ghz24.a2, SSB_SPROM8_AGAIN23,
SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT);
SPEX(antenna_gain.ghz24.a3, SSB_SPROM8_AGAIN23,
SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT);
memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
sizeof(out->antenna_gain.ghz5));
/* TODO - get remaining rev 8 stuff needed */
}
static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
const u16 *in, u16 size)
{
memset(out, 0, sizeof(*out));
out->revision = in[size - 1] & 0x00FF;
ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */
memset(out->et1mac, 0xFF, 6);
if ((bus->chip_id & 0xFF00) == 0x4400) {
/* Workaround: The BCM44XX chip has a stupid revision
* number stored in the SPROM.
* Always extract r1. */
out->revision = 1;
sprom_extract_r123(out, in);
} else if (bus->chip_id == 0x4321) {
/* the BCM4328 has a chipid == 0x4321 and a rev 4 SPROM */
out->revision = 4;
sprom_extract_r45(out, in);
} else {
switch (out->revision) {
case 1:
case 2:
case 3:
sprom_extract_r123(out, in);
break;
case 4:
case 5:
sprom_extract_r45(out, in);
break;
case 8:
sprom_extract_r8(out, in);
break;
default:
ssb_printk(KERN_WARNING PFX "Unsupported SPROM"
" revision %d detected. Will extract"
" v1\n", out->revision);
out->revision = 1;
sprom_extract_r123(out, in);
}
}
if (out->boardflags_lo == 0xFFFF)
out->boardflags_lo = 0; /* per specs */
if (out->boardflags_hi == 0xFFFF)
out->boardflags_hi = 0; /* per specs */
return 0;
}
static int ssb_pci_sprom_get(struct ssb_bus *bus,
struct ssb_sprom *sprom)
{
const struct ssb_sprom *fallback;
int err = -ENOMEM;
u16 *buf;
if (!ssb_is_sprom_available(bus)) {
ssb_printk(KERN_ERR PFX "No SPROM available!\n");
return -ENODEV;
}
if (bus->chipco.dev) { /* can be unavailible! */
bus->sprom_offset = (bus->chipco.dev->id.revision < 31) ?
SSB_SPROM_BASE1 : SSB_SPROM_BASE31;
} else {
bus->sprom_offset = SSB_SPROM_BASE1;
}
buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
if (!buf)
goto out;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
if (err) {
/* try for a 440 byte SPROM - revision 4 and higher */
kfree(buf);
buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
GFP_KERNEL);
if (!buf)
goto out;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
if (err) {
/* All CRC attempts failed.
* Maybe there is no SPROM on the device?
* If we have a fallback, use that. */
fallback = ssb_get_fallback_sprom();
if (fallback) {
memcpy(sprom, fallback, sizeof(*sprom));
err = 0;
goto out_free;
}
ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
" SPROM CRC (corrupt SPROM)\n");
}
}
err = sprom_extract(bus, sprom, buf, bus->sprom_size);
out_free:
kfree(buf);
out:
return err;
}
static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
struct ssb_boardinfo *bi)
{
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
&bi->vendor);
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
&bi->type);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bi->rev);
}
int ssb_pci_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
int err;
err = ssb_pci_sprom_get(bus, &iv->sprom);
if (err)
goto out;
ssb_pci_get_boardinfo(bus, &iv->boardinfo);
out:
return err;
}
#ifdef CONFIG_SSB_DEBUG
static int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
if (likely(bus->powered_up))
return 0;
printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
"while accessing PCI MMIO space\n");
if (bus->power_warn_count <= 10) {
bus->power_warn_count++;
dump_stack();
}
return -ENODEV;
}
#else /* DEBUG */
static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
return 0;
}
#endif /* DEBUG */
static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFF;
}
return ioread8(bus->mmio + offset);
}
static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFF;
}
return ioread16(bus->mmio + offset);
}
static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFFFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFFFFFF;
}
return ioread32(bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr = bus->mmio + offset;
if (unlikely(ssb_pci_assert_buspower(bus)))
goto error;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
goto error;
}
switch (reg_width) {
case sizeof(u8):
ioread8_rep(addr, buffer, count);
break;
case sizeof(u16):
SSB_WARN_ON(count & 1);
ioread16_rep(addr, buffer, count >> 1);
break;
case sizeof(u32):
SSB_WARN_ON(count & 3);
ioread32_rep(addr, buffer, count >> 2);
break;
default:
SSB_WARN_ON(1);
}
return;
error:
memset(buffer, 0xFF, count);
}
#endif /* CONFIG_SSB_BLOCKIO */
static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite8(value, bus->mmio + offset);
}
static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite16(value, bus->mmio + offset);
}
static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite32(value, bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr = bus->mmio + offset;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
switch (reg_width) {
case sizeof(u8):
iowrite8_rep(addr, buffer, count);
break;
case sizeof(u16):
SSB_WARN_ON(count & 1);
iowrite16_rep(addr, buffer, count >> 1);
break;
case sizeof(u32):
SSB_WARN_ON(count & 3);
iowrite32_rep(addr, buffer, count >> 2);
break;
default:
SSB_WARN_ON(1);
}
}
#endif /* CONFIG_SSB_BLOCKIO */
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pci_ops = {
.read8 = ssb_pci_read8,
.read16 = ssb_pci_read16,
.read32 = ssb_pci_read32,
.write8 = ssb_pci_write8,
.write16 = ssb_pci_write16,
.write32 = ssb_pci_write32,
#ifdef CONFIG_SSB_BLOCKIO
.block_read = ssb_pci_block_read,
.block_write = ssb_pci_block_write,
#endif
};
static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
return -ENODEV;
return ssb_attr_sprom_show(bus, buf, sprom_do_read);
}
static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
return -ENODEV;
return ssb_attr_sprom_store(bus, buf, count,
sprom_check_crc, sprom_do_write);
}
static DEVICE_ATTR(ssb_sprom, 0600,
ssb_pci_attr_sprom_show,
ssb_pci_attr_sprom_store);
void ssb_pci_exit(struct ssb_bus *bus)
{
struct pci_dev *pdev;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
pdev = bus->host_pci;
device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
}
int ssb_pci_init(struct ssb_bus *bus)
{
struct pci_dev *pdev;
int err;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
pdev = bus->host_pci;
mutex_init(&bus->sprom_mutex);
err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
if (err)
goto out;
out:
return err;
}