WSL2-Linux-Kernel/drivers/crypto/atmel-sha.c

2922 строки
72 KiB
C

/*
* Cryptographic API.
*
* Support for ATMEL SHA1/SHA256 HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <nicolas@eukrea.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Some ideas are from omap-sham.c drivers.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <linux/platform_data/crypto-atmel.h>
#include "atmel-sha-regs.h"
#include "atmel-authenc.h"
/* SHA flags */
#define SHA_FLAGS_BUSY BIT(0)
#define SHA_FLAGS_FINAL BIT(1)
#define SHA_FLAGS_DMA_ACTIVE BIT(2)
#define SHA_FLAGS_OUTPUT_READY BIT(3)
#define SHA_FLAGS_INIT BIT(4)
#define SHA_FLAGS_CPU BIT(5)
#define SHA_FLAGS_DMA_READY BIT(6)
#define SHA_FLAGS_DUMP_REG BIT(7)
/* bits[11:8] are reserved. */
#define SHA_FLAGS_FINUP BIT(16)
#define SHA_FLAGS_SG BIT(17)
#define SHA_FLAGS_ERROR BIT(23)
#define SHA_FLAGS_PAD BIT(24)
#define SHA_FLAGS_RESTORE BIT(25)
#define SHA_FLAGS_IDATAR0 BIT(26)
#define SHA_FLAGS_WAIT_DATARDY BIT(27)
#define SHA_OP_INIT 0
#define SHA_OP_UPDATE 1
#define SHA_OP_FINAL 2
#define SHA_OP_DIGEST 3
#define SHA_BUFFER_LEN (PAGE_SIZE / 16)
#define ATMEL_SHA_DMA_THRESHOLD 56
struct atmel_sha_caps {
bool has_dma;
bool has_dualbuff;
bool has_sha224;
bool has_sha_384_512;
bool has_uihv;
bool has_hmac;
};
struct atmel_sha_dev;
/*
* .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
* tested by the ahash_prepare_alg() function.
*/
struct atmel_sha_reqctx {
struct atmel_sha_dev *dd;
unsigned long flags;
unsigned long op;
u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
u64 digcnt[2];
size_t bufcnt;
size_t buflen;
dma_addr_t dma_addr;
/* walk state */
struct scatterlist *sg;
unsigned int offset; /* offset in current sg */
unsigned int total; /* total request */
size_t block_size;
size_t hash_size;
u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
};
typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
struct atmel_sha_ctx {
struct atmel_sha_dev *dd;
atmel_sha_fn_t start;
unsigned long flags;
};
#define ATMEL_SHA_QUEUE_LENGTH 50
struct atmel_sha_dma {
struct dma_chan *chan;
struct dma_slave_config dma_conf;
struct scatterlist *sg;
int nents;
unsigned int last_sg_length;
};
struct atmel_sha_dev {
struct list_head list;
unsigned long phys_base;
struct device *dev;
struct clk *iclk;
int irq;
void __iomem *io_base;
spinlock_t lock;
int err;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
unsigned long flags;
struct crypto_queue queue;
struct ahash_request *req;
bool is_async;
bool force_complete;
atmel_sha_fn_t resume;
atmel_sha_fn_t cpu_transfer_complete;
struct atmel_sha_dma dma_lch_in;
struct atmel_sha_caps caps;
struct scatterlist tmp;
u32 hw_version;
};
struct atmel_sha_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_sha_drv atmel_sha = {
.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
};
#ifdef VERBOSE_DEBUG
static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
{
switch (offset) {
case SHA_CR:
return "CR";
case SHA_MR:
return "MR";
case SHA_IER:
return "IER";
case SHA_IDR:
return "IDR";
case SHA_IMR:
return "IMR";
case SHA_ISR:
return "ISR";
case SHA_MSR:
return "MSR";
case SHA_BCR:
return "BCR";
case SHA_REG_DIN(0):
case SHA_REG_DIN(1):
case SHA_REG_DIN(2):
case SHA_REG_DIN(3):
case SHA_REG_DIN(4):
case SHA_REG_DIN(5):
case SHA_REG_DIN(6):
case SHA_REG_DIN(7):
case SHA_REG_DIN(8):
case SHA_REG_DIN(9):
case SHA_REG_DIN(10):
case SHA_REG_DIN(11):
case SHA_REG_DIN(12):
case SHA_REG_DIN(13):
case SHA_REG_DIN(14):
case SHA_REG_DIN(15):
snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
break;
case SHA_REG_DIGEST(0):
case SHA_REG_DIGEST(1):
case SHA_REG_DIGEST(2):
case SHA_REG_DIGEST(3):
case SHA_REG_DIGEST(4):
case SHA_REG_DIGEST(5):
case SHA_REG_DIGEST(6):
case SHA_REG_DIGEST(7):
case SHA_REG_DIGEST(8):
case SHA_REG_DIGEST(9):
case SHA_REG_DIGEST(10):
case SHA_REG_DIGEST(11):
case SHA_REG_DIGEST(12):
case SHA_REG_DIGEST(13):
case SHA_REG_DIGEST(14):
case SHA_REG_DIGEST(15):
if (wr)
snprintf(tmp, sz, "IDATAR[%u]",
16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
else
snprintf(tmp, sz, "ODATAR[%u]",
(offset - SHA_REG_DIGEST(0)) >> 2);
break;
case SHA_HW_VERSION:
return "HWVER";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
{
u32 value = readl_relaxed(dd->io_base + offset);
#ifdef VERBOSE_DEBUG
if (dd->flags & SHA_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
}
#endif /* VERBOSE_DEBUG */
return value;
}
static inline void atmel_sha_write(struct atmel_sha_dev *dd,
u32 offset, u32 value)
{
#ifdef VERBOSE_DEBUG
if (dd->flags & SHA_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
}
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, dd->io_base + offset);
}
static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
{
struct ahash_request *req = dd->req;
dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
SHA_FLAGS_DUMP_REG);
clk_disable(dd->iclk);
if ((dd->is_async || dd->force_complete) && req->base.complete)
req->base.complete(&req->base, err);
/* handle new request */
tasklet_schedule(&dd->queue_task);
return err;
}
static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
{
size_t count;
while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
count = min(ctx->sg->length - ctx->offset, ctx->total);
count = min(count, ctx->buflen - ctx->bufcnt);
if (count <= 0) {
/*
* Check if count <= 0 because the buffer is full or
* because the sg length is 0. In the latest case,
* check if there is another sg in the list, a 0 length
* sg doesn't necessarily mean the end of the sg list.
*/
if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
ctx->sg = sg_next(ctx->sg);
continue;
} else {
break;
}
}
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
ctx->offset, count, 0);
ctx->bufcnt += count;
ctx->offset += count;
ctx->total -= count;
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
else
ctx->total = 0;
}
}
return 0;
}
/*
* The purpose of this padding is to ensure that the padded message is a
* multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
* The bit "1" is appended at the end of the message followed by
* "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
* 128 bits block (SHA384/SHA512) equals to the message length in bits
* is appended.
*
* For SHA1/SHA224/SHA256, padlen is calculated as followed:
* - if message length < 56 bytes then padlen = 56 - message length
* - else padlen = 64 + 56 - message length
*
* For SHA384/SHA512, padlen is calculated as followed:
* - if message length < 112 bytes then padlen = 112 - message length
* - else padlen = 128 + 112 - message length
*/
static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
{
unsigned int index, padlen;
u64 bits[2];
u64 size[2];
size[0] = ctx->digcnt[0];
size[1] = ctx->digcnt[1];
size[0] += ctx->bufcnt;
if (size[0] < ctx->bufcnt)
size[1]++;
size[0] += length;
if (size[0] < length)
size[1]++;
bits[1] = cpu_to_be64(size[0] << 3);
bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
index = ctx->bufcnt & 0x7f;
padlen = (index < 112) ? (112 - index) : ((128+112) - index);
*(ctx->buffer + ctx->bufcnt) = 0x80;
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
ctx->bufcnt += padlen + 16;
ctx->flags |= SHA_FLAGS_PAD;
break;
default:
index = ctx->bufcnt & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
*(ctx->buffer + ctx->bufcnt) = 0x80;
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
ctx->bufcnt += padlen + 8;
ctx->flags |= SHA_FLAGS_PAD;
break;
}
}
static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
{
struct atmel_sha_dev *dd = NULL;
struct atmel_sha_dev *tmp;
spin_lock_bh(&atmel_sha.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&atmel_sha.lock);
return dd;
}
static int atmel_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
ctx->dd = dd;
ctx->flags = 0;
dev_dbg(dd->dev, "init: digest size: %d\n",
crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA1;
ctx->block_size = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA224;
ctx->block_size = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA256;
ctx->block_size = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA384;
ctx->block_size = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA512;
ctx->block_size = SHA512_BLOCK_SIZE;
break;
default:
return -EINVAL;
break;
}
ctx->bufcnt = 0;
ctx->digcnt[0] = 0;
ctx->digcnt[1] = 0;
ctx->buflen = SHA_BUFFER_LEN;
return 0;
}
static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
u32 valmr = SHA_MR_MODE_AUTO;
unsigned int i, hashsize = 0;
if (likely(dma)) {
if (!dd->caps.has_dma)
atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
valmr = SHA_MR_MODE_PDC;
if (dd->caps.has_dualbuff)
valmr |= SHA_MR_DUALBUFF;
} else {
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
valmr |= SHA_MR_ALGO_SHA1;
hashsize = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
valmr |= SHA_MR_ALGO_SHA224;
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
valmr |= SHA_MR_ALGO_SHA256;
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
valmr |= SHA_MR_ALGO_SHA384;
hashsize = SHA512_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
valmr |= SHA_MR_ALGO_SHA512;
hashsize = SHA512_DIGEST_SIZE;
break;
default:
break;
}
/* Setting CR_FIRST only for the first iteration */
if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
const u32 *hash = (const u32 *)ctx->digest;
/*
* Restore the hardware context: update the User Initialize
* Hash Value (UIHV) with the value saved when the latest
* 'update' operation completed on this very same crypto
* request.
*/
ctx->flags &= ~SHA_FLAGS_RESTORE;
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < hashsize / sizeof(u32); ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
valmr |= SHA_MR_UIHV;
}
/*
* WARNING: If the UIHV feature is not available, the hardware CANNOT
* process concurrent requests: the internal registers used to store
* the hash/digest are still set to the partial digest output values
* computed during the latest round.
*/
atmel_sha_write(dd, SHA_MR, valmr);
}
static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume)
{
u32 isr = atmel_sha_read(dd, SHA_ISR);
if (unlikely(isr & SHA_INT_DATARDY))
return resume(dd);
dd->resume = resume;
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
return -EINPROGRESS;
}
static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
size_t length, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int count, len32;
const u32 *buffer = (const u32 *)buf;
dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length, final);
atmel_sha_write_ctrl(dd, 0);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length;
if (ctx->digcnt[0] < length)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
len32 = DIV_ROUND_UP(length, sizeof(u32));
dd->flags |= SHA_FLAGS_CPU;
for (count = 0; count < len32; count++)
atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
return -EINPROGRESS;
}
static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int len32;
dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length1, final);
len32 = DIV_ROUND_UP(length1, sizeof(u32));
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
atmel_sha_write(dd, SHA_TPR, dma_addr1);
atmel_sha_write(dd, SHA_TCR, len32);
len32 = DIV_ROUND_UP(length2, sizeof(u32));
atmel_sha_write(dd, SHA_TNPR, dma_addr2);
atmel_sha_write(dd, SHA_TNCR, len32);
atmel_sha_write_ctrl(dd, 1);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length1;
if (ctx->digcnt[0] < length1)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
/* Start DMA transfer */
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
return -EINPROGRESS;
}
static void atmel_sha_dma_callback(void *data)
{
struct atmel_sha_dev *dd = data;
dd->is_async = true;
/* dma_lch_in - completed - wait DATRDY */
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}
static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
struct dma_async_tx_descriptor *in_desc;
struct scatterlist sg[2];
dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length1, final);
dd->dma_lch_in.dma_conf.src_maxburst = 16;
dd->dma_lch_in.dma_conf.dst_maxburst = 16;
dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
if (length2) {
sg_init_table(sg, 2);
sg_dma_address(&sg[0]) = dma_addr1;
sg_dma_len(&sg[0]) = length1;
sg_dma_address(&sg[1]) = dma_addr2;
sg_dma_len(&sg[1]) = length2;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
} else {
sg_init_table(sg, 1);
sg_dma_address(&sg[0]) = dma_addr1;
sg_dma_len(&sg[0]) = length1;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (!in_desc)
return atmel_sha_complete(dd, -EINVAL);
in_desc->callback = atmel_sha_dma_callback;
in_desc->callback_param = dd;
atmel_sha_write_ctrl(dd, 1);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length1;
if (ctx->digcnt[0] < length1)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
/* Start DMA transfer */
dmaengine_submit(in_desc);
dma_async_issue_pending(dd->dma_lch_in.chan);
return -EINPROGRESS;
}
static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
if (dd->caps.has_dma)
return atmel_sha_xmit_dma(dd, dma_addr1, length1,
dma_addr2, length2, final);
else
return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
dma_addr2, length2, final);
}
static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int bufcnt;
atmel_sha_append_sg(ctx);
atmel_sha_fill_padding(ctx, 0);
bufcnt = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
}
static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
struct atmel_sha_reqctx *ctx,
size_t length, int final)
{
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
ctx->block_size);
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags &= ~SHA_FLAGS_SG;
/* next call does not fail... so no unmap in the case of error */
return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
}
static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int final;
size_t count;
atmel_sha_append_sg(ctx);
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
if (final)
atmel_sha_fill_padding(ctx, 0);
if (final || (ctx->bufcnt == ctx->buflen)) {
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_dma_map(dd, ctx, count, final);
}
return 0;
}
static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int length, final, tail;
struct scatterlist *sg;
unsigned int count;
if (!ctx->total)
return 0;
if (ctx->bufcnt || ctx->offset)
return atmel_sha_update_dma_slow(dd);
dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
sg = ctx->sg;
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return atmel_sha_update_dma_slow(dd);
if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
/* size is not ctx->block_size aligned */
return atmel_sha_update_dma_slow(dd);
length = min(ctx->total, sg->length);
if (sg_is_last(sg)) {
if (!(ctx->flags & SHA_FLAGS_FINUP)) {
/* not last sg must be ctx->block_size aligned */
tail = length & (ctx->block_size - 1);
length -= tail;
}
}
ctx->total -= length;
ctx->offset = length; /* offset where to start slow */
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
/* Add padding */
if (final) {
tail = length & (ctx->block_size - 1);
length -= tail;
ctx->total += tail;
ctx->offset = length; /* offset where to start slow */
sg = ctx->sg;
atmel_sha_append_sg(ctx);
atmel_sha_fill_padding(ctx, length);
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zu bytes error\n",
ctx->buflen + ctx->block_size);
return atmel_sha_complete(dd, -EINVAL);
}
if (length == 0) {
ctx->flags &= ~SHA_FLAGS_SG;
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
0, final);
} else {
ctx->sg = sg;
if (!dma_map_sg(dd->dev, ctx->sg, 1,
DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags |= SHA_FLAGS_SG;
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
length, ctx->dma_addr, count, final);
}
}
if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags |= SHA_FLAGS_SG;
/* next call does not fail... so no unmap in the case of error */
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
0, final);
}
static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
if (ctx->flags & SHA_FLAGS_SG) {
dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
if (ctx->sg->length == ctx->offset) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
}
if (ctx->flags & SHA_FLAGS_PAD) {
dma_unmap_single(dd->dev, ctx->dma_addr,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
}
} else {
dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
ctx->block_size, DMA_TO_DEVICE);
}
return 0;
}
static int atmel_sha_update_req(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
if (ctx->flags & SHA_FLAGS_CPU)
err = atmel_sha_update_cpu(dd);
else
err = atmel_sha_update_dma_start(dd);
/* wait for dma completion before can take more data */
dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
err, ctx->digcnt[1], ctx->digcnt[0]);
return err;
}
static int atmel_sha_final_req(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err = 0;
int count;
if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
atmel_sha_fill_padding(ctx, 0);
count = ctx->bufcnt;
ctx->bufcnt = 0;
err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
}
/* faster to handle last block with cpu */
else {
atmel_sha_fill_padding(ctx, 0);
count = ctx->bufcnt;
ctx->bufcnt = 0;
err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
}
dev_dbg(dd->dev, "final_req: err: %d\n", err);
return err;
}
static void atmel_sha_copy_hash(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
u32 *hash = (u32 *)ctx->digest;
unsigned int i, hashsize;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
hashsize = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
case SHA_FLAGS_SHA256:
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
hashsize = SHA512_DIGEST_SIZE;
break;
default:
/* Should not happen... */
return;
}
for (i = 0; i < hashsize / sizeof(u32); ++i)
hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
ctx->flags |= SHA_FLAGS_RESTORE;
}
static void atmel_sha_copy_ready_hash(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->result)
return;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
default:
case SHA_FLAGS_SHA1:
memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA224:
memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA256:
memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA384:
memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA512:
memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
break;
}
}
static int atmel_sha_finish(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = ctx->dd;
if (ctx->digcnt[0] || ctx->digcnt[1])
atmel_sha_copy_ready_hash(req);
dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
ctx->digcnt[0], ctx->bufcnt);
return 0;
}
static void atmel_sha_finish_req(struct ahash_request *req, int err)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = ctx->dd;
if (!err) {
atmel_sha_copy_hash(req);
if (SHA_FLAGS_FINAL & dd->flags)
err = atmel_sha_finish(req);
} else {
ctx->flags |= SHA_FLAGS_ERROR;
}
/* atomic operation is not needed here */
(void)atmel_sha_complete(dd, err);
}
static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
{
int err;
err = clk_enable(dd->iclk);
if (err)
return err;
if (!(SHA_FLAGS_INIT & dd->flags)) {
atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
dd->flags |= SHA_FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
{
return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
}
static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
{
atmel_sha_hw_init(dd);
dd->hw_version = atmel_sha_get_version(dd);
dev_info(dd->dev,
"version: 0x%x\n", dd->hw_version);
clk_disable(dd->iclk);
}
static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct atmel_sha_ctx *ctx;
unsigned long flags;
bool start_async;
int err = 0, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->queue, req);
if (SHA_FLAGS_BUSY & dd->flags) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= SHA_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(async_req->tfm);
dd->req = ahash_request_cast(async_req);
start_async = (dd->req != req);
dd->is_async = start_async;
dd->force_complete = false;
/* WARNING: ctx->start() MAY change dd->is_async. */
err = ctx->start(dd);
return (start_async) ? ret : err;
}
static int atmel_sha_done(struct atmel_sha_dev *dd);
static int atmel_sha_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
ctx->op, req->nbytes);
err = atmel_sha_hw_init(dd);
if (err)
return atmel_sha_complete(dd, err);
/*
* atmel_sha_update_req() and atmel_sha_final_req() can return either:
* -EINPROGRESS: the hardware is busy and the SHA driver will resume
* its job later in the done_task.
* This is the main path.
*
* 0: the SHA driver can continue its job then release the hardware
* later, if needed, with atmel_sha_finish_req().
* This is the alternate path.
*
* < 0: an error has occurred so atmel_sha_complete(dd, err) has already
* been called, hence the hardware has been released.
* The SHA driver must stop its job without calling
* atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
* called a second time.
*
* Please note that currently, atmel_sha_final_req() never returns 0.
*/
dd->resume = atmel_sha_done;
if (ctx->op == SHA_OP_UPDATE) {
err = atmel_sha_update_req(dd);
if (!err && (ctx->flags & SHA_FLAGS_FINUP))
/* no final() after finup() */
err = atmel_sha_final_req(dd);
} else if (ctx->op == SHA_OP_FINAL) {
err = atmel_sha_final_req(dd);
}
if (!err)
/* done_task will not finish it, so do it here */
atmel_sha_finish_req(req, err);
dev_dbg(dd->dev, "exit, err: %d\n", err);
return err;
}
static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct atmel_sha_dev *dd = tctx->dd;
ctx->op = op;
return atmel_sha_handle_queue(dd, req);
}
static int atmel_sha_update(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->nbytes)
return 0;
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->offset = 0;
if (ctx->flags & SHA_FLAGS_FINUP) {
if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
/* faster to use CPU for short transfers */
ctx->flags |= SHA_FLAGS_CPU;
} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
atmel_sha_append_sg(ctx);
return 0;
}
return atmel_sha_enqueue(req, SHA_OP_UPDATE);
}
static int atmel_sha_final(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
ctx->flags |= SHA_FLAGS_FINUP;
if (ctx->flags & SHA_FLAGS_ERROR)
return 0; /* uncompleted hash is not needed */
if (ctx->flags & SHA_FLAGS_PAD)
/* copy ready hash (+ finalize hmac) */
return atmel_sha_finish(req);
return atmel_sha_enqueue(req, SHA_OP_FINAL);
}
static int atmel_sha_finup(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= SHA_FLAGS_FINUP;
err1 = atmel_sha_update(req);
if (err1 == -EINPROGRESS ||
(err1 == -EBUSY && (ahash_request_flags(req) &
CRYPTO_TFM_REQ_MAY_BACKLOG)))
return err1;
/*
* final() has to be always called to cleanup resources
* even if udpate() failed, except EINPROGRESS
*/
err2 = atmel_sha_final(req);
return err1 ?: err2;
}
static int atmel_sha_digest(struct ahash_request *req)
{
return atmel_sha_init(req) ?: atmel_sha_finup(req);
}
static int atmel_sha_export(struct ahash_request *req, void *out)
{
const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(out, ctx, sizeof(*ctx));
return 0;
}
static int atmel_sha_import(struct ahash_request *req, const void *in)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(ctx, in, sizeof(*ctx));
return 0;
}
static int atmel_sha_cra_init(struct crypto_tfm *tfm)
{
struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct atmel_sha_reqctx));
ctx->start = atmel_sha_start;
return 0;
}
static struct ahash_alg sha_1_256_algs[] = {
{
.init = atmel_sha_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.finup = atmel_sha_finup,
.digest = atmel_sha_digest,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "sha1",
.cra_driver_name = "atmel-sha1",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_cra_init,
}
}
},
{
.init = atmel_sha_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.finup = atmel_sha_finup,
.digest = atmel_sha_digest,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "sha256",
.cra_driver_name = "atmel-sha256",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_cra_init,
}
}
},
};
static struct ahash_alg sha_224_alg = {
.init = atmel_sha_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.finup = atmel_sha_finup,
.digest = atmel_sha_digest,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "sha224",
.cra_driver_name = "atmel-sha224",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_cra_init,
}
}
};
static struct ahash_alg sha_384_512_algs[] = {
{
.init = atmel_sha_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.finup = atmel_sha_finup,
.digest = atmel_sha_digest,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "sha384",
.cra_driver_name = "atmel-sha384",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_ctx),
.cra_alignmask = 0x3,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_cra_init,
}
}
},
{
.init = atmel_sha_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.finup = atmel_sha_finup,
.digest = atmel_sha_digest,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "sha512",
.cra_driver_name = "atmel-sha512",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_ctx),
.cra_alignmask = 0x3,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_cra_init,
}
}
},
};
static void atmel_sha_queue_task(unsigned long data)
{
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
atmel_sha_handle_queue(dd, NULL);
}
static int atmel_sha_done(struct atmel_sha_dev *dd)
{
int err = 0;
if (SHA_FLAGS_CPU & dd->flags) {
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
goto finish;
}
} else if (SHA_FLAGS_DMA_READY & dd->flags) {
if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
atmel_sha_update_dma_stop(dd);
if (dd->err) {
err = dd->err;
goto finish;
}
}
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
/* hash or semi-hash ready */
dd->flags &= ~(SHA_FLAGS_DMA_READY |
SHA_FLAGS_OUTPUT_READY);
err = atmel_sha_update_dma_start(dd);
if (err != -EINPROGRESS)
goto finish;
}
}
return err;
finish:
/* finish curent request */
atmel_sha_finish_req(dd->req, err);
return err;
}
static void atmel_sha_done_task(unsigned long data)
{
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
dd->is_async = true;
(void)dd->resume(dd);
}
static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
{
struct atmel_sha_dev *sha_dd = dev_id;
u32 reg;
reg = atmel_sha_read(sha_dd, SHA_ISR);
if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
atmel_sha_write(sha_dd, SHA_IDR, reg);
if (SHA_FLAGS_BUSY & sha_dd->flags) {
sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
if (!(SHA_FLAGS_CPU & sha_dd->flags))
sha_dd->flags |= SHA_FLAGS_DMA_READY;
tasklet_schedule(&sha_dd->done_task);
} else {
dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* DMA transfer functions */
static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
struct scatterlist *sg,
size_t len)
{
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
int nents;
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return false;
/*
* This is the last sg, the only one that is allowed to
* have an unaligned length.
*/
if (len <= sg->length) {
dma->nents = nents + 1;
dma->last_sg_length = sg->length;
sg->length = ALIGN(len, sizeof(u32));
return true;
}
/* All other sg lengths MUST be aligned to the block size. */
if (!IS_ALIGNED(sg->length, bs))
return false;
len -= sg->length;
}
return false;
}
static void atmel_sha_dma_callback2(void *data)
{
struct atmel_sha_dev *dd = data;
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct scatterlist *sg;
int nents;
dmaengine_terminate_all(dma->chan);
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
sg = dma->sg;
for (nents = 0; nents < dma->nents - 1; ++nents)
sg = sg_next(sg);
sg->length = dma->last_sg_length;
dd->is_async = true;
(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
}
static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
struct scatterlist *src,
size_t len,
atmel_sha_fn_t resume)
{
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct dma_slave_config *config = &dma->dma_conf;
struct dma_chan *chan = dma->chan;
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
unsigned int sg_len;
int err;
dd->resume = resume;
/*
* dma->nents has already been initialized by
* atmel_sha_dma_check_aligned().
*/
dma->sg = src;
sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
if (!sg_len) {
err = -ENOMEM;
goto exit;
}
config->src_maxburst = 16;
config->dst_maxburst = 16;
err = dmaengine_slave_config(chan, config);
if (err)
goto unmap_sg;
desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
err = -ENOMEM;
goto unmap_sg;
}
desc->callback = atmel_sha_dma_callback2;
desc->callback_param = dd;
cookie = dmaengine_submit(desc);
err = dma_submit_error(cookie);
if (err)
goto unmap_sg;
dma_async_issue_pending(chan);
return -EINPROGRESS;
unmap_sg:
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
exit:
return atmel_sha_complete(dd, err);
}
/* CPU transfer functions */
static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
const u32 *words = (const u32 *)ctx->buffer;
size_t i, num_words;
u32 isr, din, din_inc;
din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
for (;;) {
/* Write data into the Input Data Registers. */
num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
ctx->offset += ctx->bufcnt;
ctx->total -= ctx->bufcnt;
if (!ctx->total)
break;
/*
* Prepare next block:
* Fill ctx->buffer now with the next data to be written into
* IDATARx: it gives time for the SHA hardware to process
* the current data so the SHA_INT_DATARDY flag might be set
* in SHA_ISR when polling this register at the beginning of
* the next loop.
*/
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
ctx->offset, ctx->bufcnt, 0);
/* Wait for hardware to be ready again. */
isr = atmel_sha_read(dd, SHA_ISR);
if (!(isr & SHA_INT_DATARDY)) {
/* Not ready yet. */
dd->resume = atmel_sha_cpu_transfer;
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
return -EINPROGRESS;
}
}
if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
return dd->cpu_transfer_complete(dd);
return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
}
static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
struct scatterlist *sg,
unsigned int len,
bool idatar0_only,
bool wait_data_ready,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!len)
return resume(dd);
ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
if (idatar0_only)
ctx->flags |= SHA_FLAGS_IDATAR0;
if (wait_data_ready)
ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
ctx->sg = sg;
ctx->total = len;
ctx->offset = 0;
/* Prepare the first block to be written. */
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
ctx->offset, ctx->bufcnt, 0);
dd->cpu_transfer_complete = resume;
return atmel_sha_cpu_transfer(dd);
}
static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
const void *data, unsigned int datalen,
bool auto_padding,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
u32 msglen = (auto_padding) ? datalen : 0;
u32 mr = SHA_MR_MODE_AUTO;
if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
return atmel_sha_complete(dd, -EINVAL);
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, msglen);
atmel_sha_write(dd, SHA_BCR, msglen);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
sg_init_one(&dd->tmp, data, datalen);
return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
}
/* hmac functions */
struct atmel_sha_hmac_key {
bool valid;
unsigned int keylen;
u8 buffer[SHA512_BLOCK_SIZE];
u8 *keydup;
};
static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
{
memset(hkey, 0, sizeof(*hkey));
}
static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
{
kfree(hkey->keydup);
memset(hkey, 0, sizeof(*hkey));
}
static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
const u8 *key,
unsigned int keylen)
{
atmel_sha_hmac_key_release(hkey);
if (keylen > sizeof(hkey->buffer)) {
hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
if (!hkey->keydup)
return -ENOMEM;
} else {
memcpy(hkey->buffer, key, keylen);
}
hkey->valid = true;
hkey->keylen = keylen;
return 0;
}
static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
const u8 **key,
unsigned int *keylen)
{
if (!hkey->valid)
return false;
*keylen = hkey->keylen;
*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
return true;
}
struct atmel_sha_hmac_ctx {
struct atmel_sha_ctx base;
struct atmel_sha_hmac_key hkey;
u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
atmel_sha_fn_t resume;
};
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume);
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
const u8 *key, unsigned int keylen);
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
unsigned int keylen;
const u8 *key;
size_t bs;
hmac->resume = resume;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
ctx->block_size = SHA1_BLOCK_SIZE;
ctx->hash_size = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
ctx->block_size = SHA224_BLOCK_SIZE;
ctx->hash_size = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
ctx->block_size = SHA256_BLOCK_SIZE;
ctx->hash_size = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
ctx->block_size = SHA384_BLOCK_SIZE;
ctx->hash_size = SHA512_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
ctx->block_size = SHA512_BLOCK_SIZE;
ctx->hash_size = SHA512_DIGEST_SIZE;
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
bs = ctx->block_size;
if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
return resume(dd);
/* Compute K' from K. */
if (unlikely(keylen > bs))
return atmel_sha_hmac_prehash_key(dd, key, keylen);
/* Prepare ipad. */
memcpy((u8 *)hmac->ipad, key, keylen);
memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
return atmel_sha_hmac_compute_ipad_hash(dd);
}
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
const u8 *key, unsigned int keylen)
{
return atmel_sha_cpu_hash(dd, key, keylen, true,
atmel_sha_hmac_prehash_key_done);
}
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t ds = crypto_ahash_digestsize(tfm);
size_t bs = ctx->block_size;
size_t i, num_words = ds / sizeof(u32);
/* Prepare ipad. */
for (i = 0; i < num_words; ++i)
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
memset((u8 *)hmac->ipad + ds, 0, bs - ds);
return atmel_sha_hmac_compute_ipad_hash(dd);
}
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
size_t i, num_words = bs / sizeof(u32);
memcpy(hmac->opad, hmac->ipad, bs);
for (i = 0; i < num_words; ++i) {
hmac->ipad[i] ^= 0x36363636;
hmac->opad[i] ^= 0x5c5c5c5c;
}
return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
atmel_sha_hmac_compute_opad_hash);
}
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
atmel_sha_hmac_setup_done);
}
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
atmel_sha_hmac_key_release(&hmac->hkey);
return hmac->resume(dd);
}
static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
err = atmel_sha_hw_init(dd);
if (err)
return atmel_sha_complete(dd, err);
switch (ctx->op) {
case SHA_OP_INIT:
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
break;
case SHA_OP_UPDATE:
dd->resume = atmel_sha_done;
err = atmel_sha_update_req(dd);
break;
case SHA_OP_FINAL:
dd->resume = atmel_sha_hmac_final;
err = atmel_sha_final_req(dd);
break;
case SHA_OP_DIGEST:
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
return err;
}
static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return 0;
}
static int atmel_sha_hmac_init(struct ahash_request *req)
{
int err;
err = atmel_sha_init(req);
if (err)
return err;
return atmel_sha_enqueue(req, SHA_OP_INIT);
}
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
ctx->bufcnt = 0;
ctx->digcnt[0] = bs;
ctx->digcnt[1] = 0;
ctx->flags |= SHA_FLAGS_RESTORE;
memcpy(ctx->digest, hmac->ipad, hs);
return atmel_sha_complete(dd, 0);
}
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
u32 *digest = (u32 *)ctx->digest;
size_t ds = crypto_ahash_digestsize(tfm);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
size_t i, num_words;
u32 mr;
/* Save d = SHA((K' + ipad) | msg). */
num_words = ds / sizeof(u32);
for (i = 0; i < num_words; ++i)
digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
/* Restore context to finish computing SHA((K' + opad) | d). */
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, bs + ds);
atmel_sha_write(dd, SHA_BCR, ds);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
sg_init_one(&dd->tmp, digest, ds);
return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
atmel_sha_hmac_final_done);
}
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
{
/*
* req->result might not be sizeof(u32) aligned, so copy the
* digest into ctx->digest[] before memcpy() the data into
* req->result.
*/
atmel_sha_copy_hash(dd->req);
atmel_sha_copy_ready_hash(dd->req);
return atmel_sha_complete(dd, 0);
}
static int atmel_sha_hmac_digest(struct ahash_request *req)
{
int err;
err = atmel_sha_init(req);
if (err)
return err;
return atmel_sha_enqueue(req, SHA_OP_DIGEST);
}
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
bool use_dma = false;
u32 mr;
/* Special case for empty message. */
if (!req->nbytes)
return atmel_sha_complete(dd, -EINVAL); // TODO:
/* Check DMA threshold and alignment. */
if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
use_dma = true;
/* Write both initial hash values to compute a HMAC. */
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
/* Write the Mode, Message Size, Bytes Count then Control Registers. */
mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
if (use_dma)
mr |= SHA_MR_MODE_IDATAR0;
else
mr |= SHA_MR_MODE_AUTO;
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, req->nbytes);
atmel_sha_write(dd, SHA_BCR, req->nbytes);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
/* Process data. */
if (use_dma)
return atmel_sha_dma_start(dd, req->src, req->nbytes,
atmel_sha_hmac_final_done);
return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
atmel_sha_hmac_final_done);
}
static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
{
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct atmel_sha_reqctx));
hmac->base.start = atmel_sha_hmac_start;
atmel_sha_hmac_key_init(&hmac->hkey);
return 0;
}
static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
atmel_sha_hmac_key_release(&hmac->hkey);
}
static struct ahash_alg sha_hmac_algs[] = {
{
.init = atmel_sha_hmac_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.digest = atmel_sha_hmac_digest,
.setkey = atmel_sha_hmac_setkey,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "atmel-hmac-sha1",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_hmac_cra_init,
.cra_exit = atmel_sha_hmac_cra_exit,
}
}
},
{
.init = atmel_sha_hmac_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.digest = atmel_sha_hmac_digest,
.setkey = atmel_sha_hmac_setkey,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "atmel-hmac-sha224",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_hmac_cra_init,
.cra_exit = atmel_sha_hmac_cra_exit,
}
}
},
{
.init = atmel_sha_hmac_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.digest = atmel_sha_hmac_digest,
.setkey = atmel_sha_hmac_setkey,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "atmel-hmac-sha256",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_hmac_cra_init,
.cra_exit = atmel_sha_hmac_cra_exit,
}
}
},
{
.init = atmel_sha_hmac_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.digest = atmel_sha_hmac_digest,
.setkey = atmel_sha_hmac_setkey,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "atmel-hmac-sha384",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_hmac_cra_init,
.cra_exit = atmel_sha_hmac_cra_exit,
}
}
},
{
.init = atmel_sha_hmac_init,
.update = atmel_sha_update,
.final = atmel_sha_final,
.digest = atmel_sha_hmac_digest,
.setkey = atmel_sha_hmac_setkey,
.export = atmel_sha_export,
.import = atmel_sha_import,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct atmel_sha_reqctx),
.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "atmel-hmac-sha512",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = atmel_sha_hmac_cra_init,
.cra_exit = atmel_sha_hmac_cra_exit,
}
}
},
};
#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
/* authenc functions */
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
struct atmel_sha_authenc_ctx {
struct crypto_ahash *tfm;
};
struct atmel_sha_authenc_reqctx {
struct atmel_sha_reqctx base;
atmel_aes_authenc_fn_t cb;
struct atmel_aes_dev *aes_dev;
/* _init() parameters. */
struct scatterlist *assoc;
u32 assoclen;
u32 textlen;
/* _final() parameters. */
u32 *digest;
unsigned int digestlen;
};
static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
int err)
{
struct ahash_request *req = areq->data;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
}
static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
int err;
/*
* Force atmel_sha_complete() to call req->base.complete(), ie
* atmel_sha_authenc_complete(), which in turn calls authctx->cb().
*/
dd->force_complete = true;
err = atmel_sha_hw_init(dd);
return authctx->cb(authctx->aes_dev, err, dd->is_async);
}
bool atmel_sha_authenc_is_ready(void)
{
struct atmel_sha_ctx dummy;
dummy.dd = NULL;
return (atmel_sha_find_dev(&dummy) != NULL);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
unsigned int atmel_sha_authenc_get_reqsize(void)
{
return sizeof(struct atmel_sha_authenc_reqctx);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
{
struct atmel_sha_authenc_ctx *auth;
struct crypto_ahash *tfm;
struct atmel_sha_ctx *tctx;
const char *name;
int err = -EINVAL;
switch (mode & SHA_FLAGS_MODE_MASK) {
case SHA_FLAGS_HMAC_SHA1:
name = "atmel-hmac-sha1";
break;
case SHA_FLAGS_HMAC_SHA224:
name = "atmel-hmac-sha224";
break;
case SHA_FLAGS_HMAC_SHA256:
name = "atmel-hmac-sha256";
break;
case SHA_FLAGS_HMAC_SHA384:
name = "atmel-hmac-sha384";
break;
case SHA_FLAGS_HMAC_SHA512:
name = "atmel-hmac-sha512";
break;
default:
goto error;
}
tfm = crypto_alloc_ahash(name,
CRYPTO_ALG_TYPE_AHASH,
CRYPTO_ALG_TYPE_AHASH_MASK);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
goto error;
}
tctx = crypto_ahash_ctx(tfm);
tctx->start = atmel_sha_authenc_start;
tctx->flags = mode;
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
if (!auth) {
err = -ENOMEM;
goto err_free_ahash;
}
auth->tfm = tfm;
return auth;
err_free_ahash:
crypto_free_ahash(tfm);
error:
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
{
if (auth)
crypto_free_ahash(auth->tfm);
kfree(auth);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
const u8 *key, unsigned int keylen,
u32 *flags)
{
struct crypto_ahash *tfm = auth->tfm;
int err;
crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
err = crypto_ahash_setkey(tfm, key, keylen);
*flags = crypto_ahash_get_flags(tfm);
return err;
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
int atmel_sha_authenc_schedule(struct ahash_request *req,
struct atmel_sha_authenc_ctx *auth,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = auth->tfm;
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct atmel_sha_dev *dd;
/* Reset request context (MUST be done first). */
memset(authctx, 0, sizeof(*authctx));
/* Get SHA device. */
dd = atmel_sha_find_dev(tctx);
if (!dd)
return cb(aes_dev, -ENODEV, false);
/* Init request context. */
ctx->dd = dd;
ctx->buflen = SHA_BUFFER_LEN;
authctx->cb = cb;
authctx->aes_dev = aes_dev;
ahash_request_set_tfm(req, tfm);
ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
return atmel_sha_handle_queue(dd, req);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
int atmel_sha_authenc_init(struct ahash_request *req,
struct scatterlist *assoc, unsigned int assoclen,
unsigned int textlen,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_dev *dd = ctx->dd;
if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
return atmel_sha_complete(dd, -EINVAL);
authctx->cb = cb;
authctx->aes_dev = aes_dev;
authctx->assoc = assoc;
authctx->assoclen = assoclen;
authctx->textlen = textlen;
ctx->flags = hmac->base.flags;
return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
u32 mr, msg_size;
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
mr = (SHA_MR_MODE_IDATAR0 |
SHA_MR_HMAC |
SHA_MR_DUALBUFF);
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
atmel_sha_write(dd, SHA_MR, mr);
msg_size = authctx->assoclen + authctx->textlen;
atmel_sha_write(dd, SHA_MSR, msg_size);
atmel_sha_write(dd, SHA_BCR, msg_size);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
/* Process assoc data. */
return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
true, false,
atmel_sha_authenc_init_done);
}
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
return authctx->cb(authctx->aes_dev, 0, dd->is_async);
}
int atmel_sha_authenc_final(struct ahash_request *req,
u32 *digest, unsigned int digestlen,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct atmel_sha_dev *dd = ctx->dd;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
authctx->digestlen = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
authctx->digestlen = SHA224_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
authctx->digestlen = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
authctx->digestlen = SHA384_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
authctx->digestlen = SHA512_DIGEST_SIZE;
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
if (authctx->digestlen > digestlen)
authctx->digestlen = digestlen;
authctx->cb = cb;
authctx->aes_dev = aes_dev;
authctx->digest = digest;
return atmel_sha_wait_for_data_ready(dd,
atmel_sha_authenc_final_done);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
size_t i, num_words = authctx->digestlen / sizeof(u32);
for (i = 0; i < num_words; ++i)
authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
return atmel_sha_complete(dd, 0);
}
void atmel_sha_authenc_abort(struct ahash_request *req)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct atmel_sha_dev *dd = ctx->dd;
/* Prevent atmel_sha_complete() from calling req->base.complete(). */
dd->is_async = false;
dd->force_complete = false;
(void)atmel_sha_complete(dd, 0);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
{
int i;
if (dd->caps.has_hmac)
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
crypto_unregister_ahash(&sha_hmac_algs[i]);
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
crypto_unregister_ahash(&sha_1_256_algs[i]);
if (dd->caps.has_sha224)
crypto_unregister_ahash(&sha_224_alg);
if (dd->caps.has_sha_384_512) {
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
crypto_unregister_ahash(&sha_384_512_algs[i]);
}
}
static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
err = crypto_register_ahash(&sha_1_256_algs[i]);
if (err)
goto err_sha_1_256_algs;
}
if (dd->caps.has_sha224) {
err = crypto_register_ahash(&sha_224_alg);
if (err)
goto err_sha_224_algs;
}
if (dd->caps.has_sha_384_512) {
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
err = crypto_register_ahash(&sha_384_512_algs[i]);
if (err)
goto err_sha_384_512_algs;
}
}
if (dd->caps.has_hmac) {
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
err = crypto_register_ahash(&sha_hmac_algs[i]);
if (err)
goto err_sha_hmac_algs;
}
}
return 0;
/*i = ARRAY_SIZE(sha_hmac_algs);*/
err_sha_hmac_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_hmac_algs[j]);
i = ARRAY_SIZE(sha_384_512_algs);
err_sha_384_512_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_384_512_algs[j]);
crypto_unregister_ahash(&sha_224_alg);
err_sha_224_algs:
i = ARRAY_SIZE(sha_1_256_algs);
err_sha_1_256_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_1_256_algs[j]);
return err;
}
static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
{
struct at_dma_slave *sl = slave;
if (sl && sl->dma_dev == chan->device->dev) {
chan->private = sl;
return true;
} else {
return false;
}
}
static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
struct crypto_platform_data *pdata)
{
int err = -ENOMEM;
dma_cap_mask_t mask_in;
/* Try to grab DMA channel */
dma_cap_zero(mask_in);
dma_cap_set(DMA_SLAVE, mask_in);
dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
if (!dd->dma_lch_in.chan) {
dev_warn(dd->dev, "no DMA channel available\n");
return err;
}
dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
SHA_REG_DIN(0);
dd->dma_lch_in.dma_conf.src_maxburst = 1;
dd->dma_lch_in.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.dst_maxburst = 1;
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.device_fc = false;
return 0;
}
static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
{
dma_release_channel(dd->dma_lch_in.chan);
}
static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
{
dd->caps.has_dma = 0;
dd->caps.has_dualbuff = 0;
dd->caps.has_sha224 = 0;
dd->caps.has_sha_384_512 = 0;
dd->caps.has_uihv = 0;
dd->caps.has_hmac = 0;
/* keep only major version number */
switch (dd->hw_version & 0xff0) {
case 0x510:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
dd->caps.has_uihv = 1;
dd->caps.has_hmac = 1;
break;
case 0x420:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
dd->caps.has_uihv = 1;
break;
case 0x410:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
break;
case 0x400:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
break;
case 0x320:
break;
default:
dev_warn(dd->dev,
"Unmanaged sha version, set minimum capabilities\n");
break;
}
}
#if defined(CONFIG_OF)
static const struct of_device_id atmel_sha_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-sha" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct crypto_platform_data *pdata;
if (!np) {
dev_err(&pdev->dev, "device node not found\n");
return ERR_PTR(-EINVAL);
}
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "could not allocate memory for pdata\n");
return ERR_PTR(-ENOMEM);
}
pdata->dma_slave = devm_kzalloc(&pdev->dev,
sizeof(*(pdata->dma_slave)),
GFP_KERNEL);
if (!pdata->dma_slave) {
dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
return ERR_PTR(-ENOMEM);
}
return pdata;
}
#else /* CONFIG_OF */
static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
static int atmel_sha_probe(struct platform_device *pdev)
{
struct atmel_sha_dev *sha_dd;
struct crypto_platform_data *pdata;
struct device *dev = &pdev->dev;
struct resource *sha_res;
int err;
sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
if (sha_dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
err = -ENOMEM;
goto sha_dd_err;
}
sha_dd->dev = dev;
platform_set_drvdata(pdev, sha_dd);
INIT_LIST_HEAD(&sha_dd->list);
spin_lock_init(&sha_dd->lock);
tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
(unsigned long)sha_dd);
tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
(unsigned long)sha_dd);
crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
sha_dd->irq = -1;
/* Get the base address */
sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!sha_res) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto res_err;
}
sha_dd->phys_base = sha_res->start;
/* Get the IRQ */
sha_dd->irq = platform_get_irq(pdev, 0);
if (sha_dd->irq < 0) {
dev_err(dev, "no IRQ resource info\n");
err = sha_dd->irq;
goto res_err;
}
err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
IRQF_SHARED, "atmel-sha", sha_dd);
if (err) {
dev_err(dev, "unable to request sha irq.\n");
goto res_err;
}
/* Initializing the clock */
sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
if (IS_ERR(sha_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(sha_dd->iclk);
goto res_err;
}
sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
if (IS_ERR(sha_dd->io_base)) {
dev_err(dev, "can't ioremap\n");
err = PTR_ERR(sha_dd->io_base);
goto res_err;
}
err = clk_prepare(sha_dd->iclk);
if (err)
goto res_err;
atmel_sha_hw_version_init(sha_dd);
atmel_sha_get_cap(sha_dd);
if (sha_dd->caps.has_dma) {
pdata = pdev->dev.platform_data;
if (!pdata) {
pdata = atmel_sha_of_init(pdev);
if (IS_ERR(pdata)) {
dev_err(&pdev->dev, "platform data not available\n");
err = PTR_ERR(pdata);
goto iclk_unprepare;
}
}
if (!pdata->dma_slave) {
err = -ENXIO;
goto iclk_unprepare;
}
err = atmel_sha_dma_init(sha_dd, pdata);
if (err)
goto err_sha_dma;
dev_info(dev, "using %s for DMA transfers\n",
dma_chan_name(sha_dd->dma_lch_in.chan));
}
spin_lock(&atmel_sha.lock);
list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
spin_unlock(&atmel_sha.lock);
err = atmel_sha_register_algs(sha_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
sha_dd->caps.has_sha224 ? "/SHA224" : "",
sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
return 0;
err_algs:
spin_lock(&atmel_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&atmel_sha.lock);
if (sha_dd->caps.has_dma)
atmel_sha_dma_cleanup(sha_dd);
err_sha_dma:
iclk_unprepare:
clk_unprepare(sha_dd->iclk);
res_err:
tasklet_kill(&sha_dd->queue_task);
tasklet_kill(&sha_dd->done_task);
sha_dd_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int atmel_sha_remove(struct platform_device *pdev)
{
static struct atmel_sha_dev *sha_dd;
sha_dd = platform_get_drvdata(pdev);
if (!sha_dd)
return -ENODEV;
spin_lock(&atmel_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&atmel_sha.lock);
atmel_sha_unregister_algs(sha_dd);
tasklet_kill(&sha_dd->queue_task);
tasklet_kill(&sha_dd->done_task);
if (sha_dd->caps.has_dma)
atmel_sha_dma_cleanup(sha_dd);
clk_unprepare(sha_dd->iclk);
return 0;
}
static struct platform_driver atmel_sha_driver = {
.probe = atmel_sha_probe,
.remove = atmel_sha_remove,
.driver = {
.name = "atmel_sha",
.of_match_table = of_match_ptr(atmel_sha_dt_ids),
},
};
module_platform_driver(atmel_sha_driver);
MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");