WSL2-Linux-Kernel/net/irda/af_irda.c

2747 строки
68 KiB
C

/*********************************************************************
*
* Filename: af_irda.c
* Version: 0.9
* Description: IrDA sockets implementation
* Status: Stable
* Author: Dag Brattli <dagb@cs.uit.no>
* Created at: Sun May 31 10:12:43 1998
* Modified at: Sat Dec 25 21:10:23 1999
* Modified by: Dag Brattli <dag@brattli.net>
* Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
*
* Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
* Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
* Linux-IrDA now supports four different types of IrDA sockets:
*
* o SOCK_STREAM: TinyTP connections with SAR disabled. The
* max SDU size is 0 for conn. of this type
* o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
* fragment the messages, but will preserve
* the message boundaries
* o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
* (unreliable) transfers
* IRDAPROTO_ULTRA: Connectionless and unreliable data
*
********************************************************************/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/net.h>
#include <linux/irda.h>
#include <linux/poll.h>
#include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
#include <asm/uaccess.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/irda/af_irda.h>
static int irda_create(struct net *net, struct socket *sock, int protocol, int kern);
static const struct proto_ops irda_stream_ops;
static const struct proto_ops irda_seqpacket_ops;
static const struct proto_ops irda_dgram_ops;
#ifdef CONFIG_IRDA_ULTRA
static const struct proto_ops irda_ultra_ops;
#define ULTRA_MAX_DATA 382
#endif /* CONFIG_IRDA_ULTRA */
#define IRDA_MAX_HEADER (TTP_MAX_HEADER)
/*
* Function irda_data_indication (instance, sap, skb)
*
* Received some data from TinyTP. Just queue it on the receive queue
*
*/
static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
{
struct irda_sock *self;
struct sock *sk;
int err;
IRDA_DEBUG(3, "%s()\n", __func__);
self = instance;
sk = instance;
err = sock_queue_rcv_skb(sk, skb);
if (err) {
IRDA_DEBUG(1, "%s(), error: no more mem!\n", __func__);
self->rx_flow = FLOW_STOP;
/* When we return error, TTP will need to requeue the skb */
return err;
}
return 0;
}
/*
* Function irda_disconnect_indication (instance, sap, reason, skb)
*
* Connection has been closed. Check reason to find out why
*
*/
static void irda_disconnect_indication(void *instance, void *sap,
LM_REASON reason, struct sk_buff *skb)
{
struct irda_sock *self;
struct sock *sk;
self = instance;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
/* Don't care about it, but let's not leak it */
if(skb)
dev_kfree_skb(skb);
sk = instance;
if (sk == NULL) {
IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
__func__, self);
return;
}
/* Prevent race conditions with irda_release() and irda_shutdown() */
bh_lock_sock(sk);
if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
sk->sk_state = TCP_CLOSE;
sk->sk_shutdown |= SEND_SHUTDOWN;
sk->sk_state_change(sk);
/* Close our TSAP.
* If we leave it open, IrLMP put it back into the list of
* unconnected LSAPs. The problem is that any incoming request
* can then be matched to this socket (and it will be, because
* it is at the head of the list). This would prevent any
* listening socket waiting on the same TSAP to get those
* requests. Some apps forget to close sockets, or hang to it
* a bit too long, so we may stay in this dead state long
* enough to be noticed...
* Note : all socket function do check sk->sk_state, so we are
* safe...
* Jean II
*/
if (self->tsap) {
irttp_close_tsap(self->tsap);
self->tsap = NULL;
}
}
bh_unlock_sock(sk);
/* Note : once we are there, there is not much you want to do
* with the socket anymore, apart from closing it.
* For example, bind() and connect() won't reset sk->sk_err,
* sk->sk_shutdown and sk->sk_flags to valid values...
* Jean II
*/
}
/*
* Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
*
* Connections has been confirmed by the remote device
*
*/
static void irda_connect_confirm(void *instance, void *sap,
struct qos_info *qos,
__u32 max_sdu_size, __u8 max_header_size,
struct sk_buff *skb)
{
struct irda_sock *self;
struct sock *sk;
self = instance;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
sk = instance;
if (sk == NULL) {
dev_kfree_skb(skb);
return;
}
dev_kfree_skb(skb);
// Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
/* How much header space do we need to reserve */
self->max_header_size = max_header_size;
/* IrTTP max SDU size in transmit direction */
self->max_sdu_size_tx = max_sdu_size;
/* Find out what the largest chunk of data that we can transmit is */
switch (sk->sk_type) {
case SOCK_STREAM:
if (max_sdu_size != 0) {
IRDA_ERROR("%s: max_sdu_size must be 0\n",
__func__);
return;
}
self->max_data_size = irttp_get_max_seg_size(self->tsap);
break;
case SOCK_SEQPACKET:
if (max_sdu_size == 0) {
IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
__func__);
return;
}
self->max_data_size = max_sdu_size;
break;
default:
self->max_data_size = irttp_get_max_seg_size(self->tsap);
}
IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__,
self->max_data_size);
memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
/* We are now connected! */
sk->sk_state = TCP_ESTABLISHED;
sk->sk_state_change(sk);
}
/*
* Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
*
* Incoming connection
*
*/
static void irda_connect_indication(void *instance, void *sap,
struct qos_info *qos, __u32 max_sdu_size,
__u8 max_header_size, struct sk_buff *skb)
{
struct irda_sock *self;
struct sock *sk;
self = instance;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
sk = instance;
if (sk == NULL) {
dev_kfree_skb(skb);
return;
}
/* How much header space do we need to reserve */
self->max_header_size = max_header_size;
/* IrTTP max SDU size in transmit direction */
self->max_sdu_size_tx = max_sdu_size;
/* Find out what the largest chunk of data that we can transmit is */
switch (sk->sk_type) {
case SOCK_STREAM:
if (max_sdu_size != 0) {
IRDA_ERROR("%s: max_sdu_size must be 0\n",
__func__);
kfree_skb(skb);
return;
}
self->max_data_size = irttp_get_max_seg_size(self->tsap);
break;
case SOCK_SEQPACKET:
if (max_sdu_size == 0) {
IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
__func__);
kfree_skb(skb);
return;
}
self->max_data_size = max_sdu_size;
break;
default:
self->max_data_size = irttp_get_max_seg_size(self->tsap);
}
IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__,
self->max_data_size);
memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_state_change(sk);
}
/*
* Function irda_connect_response (handle)
*
* Accept incoming connection
*
*/
static void irda_connect_response(struct irda_sock *self)
{
struct sk_buff *skb;
IRDA_DEBUG(2, "%s()\n", __func__);
skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
GFP_ATOMIC);
if (skb == NULL) {
IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
__func__);
return;
}
/* Reserve space for MUX_CONTROL and LAP header */
skb_reserve(skb, IRDA_MAX_HEADER);
irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
}
/*
* Function irda_flow_indication (instance, sap, flow)
*
* Used by TinyTP to tell us if it can accept more data or not
*
*/
static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
{
struct irda_sock *self;
struct sock *sk;
IRDA_DEBUG(2, "%s()\n", __func__);
self = instance;
sk = instance;
BUG_ON(sk == NULL);
switch (flow) {
case FLOW_STOP:
IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
__func__);
self->tx_flow = flow;
break;
case FLOW_START:
self->tx_flow = flow;
IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
__func__);
wake_up_interruptible(sk_sleep(sk));
break;
default:
IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __func__);
/* Unknown flow command, better stop */
self->tx_flow = flow;
break;
}
}
/*
* Function irda_getvalue_confirm (obj_id, value, priv)
*
* Got answer from remote LM-IAS, just pass object to requester...
*
* Note : duplicate from above, but we need our own version that
* doesn't touch the dtsap_sel and save the full value structure...
*/
static void irda_getvalue_confirm(int result, __u16 obj_id,
struct ias_value *value, void *priv)
{
struct irda_sock *self;
self = priv;
if (!self) {
IRDA_WARNING("%s: lost myself!\n", __func__);
return;
}
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
/* We probably don't need to make any more queries */
iriap_close(self->iriap);
self->iriap = NULL;
/* Check if request succeeded */
if (result != IAS_SUCCESS) {
IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __func__,
result);
self->errno = result; /* We really need it later */
/* Wake up any processes waiting for result */
wake_up_interruptible(&self->query_wait);
return;
}
/* Pass the object to the caller (so the caller must delete it) */
self->ias_result = value;
self->errno = 0;
/* Wake up any processes waiting for result */
wake_up_interruptible(&self->query_wait);
}
/*
* Function irda_selective_discovery_indication (discovery)
*
* Got a selective discovery indication from IrLMP.
*
* IrLMP is telling us that this node is new and matching our hint bit
* filter. Wake up any process waiting for answer...
*/
static void irda_selective_discovery_indication(discinfo_t *discovery,
DISCOVERY_MODE mode,
void *priv)
{
struct irda_sock *self;
IRDA_DEBUG(2, "%s()\n", __func__);
self = priv;
if (!self) {
IRDA_WARNING("%s: lost myself!\n", __func__);
return;
}
/* Pass parameter to the caller */
self->cachedaddr = discovery->daddr;
/* Wake up process if its waiting for device to be discovered */
wake_up_interruptible(&self->query_wait);
}
/*
* Function irda_discovery_timeout (priv)
*
* Timeout in the selective discovery process
*
* We were waiting for a node to be discovered, but nothing has come up
* so far. Wake up the user and tell him that we failed...
*/
static void irda_discovery_timeout(u_long priv)
{
struct irda_sock *self;
IRDA_DEBUG(2, "%s()\n", __func__);
self = (struct irda_sock *) priv;
BUG_ON(self == NULL);
/* Nothing for the caller */
self->cachelog = NULL;
self->cachedaddr = 0;
self->errno = -ETIME;
/* Wake up process if its still waiting... */
wake_up_interruptible(&self->query_wait);
}
/*
* Function irda_open_tsap (self)
*
* Open local Transport Service Access Point (TSAP)
*
*/
static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
{
notify_t notify;
if (self->tsap) {
IRDA_DEBUG(0, "%s: busy!\n", __func__);
return -EBUSY;
}
/* Initialize callbacks to be used by the IrDA stack */
irda_notify_init(&notify);
notify.connect_confirm = irda_connect_confirm;
notify.connect_indication = irda_connect_indication;
notify.disconnect_indication = irda_disconnect_indication;
notify.data_indication = irda_data_indication;
notify.udata_indication = irda_data_indication;
notify.flow_indication = irda_flow_indication;
notify.instance = self;
strncpy(notify.name, name, NOTIFY_MAX_NAME);
self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
&notify);
if (self->tsap == NULL) {
IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
__func__);
return -ENOMEM;
}
/* Remember which TSAP selector we actually got */
self->stsap_sel = self->tsap->stsap_sel;
return 0;
}
/*
* Function irda_open_lsap (self)
*
* Open local Link Service Access Point (LSAP). Used for opening Ultra
* sockets
*/
#ifdef CONFIG_IRDA_ULTRA
static int irda_open_lsap(struct irda_sock *self, int pid)
{
notify_t notify;
if (self->lsap) {
IRDA_WARNING("%s(), busy!\n", __func__);
return -EBUSY;
}
/* Initialize callbacks to be used by the IrDA stack */
irda_notify_init(&notify);
notify.udata_indication = irda_data_indication;
notify.instance = self;
strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
if (self->lsap == NULL) {
IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __func__);
return -ENOMEM;
}
return 0;
}
#endif /* CONFIG_IRDA_ULTRA */
/*
* Function irda_find_lsap_sel (self, name)
*
* Try to lookup LSAP selector in remote LM-IAS
*
* Basically, we start a IAP query, and then go to sleep. When the query
* return, irda_getvalue_confirm will wake us up, and we can examine the
* result of the query...
* Note that in some case, the query fail even before we go to sleep,
* creating some races...
*/
static int irda_find_lsap_sel(struct irda_sock *self, char *name)
{
IRDA_DEBUG(2, "%s(%p, %s)\n", __func__, self, name);
if (self->iriap) {
IRDA_WARNING("%s(): busy with a previous query\n",
__func__);
return -EBUSY;
}
self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
irda_getvalue_confirm);
if(self->iriap == NULL)
return -ENOMEM;
/* Treat unexpected wakeup as disconnect */
self->errno = -EHOSTUNREACH;
/* Query remote LM-IAS */
iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
name, "IrDA:TinyTP:LsapSel");
/* Wait for answer, if not yet finished (or failed) */
if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
/* Treat signals as disconnect */
return -EHOSTUNREACH;
/* Check what happened */
if (self->errno)
{
/* Requested object/attribute doesn't exist */
if((self->errno == IAS_CLASS_UNKNOWN) ||
(self->errno == IAS_ATTRIB_UNKNOWN))
return -EADDRNOTAVAIL;
else
return -EHOSTUNREACH;
}
/* Get the remote TSAP selector */
switch (self->ias_result->type) {
case IAS_INTEGER:
IRDA_DEBUG(4, "%s() int=%d\n",
__func__, self->ias_result->t.integer);
if (self->ias_result->t.integer != -1)
self->dtsap_sel = self->ias_result->t.integer;
else
self->dtsap_sel = 0;
break;
default:
self->dtsap_sel = 0;
IRDA_DEBUG(0, "%s(), bad type!\n", __func__);
break;
}
if (self->ias_result)
irias_delete_value(self->ias_result);
if (self->dtsap_sel)
return 0;
return -EADDRNOTAVAIL;
}
/*
* Function irda_discover_daddr_and_lsap_sel (self, name)
*
* This try to find a device with the requested service.
*
* It basically look into the discovery log. For each address in the list,
* it queries the LM-IAS of the device to find if this device offer
* the requested service.
* If there is more than one node supporting the service, we complain
* to the user (it should move devices around).
* The, we set both the destination address and the lsap selector to point
* on the service on the unique device we have found.
*
* Note : this function fails if there is more than one device in range,
* because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
* Moreover, we would need to wait the LAP disconnection...
*/
static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
{
discinfo_t *discoveries; /* Copy of the discovery log */
int number; /* Number of nodes in the log */
int i;
int err = -ENETUNREACH;
__u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
__u8 dtsap_sel = 0x0; /* TSAP associated with it */
IRDA_DEBUG(2, "%s(), name=%s\n", __func__, name);
/* Ask lmp for the current discovery log
* Note : we have to use irlmp_get_discoveries(), as opposed
* to play with the cachelog directly, because while we are
* making our ias query, le log might change... */
discoveries = irlmp_get_discoveries(&number, self->mask.word,
self->nslots);
/* Check if the we got some results */
if (discoveries == NULL)
return -ENETUNREACH; /* No nodes discovered */
/*
* Now, check all discovered devices (if any), and connect
* client only about the services that the client is
* interested in...
*/
for(i = 0; i < number; i++) {
/* Try the address in the log */
self->daddr = discoveries[i].daddr;
self->saddr = 0x0;
IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
__func__, self->daddr);
/* Query remote LM-IAS for this service */
err = irda_find_lsap_sel(self, name);
switch (err) {
case 0:
/* We found the requested service */
if(daddr != DEV_ADDR_ANY) {
IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
__func__, name);
self->daddr = DEV_ADDR_ANY;
kfree(discoveries);
return -ENOTUNIQ;
}
/* First time we found that one, save it ! */
daddr = self->daddr;
dtsap_sel = self->dtsap_sel;
break;
case -EADDRNOTAVAIL:
/* Requested service simply doesn't exist on this node */
break;
default:
/* Something bad did happen :-( */
IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __func__);
self->daddr = DEV_ADDR_ANY;
kfree(discoveries);
return -EHOSTUNREACH;
break;
}
}
/* Cleanup our copy of the discovery log */
kfree(discoveries);
/* Check out what we found */
if(daddr == DEV_ADDR_ANY) {
IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
__func__, name);
self->daddr = DEV_ADDR_ANY;
return -EADDRNOTAVAIL;
}
/* Revert back to discovered device & service */
self->daddr = daddr;
self->saddr = 0x0;
self->dtsap_sel = dtsap_sel;
IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
__func__, name, self->daddr);
return 0;
}
/*
* Function irda_getname (sock, uaddr, uaddr_len, peer)
*
* Return the our own, or peers socket address (sockaddr_irda)
*
*/
static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct sockaddr_irda saddr;
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
memset(&saddr, 0, sizeof(saddr));
if (peer) {
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTCONN;
saddr.sir_family = AF_IRDA;
saddr.sir_lsap_sel = self->dtsap_sel;
saddr.sir_addr = self->daddr;
} else {
saddr.sir_family = AF_IRDA;
saddr.sir_lsap_sel = self->stsap_sel;
saddr.sir_addr = self->saddr;
}
IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel);
IRDA_DEBUG(1, "%s(), addr = %08x\n", __func__, saddr.sir_addr);
/* uaddr_len come to us uninitialised */
*uaddr_len = sizeof (struct sockaddr_irda);
memcpy(uaddr, &saddr, *uaddr_len);
return 0;
}
/*
* Function irda_listen (sock, backlog)
*
* Just move to the listen state
*
*/
static int irda_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
int err = -EOPNOTSUPP;
IRDA_DEBUG(2, "%s()\n", __func__);
lock_sock(sk);
if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
(sk->sk_type != SOCK_DGRAM))
goto out;
if (sk->sk_state != TCP_LISTEN) {
sk->sk_max_ack_backlog = backlog;
sk->sk_state = TCP_LISTEN;
err = 0;
}
out:
release_sock(sk);
return err;
}
/*
* Function irda_bind (sock, uaddr, addr_len)
*
* Used by servers to register their well known TSAP
*
*/
static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sock *sk = sock->sk;
struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
struct irda_sock *self = irda_sk(sk);
int err;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
if (addr_len != sizeof(struct sockaddr_irda))
return -EINVAL;
lock_sock(sk);
#ifdef CONFIG_IRDA_ULTRA
/* Special care for Ultra sockets */
if ((sk->sk_type == SOCK_DGRAM) &&
(sk->sk_protocol == IRDAPROTO_ULTRA)) {
self->pid = addr->sir_lsap_sel;
err = -EOPNOTSUPP;
if (self->pid & 0x80) {
IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__);
goto out;
}
err = irda_open_lsap(self, self->pid);
if (err < 0)
goto out;
/* Pretend we are connected */
sock->state = SS_CONNECTED;
sk->sk_state = TCP_ESTABLISHED;
err = 0;
goto out;
}
#endif /* CONFIG_IRDA_ULTRA */
self->ias_obj = irias_new_object(addr->sir_name, jiffies);
err = -ENOMEM;
if (self->ias_obj == NULL)
goto out;
err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
if (err < 0) {
irias_delete_object(self->ias_obj);
self->ias_obj = NULL;
goto out;
}
/* Register with LM-IAS */
irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
self->stsap_sel, IAS_KERNEL_ATTR);
irias_insert_object(self->ias_obj);
err = 0;
out:
release_sock(sk);
return err;
}
/*
* Function irda_accept (sock, newsock, flags)
*
* Wait for incoming connection
*
*/
static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
{
struct sock *sk = sock->sk;
struct irda_sock *new, *self = irda_sk(sk);
struct sock *newsk;
struct sk_buff *skb;
int err;
IRDA_DEBUG(2, "%s()\n", __func__);
err = irda_create(sock_net(sk), newsock, sk->sk_protocol, 0);
if (err)
return err;
err = -EINVAL;
lock_sock(sk);
if (sock->state != SS_UNCONNECTED)
goto out;
if ((sk = sock->sk) == NULL)
goto out;
err = -EOPNOTSUPP;
if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
(sk->sk_type != SOCK_DGRAM))
goto out;
err = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
goto out;
/*
* The read queue this time is holding sockets ready to use
* hooked into the SABM we saved
*/
/*
* We can perform the accept only if there is incoming data
* on the listening socket.
* So, we will block the caller until we receive any data.
* If the caller was waiting on select() or poll() before
* calling us, the data is waiting for us ;-)
* Jean II
*/
while (1) {
skb = skb_dequeue(&sk->sk_receive_queue);
if (skb)
break;
/* Non blocking operation */
err = -EWOULDBLOCK;
if (flags & O_NONBLOCK)
goto out;
err = wait_event_interruptible(*(sk_sleep(sk)),
skb_peek(&sk->sk_receive_queue));
if (err)
goto out;
}
newsk = newsock->sk;
err = -EIO;
if (newsk == NULL)
goto out;
newsk->sk_state = TCP_ESTABLISHED;
new = irda_sk(newsk);
/* Now attach up the new socket */
new->tsap = irttp_dup(self->tsap, new);
err = -EPERM; /* value does not seem to make sense. -arnd */
if (!new->tsap) {
IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
kfree_skb(skb);
goto out;
}
new->stsap_sel = new->tsap->stsap_sel;
new->dtsap_sel = new->tsap->dtsap_sel;
new->saddr = irttp_get_saddr(new->tsap);
new->daddr = irttp_get_daddr(new->tsap);
new->max_sdu_size_tx = self->max_sdu_size_tx;
new->max_sdu_size_rx = self->max_sdu_size_rx;
new->max_data_size = self->max_data_size;
new->max_header_size = self->max_header_size;
memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
/* Clean up the original one to keep it in listen state */
irttp_listen(self->tsap);
kfree_skb(skb);
sk->sk_ack_backlog--;
newsock->state = SS_CONNECTED;
irda_connect_response(new);
err = 0;
out:
release_sock(sk);
return err;
}
/*
* Function irda_connect (sock, uaddr, addr_len, flags)
*
* Connect to a IrDA device
*
* The main difference with a "standard" connect is that with IrDA we need
* to resolve the service name into a TSAP selector (in TCP, port number
* doesn't have to be resolved).
* Because of this service name resolution, we can offer "auto-connect",
* where we connect to a service without specifying a destination address.
*
* Note : by consulting "errno", the user space caller may learn the cause
* of the failure. Most of them are visible in the function, others may come
* from subroutines called and are listed here :
* o EBUSY : already processing a connect
* o EHOSTUNREACH : bad addr->sir_addr argument
* o EADDRNOTAVAIL : bad addr->sir_name argument
* o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
* o ENETUNREACH : no node found on the network (auto-connect)
*/
static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
struct irda_sock *self = irda_sk(sk);
int err;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
lock_sock(sk);
/* Don't allow connect for Ultra sockets */
err = -ESOCKTNOSUPPORT;
if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
goto out;
if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
sock->state = SS_CONNECTED;
err = 0;
goto out; /* Connect completed during a ERESTARTSYS event */
}
if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
sock->state = SS_UNCONNECTED;
err = -ECONNREFUSED;
goto out;
}
err = -EISCONN; /* No reconnect on a seqpacket socket */
if (sk->sk_state == TCP_ESTABLISHED)
goto out;
sk->sk_state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
err = -EINVAL;
if (addr_len != sizeof(struct sockaddr_irda))
goto out;
/* Check if user supplied any destination device address */
if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
/* Try to find one suitable */
err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
if (err) {
IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __func__);
goto out;
}
} else {
/* Use the one provided by the user */
self->daddr = addr->sir_addr;
IRDA_DEBUG(1, "%s(), daddr = %08x\n", __func__, self->daddr);
/* If we don't have a valid service name, we assume the
* user want to connect on a specific LSAP. Prevent
* the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
if((addr->sir_name[0] != '\0') ||
(addr->sir_lsap_sel >= 0x70)) {
/* Query remote LM-IAS using service name */
err = irda_find_lsap_sel(self, addr->sir_name);
if (err) {
IRDA_DEBUG(0, "%s(), connect failed!\n", __func__);
goto out;
}
} else {
/* Directly connect to the remote LSAP
* specified by the sir_lsap field.
* Please use with caution, in IrDA LSAPs are
* dynamic and there is no "well-known" LSAP. */
self->dtsap_sel = addr->sir_lsap_sel;
}
}
/* Check if we have opened a local TSAP */
if (!self->tsap)
irda_open_tsap(self, LSAP_ANY, addr->sir_name);
/* Move to connecting socket, start sending Connect Requests */
sock->state = SS_CONNECTING;
sk->sk_state = TCP_SYN_SENT;
/* Connect to remote device */
err = irttp_connect_request(self->tsap, self->dtsap_sel,
self->saddr, self->daddr, NULL,
self->max_sdu_size_rx, NULL);
if (err) {
IRDA_DEBUG(0, "%s(), connect failed!\n", __func__);
goto out;
}
/* Now the loop */
err = -EINPROGRESS;
if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
goto out;
err = -ERESTARTSYS;
if (wait_event_interruptible(*(sk_sleep(sk)),
(sk->sk_state != TCP_SYN_SENT)))
goto out;
if (sk->sk_state != TCP_ESTABLISHED) {
sock->state = SS_UNCONNECTED;
if (sk->sk_prot->disconnect(sk, flags))
sock->state = SS_DISCONNECTING;
err = sock_error(sk);
if (!err)
err = -ECONNRESET;
goto out;
}
sock->state = SS_CONNECTED;
/* At this point, IrLMP has assigned our source address */
self->saddr = irttp_get_saddr(self->tsap);
err = 0;
out:
release_sock(sk);
return err;
}
static struct proto irda_proto = {
.name = "IRDA",
.owner = THIS_MODULE,
.obj_size = sizeof(struct irda_sock),
};
/*
* Function irda_create (sock, protocol)
*
* Create IrDA socket
*
*/
static int irda_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
struct irda_sock *self;
IRDA_DEBUG(2, "%s()\n", __func__);
if (net != &init_net)
return -EAFNOSUPPORT;
/* Check for valid socket type */
switch (sock->type) {
case SOCK_STREAM: /* For TTP connections with SAR disabled */
case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
break;
default:
return -ESOCKTNOSUPPORT;
}
/* Allocate networking socket */
sk = sk_alloc(net, PF_IRDA, GFP_ATOMIC, &irda_proto);
if (sk == NULL)
return -ENOMEM;
self = irda_sk(sk);
IRDA_DEBUG(2, "%s() : self is %p\n", __func__, self);
init_waitqueue_head(&self->query_wait);
switch (sock->type) {
case SOCK_STREAM:
sock->ops = &irda_stream_ops;
self->max_sdu_size_rx = TTP_SAR_DISABLE;
break;
case SOCK_SEQPACKET:
sock->ops = &irda_seqpacket_ops;
self->max_sdu_size_rx = TTP_SAR_UNBOUND;
break;
case SOCK_DGRAM:
switch (protocol) {
#ifdef CONFIG_IRDA_ULTRA
case IRDAPROTO_ULTRA:
sock->ops = &irda_ultra_ops;
/* Initialise now, because we may send on unbound
* sockets. Jean II */
self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
break;
#endif /* CONFIG_IRDA_ULTRA */
case IRDAPROTO_UNITDATA:
sock->ops = &irda_dgram_ops;
/* We let Unitdata conn. be like seqpack conn. */
self->max_sdu_size_rx = TTP_SAR_UNBOUND;
break;
default:
sk_free(sk);
return -ESOCKTNOSUPPORT;
}
break;
default:
sk_free(sk);
return -ESOCKTNOSUPPORT;
}
/* Initialise networking socket struct */
sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
sk->sk_family = PF_IRDA;
sk->sk_protocol = protocol;
/* Register as a client with IrLMP */
self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
self->mask.word = 0xffff;
self->rx_flow = self->tx_flow = FLOW_START;
self->nslots = DISCOVERY_DEFAULT_SLOTS;
self->daddr = DEV_ADDR_ANY; /* Until we get connected */
self->saddr = 0x0; /* so IrLMP assign us any link */
return 0;
}
/*
* Function irda_destroy_socket (self)
*
* Destroy socket
*
*/
static void irda_destroy_socket(struct irda_sock *self)
{
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
/* Unregister with IrLMP */
irlmp_unregister_client(self->ckey);
irlmp_unregister_service(self->skey);
/* Unregister with LM-IAS */
if (self->ias_obj) {
irias_delete_object(self->ias_obj);
self->ias_obj = NULL;
}
if (self->iriap) {
iriap_close(self->iriap);
self->iriap = NULL;
}
if (self->tsap) {
irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
irttp_close_tsap(self->tsap);
self->tsap = NULL;
}
#ifdef CONFIG_IRDA_ULTRA
if (self->lsap) {
irlmp_close_lsap(self->lsap);
self->lsap = NULL;
}
#endif /* CONFIG_IRDA_ULTRA */
}
/*
* Function irda_release (sock)
*/
static int irda_release(struct socket *sock)
{
struct sock *sk = sock->sk;
IRDA_DEBUG(2, "%s()\n", __func__);
if (sk == NULL)
return 0;
lock_sock(sk);
sk->sk_state = TCP_CLOSE;
sk->sk_shutdown |= SEND_SHUTDOWN;
sk->sk_state_change(sk);
/* Destroy IrDA socket */
irda_destroy_socket(irda_sk(sk));
sock_orphan(sk);
sock->sk = NULL;
release_sock(sk);
/* Purge queues (see sock_init_data()) */
skb_queue_purge(&sk->sk_receive_queue);
/* Destroy networking socket if we are the last reference on it,
* i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
sock_put(sk);
/* Notes on socket locking and deallocation... - Jean II
* In theory we should put pairs of sock_hold() / sock_put() to
* prevent the socket to be destroyed whenever there is an
* outstanding request or outstanding incoming packet or event.
*
* 1) This may include IAS request, both in connect and getsockopt.
* Unfortunately, the situation is a bit more messy than it looks,
* because we close iriap and kfree(self) above.
*
* 2) This may include selective discovery in getsockopt.
* Same stuff as above, irlmp registration and self are gone.
*
* Probably 1 and 2 may not matter, because it's all triggered
* by a process and the socket layer already prevent the
* socket to go away while a process is holding it, through
* sockfd_put() and fput()...
*
* 3) This may include deferred TSAP closure. In particular,
* we may receive a late irda_disconnect_indication()
* Fortunately, (tsap_cb *)->close_pend should protect us
* from that.
*
* I did some testing on SMP, and it looks solid. And the socket
* memory leak is now gone... - Jean II
*/
return 0;
}
/*
* Function irda_sendmsg (iocb, sock, msg, len)
*
* Send message down to TinyTP. This function is used for both STREAM and
* SEQPACK services. This is possible since it forces the client to
* fragment the message if necessary
*/
static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct irda_sock *self;
struct sk_buff *skb;
int err = -EPIPE;
IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
/* Note : socket.c set MSG_EOR on SEQPACKET sockets */
if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
MSG_NOSIGNAL)) {
return -EINVAL;
}
lock_sock(sk);
if (sk->sk_shutdown & SEND_SHUTDOWN)
goto out_err;
if (sk->sk_state != TCP_ESTABLISHED) {
err = -ENOTCONN;
goto out;
}
self = irda_sk(sk);
/* Check if IrTTP is wants us to slow down */
if (wait_event_interruptible(*(sk_sleep(sk)),
(self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) {
err = -ERESTARTSYS;
goto out;
}
/* Check if we are still connected */
if (sk->sk_state != TCP_ESTABLISHED) {
err = -ENOTCONN;
goto out;
}
/* Check that we don't send out too big frames */
if (len > self->max_data_size) {
IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
__func__, len, self->max_data_size);
len = self->max_data_size;
}
skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
msg->msg_flags & MSG_DONTWAIT, &err);
if (!skb)
goto out_err;
skb_reserve(skb, self->max_header_size + 16);
skb_reset_transport_header(skb);
skb_put(skb, len);
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
if (err) {
kfree_skb(skb);
goto out_err;
}
/*
* Just send the message to TinyTP, and let it deal with possible
* errors. No need to duplicate all that here
*/
err = irttp_data_request(self->tsap, skb);
if (err) {
IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
goto out_err;
}
release_sock(sk);
/* Tell client how much data we actually sent */
return len;
out_err:
err = sk_stream_error(sk, msg->msg_flags, err);
out:
release_sock(sk);
return err;
}
/*
* Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
*
* Try to receive message and copy it to user. The frame is discarded
* after being read, regardless of how much the user actually read
*/
static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size, int flags)
{
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
struct sk_buff *skb;
size_t copied;
int err;
IRDA_DEBUG(4, "%s()\n", __func__);
skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
flags & MSG_DONTWAIT, &err);
if (!skb)
return err;
skb_reset_transport_header(skb);
copied = skb->len;
if (copied > size) {
IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
__func__, copied, size);
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
skb_free_datagram(sk, skb);
/*
* Check if we have previously stopped IrTTP and we know
* have more free space in our rx_queue. If so tell IrTTP
* to start delivering frames again before our rx_queue gets
* empty
*/
if (self->rx_flow == FLOW_STOP) {
if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__);
self->rx_flow = FLOW_START;
irttp_flow_request(self->tsap, FLOW_START);
}
}
return copied;
}
/*
* Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
*/
static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size, int flags)
{
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
int noblock = flags & MSG_DONTWAIT;
size_t copied = 0;
int target, err;
long timeo;
IRDA_DEBUG(3, "%s()\n", __func__);
if ((err = sock_error(sk)) < 0)
return err;
if (sock->flags & __SO_ACCEPTCON)
return -EINVAL;
err =-EOPNOTSUPP;
if (flags & MSG_OOB)
return -EOPNOTSUPP;
err = 0;
target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
timeo = sock_rcvtimeo(sk, noblock);
msg->msg_namelen = 0;
do {
int chunk;
struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
if (skb == NULL) {
DEFINE_WAIT(wait);
err = 0;
if (copied >= target)
break;
prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
/*
* POSIX 1003.1g mandates this order.
*/
err = sock_error(sk);
if (err)
;
else if (sk->sk_shutdown & RCV_SHUTDOWN)
;
else if (noblock)
err = -EAGAIN;
else if (signal_pending(current))
err = sock_intr_errno(timeo);
else if (sk->sk_state != TCP_ESTABLISHED)
err = -ENOTCONN;
else if (skb_peek(&sk->sk_receive_queue) == NULL)
/* Wait process until data arrives */
schedule();
finish_wait(sk_sleep(sk), &wait);
if (err)
return err;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
continue;
}
chunk = min_t(unsigned int, skb->len, size);
if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
skb_queue_head(&sk->sk_receive_queue, skb);
if (copied == 0)
copied = -EFAULT;
break;
}
copied += chunk;
size -= chunk;
/* Mark read part of skb as used */
if (!(flags & MSG_PEEK)) {
skb_pull(skb, chunk);
/* put the skb back if we didn't use it up.. */
if (skb->len) {
IRDA_DEBUG(1, "%s(), back on q!\n",
__func__);
skb_queue_head(&sk->sk_receive_queue, skb);
break;
}
kfree_skb(skb);
} else {
IRDA_DEBUG(0, "%s() questionable!?\n", __func__);
/* put message back and return */
skb_queue_head(&sk->sk_receive_queue, skb);
break;
}
} while (size);
/*
* Check if we have previously stopped IrTTP and we know
* have more free space in our rx_queue. If so tell IrTTP
* to start delivering frames again before our rx_queue gets
* empty
*/
if (self->rx_flow == FLOW_STOP) {
if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__);
self->rx_flow = FLOW_START;
irttp_flow_request(self->tsap, FLOW_START);
}
}
return copied;
}
/*
* Function irda_sendmsg_dgram (iocb, sock, msg, len)
*
* Send message down to TinyTP for the unreliable sequenced
* packet service...
*
*/
static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct irda_sock *self;
struct sk_buff *skb;
int err;
IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
return -EINVAL;
lock_sock(sk);
if (sk->sk_shutdown & SEND_SHUTDOWN) {
send_sig(SIGPIPE, current, 0);
err = -EPIPE;
goto out;
}
err = -ENOTCONN;
if (sk->sk_state != TCP_ESTABLISHED)
goto out;
self = irda_sk(sk);
/*
* Check that we don't send out too big frames. This is an unreliable
* service, so we have no fragmentation and no coalescence
*/
if (len > self->max_data_size) {
IRDA_DEBUG(0, "%s(), Warning to much data! "
"Chopping frame from %zd to %d bytes!\n",
__func__, len, self->max_data_size);
len = self->max_data_size;
}
skb = sock_alloc_send_skb(sk, len + self->max_header_size,
msg->msg_flags & MSG_DONTWAIT, &err);
err = -ENOBUFS;
if (!skb)
goto out;
skb_reserve(skb, self->max_header_size);
skb_reset_transport_header(skb);
IRDA_DEBUG(4, "%s(), appending user data\n", __func__);
skb_put(skb, len);
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
if (err) {
kfree_skb(skb);
goto out;
}
/*
* Just send the message to TinyTP, and let it deal with possible
* errors. No need to duplicate all that here
*/
err = irttp_udata_request(self->tsap, skb);
if (err) {
IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
goto out;
}
release_sock(sk);
return len;
out:
release_sock(sk);
return err;
}
/*
* Function irda_sendmsg_ultra (iocb, sock, msg, len)
*
* Send message down to IrLMP for the unreliable Ultra
* packet service...
*/
#ifdef CONFIG_IRDA_ULTRA
static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct irda_sock *self;
__u8 pid = 0;
int bound = 0;
struct sk_buff *skb;
int err;
IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
err = -EINVAL;
if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
return -EINVAL;
lock_sock(sk);
err = -EPIPE;
if (sk->sk_shutdown & SEND_SHUTDOWN) {
send_sig(SIGPIPE, current, 0);
goto out;
}
self = irda_sk(sk);
/* Check if an address was specified with sendto. Jean II */
if (msg->msg_name) {
struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
err = -EINVAL;
/* Check address, extract pid. Jean II */
if (msg->msg_namelen < sizeof(*addr))
goto out;
if (addr->sir_family != AF_IRDA)
goto out;
pid = addr->sir_lsap_sel;
if (pid & 0x80) {
IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__);
err = -EOPNOTSUPP;
goto out;
}
} else {
/* Check that the socket is properly bound to an Ultra
* port. Jean II */
if ((self->lsap == NULL) ||
(sk->sk_state != TCP_ESTABLISHED)) {
IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
__func__);
err = -ENOTCONN;
goto out;
}
/* Use PID from socket */
bound = 1;
}
/*
* Check that we don't send out too big frames. This is an unreliable
* service, so we have no fragmentation and no coalescence
*/
if (len > self->max_data_size) {
IRDA_DEBUG(0, "%s(), Warning to much data! "
"Chopping frame from %zd to %d bytes!\n",
__func__, len, self->max_data_size);
len = self->max_data_size;
}
skb = sock_alloc_send_skb(sk, len + self->max_header_size,
msg->msg_flags & MSG_DONTWAIT, &err);
err = -ENOBUFS;
if (!skb)
goto out;
skb_reserve(skb, self->max_header_size);
skb_reset_transport_header(skb);
IRDA_DEBUG(4, "%s(), appending user data\n", __func__);
skb_put(skb, len);
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
if (err) {
kfree_skb(skb);
goto out;
}
err = irlmp_connless_data_request((bound ? self->lsap : NULL),
skb, pid);
if (err)
IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
out:
release_sock(sk);
return err ? : len;
}
#endif /* CONFIG_IRDA_ULTRA */
/*
* Function irda_shutdown (sk, how)
*/
static int irda_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
IRDA_DEBUG(1, "%s(%p)\n", __func__, self);
lock_sock(sk);
sk->sk_state = TCP_CLOSE;
sk->sk_shutdown |= SEND_SHUTDOWN;
sk->sk_state_change(sk);
if (self->iriap) {
iriap_close(self->iriap);
self->iriap = NULL;
}
if (self->tsap) {
irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
irttp_close_tsap(self->tsap);
self->tsap = NULL;
}
/* A few cleanup so the socket look as good as new... */
self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
self->saddr = 0x0; /* so IrLMP assign us any link */
release_sock(sk);
return 0;
}
/*
* Function irda_poll (file, sock, wait)
*/
static unsigned int irda_poll(struct file * file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
unsigned int mask;
IRDA_DEBUG(4, "%s()\n", __func__);
poll_wait(file, sk_sleep(sk), wait);
mask = 0;
/* Exceptional events? */
if (sk->sk_err)
mask |= POLLERR;
if (sk->sk_shutdown & RCV_SHUTDOWN) {
IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__);
mask |= POLLHUP;
}
/* Readable? */
if (!skb_queue_empty(&sk->sk_receive_queue)) {
IRDA_DEBUG(4, "Socket is readable\n");
mask |= POLLIN | POLLRDNORM;
}
/* Connection-based need to check for termination and startup */
switch (sk->sk_type) {
case SOCK_STREAM:
if (sk->sk_state == TCP_CLOSE) {
IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__);
mask |= POLLHUP;
}
if (sk->sk_state == TCP_ESTABLISHED) {
if ((self->tx_flow == FLOW_START) &&
sock_writeable(sk))
{
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
}
}
break;
case SOCK_SEQPACKET:
if ((self->tx_flow == FLOW_START) &&
sock_writeable(sk))
{
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
}
break;
case SOCK_DGRAM:
if (sock_writeable(sk))
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
break;
default:
break;
}
return mask;
}
/*
* Function irda_ioctl (sock, cmd, arg)
*/
static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
int err;
IRDA_DEBUG(4, "%s(), cmd=%#x\n", __func__, cmd);
err = -EINVAL;
switch (cmd) {
case TIOCOUTQ: {
long amount;
amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
if (amount < 0)
amount = 0;
err = put_user(amount, (unsigned int __user *)arg);
break;
}
case TIOCINQ: {
struct sk_buff *skb;
long amount = 0L;
/* These two are safe on a single CPU system as only user tasks fiddle here */
if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
amount = skb->len;
err = put_user(amount, (unsigned int __user *)arg);
break;
}
case SIOCGSTAMP:
if (sk != NULL)
err = sock_get_timestamp(sk, (struct timeval __user *)arg);
break;
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCGIFMETRIC:
case SIOCSIFMETRIC:
break;
default:
IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __func__);
err = -ENOIOCTLCMD;
}
return err;
}
#ifdef CONFIG_COMPAT
/*
* Function irda_ioctl (sock, cmd, arg)
*/
static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
/*
* All IRDA's ioctl are standard ones.
*/
return -ENOIOCTLCMD;
}
#endif
/*
* Function irda_setsockopt (sock, level, optname, optval, optlen)
*
* Set some options for the socket
*
*/
static int irda_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
struct irda_ias_set *ias_opt;
struct ias_object *ias_obj;
struct ias_attrib * ias_attr; /* Attribute in IAS object */
int opt, free_ias = 0, err = 0;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
if (level != SOL_IRLMP)
return -ENOPROTOOPT;
lock_sock(sk);
switch (optname) {
case IRLMP_IAS_SET:
/* The user want to add an attribute to an existing IAS object
* (in the IAS database) or to create a new object with this
* attribute.
* We first query IAS to know if the object exist, and then
* create the right attribute...
*/
if (optlen != sizeof(struct irda_ias_set)) {
err = -EINVAL;
goto out;
}
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
if (ias_opt == NULL) {
err = -ENOMEM;
goto out;
}
/* Copy query to the driver. */
if (copy_from_user(ias_opt, optval, optlen)) {
kfree(ias_opt);
err = -EFAULT;
goto out;
}
/* Find the object we target.
* If the user gives us an empty string, we use the object
* associated with this socket. This will workaround
* duplicated class name - Jean II */
if(ias_opt->irda_class_name[0] == '\0') {
if(self->ias_obj == NULL) {
kfree(ias_opt);
err = -EINVAL;
goto out;
}
ias_obj = self->ias_obj;
} else
ias_obj = irias_find_object(ias_opt->irda_class_name);
/* Only ROOT can mess with the global IAS database.
* Users can only add attributes to the object associated
* with the socket they own - Jean II */
if((!capable(CAP_NET_ADMIN)) &&
((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
kfree(ias_opt);
err = -EPERM;
goto out;
}
/* If the object doesn't exist, create it */
if(ias_obj == (struct ias_object *) NULL) {
/* Create a new object */
ias_obj = irias_new_object(ias_opt->irda_class_name,
jiffies);
if (ias_obj == NULL) {
kfree(ias_opt);
err = -ENOMEM;
goto out;
}
free_ias = 1;
}
/* Do we have the attribute already ? */
if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
kfree(ias_opt);
if (free_ias) {
kfree(ias_obj->name);
kfree(ias_obj);
}
err = -EINVAL;
goto out;
}
/* Look at the type */
switch(ias_opt->irda_attrib_type) {
case IAS_INTEGER:
/* Add an integer attribute */
irias_add_integer_attrib(
ias_obj,
ias_opt->irda_attrib_name,
ias_opt->attribute.irda_attrib_int,
IAS_USER_ATTR);
break;
case IAS_OCT_SEQ:
/* Check length */
if(ias_opt->attribute.irda_attrib_octet_seq.len >
IAS_MAX_OCTET_STRING) {
kfree(ias_opt);
if (free_ias) {
kfree(ias_obj->name);
kfree(ias_obj);
}
err = -EINVAL;
goto out;
}
/* Add an octet sequence attribute */
irias_add_octseq_attrib(
ias_obj,
ias_opt->irda_attrib_name,
ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
ias_opt->attribute.irda_attrib_octet_seq.len,
IAS_USER_ATTR);
break;
case IAS_STRING:
/* Should check charset & co */
/* Check length */
/* The length is encoded in a __u8, and
* IAS_MAX_STRING == 256, so there is no way
* userspace can pass us a string too large.
* Jean II */
/* NULL terminate the string (avoid troubles) */
ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
/* Add a string attribute */
irias_add_string_attrib(
ias_obj,
ias_opt->irda_attrib_name,
ias_opt->attribute.irda_attrib_string.string,
IAS_USER_ATTR);
break;
default :
kfree(ias_opt);
if (free_ias) {
kfree(ias_obj->name);
kfree(ias_obj);
}
err = -EINVAL;
goto out;
}
irias_insert_object(ias_obj);
kfree(ias_opt);
break;
case IRLMP_IAS_DEL:
/* The user want to delete an object from our local IAS
* database. We just need to query the IAS, check is the
* object is not owned by the kernel and delete it.
*/
if (optlen != sizeof(struct irda_ias_set)) {
err = -EINVAL;
goto out;
}
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
if (ias_opt == NULL) {
err = -ENOMEM;
goto out;
}
/* Copy query to the driver. */
if (copy_from_user(ias_opt, optval, optlen)) {
kfree(ias_opt);
err = -EFAULT;
goto out;
}
/* Find the object we target.
* If the user gives us an empty string, we use the object
* associated with this socket. This will workaround
* duplicated class name - Jean II */
if(ias_opt->irda_class_name[0] == '\0')
ias_obj = self->ias_obj;
else
ias_obj = irias_find_object(ias_opt->irda_class_name);
if(ias_obj == (struct ias_object *) NULL) {
kfree(ias_opt);
err = -EINVAL;
goto out;
}
/* Only ROOT can mess with the global IAS database.
* Users can only del attributes from the object associated
* with the socket they own - Jean II */
if((!capable(CAP_NET_ADMIN)) &&
((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
kfree(ias_opt);
err = -EPERM;
goto out;
}
/* Find the attribute (in the object) we target */
ias_attr = irias_find_attrib(ias_obj,
ias_opt->irda_attrib_name);
if(ias_attr == (struct ias_attrib *) NULL) {
kfree(ias_opt);
err = -EINVAL;
goto out;
}
/* Check is the user space own the object */
if(ias_attr->value->owner != IAS_USER_ATTR) {
IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __func__);
kfree(ias_opt);
err = -EPERM;
goto out;
}
/* Remove the attribute (and maybe the object) */
irias_delete_attrib(ias_obj, ias_attr, 1);
kfree(ias_opt);
break;
case IRLMP_MAX_SDU_SIZE:
if (optlen < sizeof(int)) {
err = -EINVAL;
goto out;
}
if (get_user(opt, (int __user *)optval)) {
err = -EFAULT;
goto out;
}
/* Only possible for a seqpacket service (TTP with SAR) */
if (sk->sk_type != SOCK_SEQPACKET) {
IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
__func__, opt);
self->max_sdu_size_rx = opt;
} else {
IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
__func__);
err = -ENOPROTOOPT;
goto out;
}
break;
case IRLMP_HINTS_SET:
if (optlen < sizeof(int)) {
err = -EINVAL;
goto out;
}
/* The input is really a (__u8 hints[2]), easier as an int */
if (get_user(opt, (int __user *)optval)) {
err = -EFAULT;
goto out;
}
/* Unregister any old registration */
if (self->skey)
irlmp_unregister_service(self->skey);
self->skey = irlmp_register_service((__u16) opt);
break;
case IRLMP_HINT_MASK_SET:
/* As opposed to the previous case which set the hint bits
* that we advertise, this one set the filter we use when
* making a discovery (nodes which don't match any hint
* bit in the mask are not reported).
*/
if (optlen < sizeof(int)) {
err = -EINVAL;
goto out;
}
/* The input is really a (__u8 hints[2]), easier as an int */
if (get_user(opt, (int __user *)optval)) {
err = -EFAULT;
goto out;
}
/* Set the new hint mask */
self->mask.word = (__u16) opt;
/* Mask out extension bits */
self->mask.word &= 0x7f7f;
/* Check if no bits */
if(!self->mask.word)
self->mask.word = 0xFFFF;
break;
default:
err = -ENOPROTOOPT;
break;
}
out:
release_sock(sk);
return err;
}
/*
* Function irda_extract_ias_value(ias_opt, ias_value)
*
* Translate internal IAS value structure to the user space representation
*
* The external representation of IAS values, as we exchange them with
* user space program is quite different from the internal representation,
* as stored in the IAS database (because we need a flat structure for
* crossing kernel boundary).
* This function transform the former in the latter. We also check
* that the value type is valid.
*/
static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
struct ias_value *ias_value)
{
/* Look at the type */
switch (ias_value->type) {
case IAS_INTEGER:
/* Copy the integer */
ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
break;
case IAS_OCT_SEQ:
/* Set length */
ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
/* Copy over */
memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
ias_value->t.oct_seq, ias_value->len);
break;
case IAS_STRING:
/* Set length */
ias_opt->attribute.irda_attrib_string.len = ias_value->len;
ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
/* Copy over */
memcpy(ias_opt->attribute.irda_attrib_string.string,
ias_value->t.string, ias_value->len);
/* NULL terminate the string (avoid troubles) */
ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
break;
case IAS_MISSING:
default :
return -EINVAL;
}
/* Copy type over */
ias_opt->irda_attrib_type = ias_value->type;
return 0;
}
/*
* Function irda_getsockopt (sock, level, optname, optval, optlen)
*/
static int irda_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct irda_sock *self = irda_sk(sk);
struct irda_device_list list;
struct irda_device_info *discoveries;
struct irda_ias_set * ias_opt; /* IAS get/query params */
struct ias_object * ias_obj; /* Object in IAS */
struct ias_attrib * ias_attr; /* Attribute in IAS object */
int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
int val = 0;
int len = 0;
int err = 0;
int offset, total;
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
if (level != SOL_IRLMP)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if(len < 0)
return -EINVAL;
lock_sock(sk);
switch (optname) {
case IRLMP_ENUMDEVICES:
/* Offset to first device entry */
offset = sizeof(struct irda_device_list) -
sizeof(struct irda_device_info);
if (len < offset) {
err = -EINVAL;
goto out;
}
/* Ask lmp for the current discovery log */
discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
self->nslots);
/* Check if the we got some results */
if (discoveries == NULL) {
err = -EAGAIN;
goto out; /* Didn't find any devices */
}
/* Write total list length back to client */
if (copy_to_user(optval, &list, offset))
err = -EFAULT;
/* Copy the list itself - watch for overflow */
if (list.len > 2048) {
err = -EINVAL;
goto bed;
}
total = offset + (list.len * sizeof(struct irda_device_info));
if (total > len)
total = len;
if (copy_to_user(optval+offset, discoveries, total - offset))
err = -EFAULT;
/* Write total number of bytes used back to client */
if (put_user(total, optlen))
err = -EFAULT;
bed:
/* Free up our buffer */
kfree(discoveries);
break;
case IRLMP_MAX_SDU_SIZE:
val = self->max_data_size;
len = sizeof(int);
if (put_user(len, optlen)) {
err = -EFAULT;
goto out;
}
if (copy_to_user(optval, &val, len)) {
err = -EFAULT;
goto out;
}
break;
case IRLMP_IAS_GET:
/* The user want an object from our local IAS database.
* We just need to query the IAS and return the value
* that we found */
/* Check that the user has allocated the right space for us */
if (len != sizeof(struct irda_ias_set)) {
err = -EINVAL;
goto out;
}
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
if (ias_opt == NULL) {
err = -ENOMEM;
goto out;
}
/* Copy query to the driver. */
if (copy_from_user(ias_opt, optval, len)) {
kfree(ias_opt);
err = -EFAULT;
goto out;
}
/* Find the object we target.
* If the user gives us an empty string, we use the object
* associated with this socket. This will workaround
* duplicated class name - Jean II */
if(ias_opt->irda_class_name[0] == '\0')
ias_obj = self->ias_obj;
else
ias_obj = irias_find_object(ias_opt->irda_class_name);
if(ias_obj == (struct ias_object *) NULL) {
kfree(ias_opt);
err = -EINVAL;
goto out;
}
/* Find the attribute (in the object) we target */
ias_attr = irias_find_attrib(ias_obj,
ias_opt->irda_attrib_name);
if(ias_attr == (struct ias_attrib *) NULL) {
kfree(ias_opt);
err = -EINVAL;
goto out;
}
/* Translate from internal to user structure */
err = irda_extract_ias_value(ias_opt, ias_attr->value);
if(err) {
kfree(ias_opt);
goto out;
}
/* Copy reply to the user */
if (copy_to_user(optval, ias_opt,
sizeof(struct irda_ias_set))) {
kfree(ias_opt);
err = -EFAULT;
goto out;
}
/* Note : don't need to put optlen, we checked it */
kfree(ias_opt);
break;
case IRLMP_IAS_QUERY:
/* The user want an object from a remote IAS database.
* We need to use IAP to query the remote database and
* then wait for the answer to come back. */
/* Check that the user has allocated the right space for us */
if (len != sizeof(struct irda_ias_set)) {
err = -EINVAL;
goto out;
}
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
if (ias_opt == NULL) {
err = -ENOMEM;
goto out;
}
/* Copy query to the driver. */
if (copy_from_user(ias_opt, optval, len)) {
kfree(ias_opt);
err = -EFAULT;
goto out;
}
/* At this point, there are two cases...
* 1) the socket is connected - that's the easy case, we
* just query the device we are connected to...
* 2) the socket is not connected - the user doesn't want
* to connect and/or may not have a valid service name
* (so can't create a fake connection). In this case,
* we assume that the user pass us a valid destination
* address in the requesting structure...
*/
if(self->daddr != DEV_ADDR_ANY) {
/* We are connected - reuse known daddr */
daddr = self->daddr;
} else {
/* We are not connected, we must specify a valid
* destination address */
daddr = ias_opt->daddr;
if((!daddr) || (daddr == DEV_ADDR_ANY)) {
kfree(ias_opt);
err = -EINVAL;
goto out;
}
}
/* Check that we can proceed with IAP */
if (self->iriap) {
IRDA_WARNING("%s: busy with a previous query\n",
__func__);
kfree(ias_opt);
err = -EBUSY;
goto out;
}
self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
irda_getvalue_confirm);
if (self->iriap == NULL) {
kfree(ias_opt);
err = -ENOMEM;
goto out;
}
/* Treat unexpected wakeup as disconnect */
self->errno = -EHOSTUNREACH;
/* Query remote LM-IAS */
iriap_getvaluebyclass_request(self->iriap,
self->saddr, daddr,
ias_opt->irda_class_name,
ias_opt->irda_attrib_name);
/* Wait for answer, if not yet finished (or failed) */
if (wait_event_interruptible(self->query_wait,
(self->iriap == NULL))) {
/* pending request uses copy of ias_opt-content
* we can free it regardless! */
kfree(ias_opt);
/* Treat signals as disconnect */
err = -EHOSTUNREACH;
goto out;
}
/* Check what happened */
if (self->errno)
{
kfree(ias_opt);
/* Requested object/attribute doesn't exist */
if((self->errno == IAS_CLASS_UNKNOWN) ||
(self->errno == IAS_ATTRIB_UNKNOWN))
err = -EADDRNOTAVAIL;
else
err = -EHOSTUNREACH;
goto out;
}
/* Translate from internal to user structure */
err = irda_extract_ias_value(ias_opt, self->ias_result);
if (self->ias_result)
irias_delete_value(self->ias_result);
if (err) {
kfree(ias_opt);
goto out;
}
/* Copy reply to the user */
if (copy_to_user(optval, ias_opt,
sizeof(struct irda_ias_set))) {
kfree(ias_opt);
err = -EFAULT;
goto out;
}
/* Note : don't need to put optlen, we checked it */
kfree(ias_opt);
break;
case IRLMP_WAITDEVICE:
/* This function is just another way of seeing life ;-)
* IRLMP_ENUMDEVICES assumes that you have a static network,
* and that you just want to pick one of the devices present.
* On the other hand, in here we assume that no device is
* present and that at some point in the future a device will
* come into range. When this device arrive, we just wake
* up the caller, so that he has time to connect to it before
* the device goes away...
* Note : once the node has been discovered for more than a
* few second, it won't trigger this function, unless it
* goes away and come back changes its hint bits (so we
* might call it IRLMP_WAITNEWDEVICE).
*/
/* Check that the user is passing us an int */
if (len != sizeof(int)) {
err = -EINVAL;
goto out;
}
/* Get timeout in ms (max time we block the caller) */
if (get_user(val, (int __user *)optval)) {
err = -EFAULT;
goto out;
}
/* Tell IrLMP we want to be notified */
irlmp_update_client(self->ckey, self->mask.word,
irda_selective_discovery_indication,
NULL, (void *) self);
/* Do some discovery (and also return cached results) */
irlmp_discovery_request(self->nslots);
/* Wait until a node is discovered */
if (!self->cachedaddr) {
IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __func__);
/* Set watchdog timer to expire in <val> ms. */
self->errno = 0;
setup_timer(&self->watchdog, irda_discovery_timeout,
(unsigned long)self);
mod_timer(&self->watchdog,
jiffies + msecs_to_jiffies(val));
/* Wait for IR-LMP to call us back */
__wait_event_interruptible(self->query_wait,
(self->cachedaddr != 0 || self->errno == -ETIME),
err);
/* If watchdog is still activated, kill it! */
if(timer_pending(&(self->watchdog)))
del_timer(&(self->watchdog));
IRDA_DEBUG(1, "%s(), ...waking up !\n", __func__);
if (err != 0)
goto out;
}
else
IRDA_DEBUG(1, "%s(), found immediately !\n",
__func__);
/* Tell IrLMP that we have been notified */
irlmp_update_client(self->ckey, self->mask.word,
NULL, NULL, NULL);
/* Check if the we got some results */
if (!self->cachedaddr)
return -EAGAIN; /* Didn't find any devices */
daddr = self->cachedaddr;
/* Cleanup */
self->cachedaddr = 0;
/* We return the daddr of the device that trigger the
* wakeup. As irlmp pass us only the new devices, we
* are sure that it's not an old device.
* If the user want more details, he should query
* the whole discovery log and pick one device...
*/
if (put_user(daddr, (int __user *)optval)) {
err = -EFAULT;
goto out;
}
break;
default:
err = -ENOPROTOOPT;
}
out:
release_sock(sk);
return err;
}
static const struct net_proto_family irda_family_ops = {
.family = PF_IRDA,
.create = irda_create,
.owner = THIS_MODULE,
};
static const struct proto_ops irda_stream_ops = {
.family = PF_IRDA,
.owner = THIS_MODULE,
.release = irda_release,
.bind = irda_bind,
.connect = irda_connect,
.socketpair = sock_no_socketpair,
.accept = irda_accept,
.getname = irda_getname,
.poll = irda_poll,
.ioctl = irda_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = irda_compat_ioctl,
#endif
.listen = irda_listen,
.shutdown = irda_shutdown,
.setsockopt = irda_setsockopt,
.getsockopt = irda_getsockopt,
.sendmsg = irda_sendmsg,
.recvmsg = irda_recvmsg_stream,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static const struct proto_ops irda_seqpacket_ops = {
.family = PF_IRDA,
.owner = THIS_MODULE,
.release = irda_release,
.bind = irda_bind,
.connect = irda_connect,
.socketpair = sock_no_socketpair,
.accept = irda_accept,
.getname = irda_getname,
.poll = datagram_poll,
.ioctl = irda_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = irda_compat_ioctl,
#endif
.listen = irda_listen,
.shutdown = irda_shutdown,
.setsockopt = irda_setsockopt,
.getsockopt = irda_getsockopt,
.sendmsg = irda_sendmsg,
.recvmsg = irda_recvmsg_dgram,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static const struct proto_ops irda_dgram_ops = {
.family = PF_IRDA,
.owner = THIS_MODULE,
.release = irda_release,
.bind = irda_bind,
.connect = irda_connect,
.socketpair = sock_no_socketpair,
.accept = irda_accept,
.getname = irda_getname,
.poll = datagram_poll,
.ioctl = irda_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = irda_compat_ioctl,
#endif
.listen = irda_listen,
.shutdown = irda_shutdown,
.setsockopt = irda_setsockopt,
.getsockopt = irda_getsockopt,
.sendmsg = irda_sendmsg_dgram,
.recvmsg = irda_recvmsg_dgram,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
#ifdef CONFIG_IRDA_ULTRA
static const struct proto_ops irda_ultra_ops = {
.family = PF_IRDA,
.owner = THIS_MODULE,
.release = irda_release,
.bind = irda_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = irda_getname,
.poll = datagram_poll,
.ioctl = irda_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = irda_compat_ioctl,
#endif
.listen = sock_no_listen,
.shutdown = irda_shutdown,
.setsockopt = irda_setsockopt,
.getsockopt = irda_getsockopt,
.sendmsg = irda_sendmsg_ultra,
.recvmsg = irda_recvmsg_dgram,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
#endif /* CONFIG_IRDA_ULTRA */
/*
* Function irsock_init (pro)
*
* Initialize IrDA protocol
*
*/
int __init irsock_init(void)
{
int rc = proto_register(&irda_proto, 0);
if (rc == 0)
rc = sock_register(&irda_family_ops);
return rc;
}
/*
* Function irsock_cleanup (void)
*
* Remove IrDA protocol
*
*/
void irsock_cleanup(void)
{
sock_unregister(PF_IRDA);
proto_unregister(&irda_proto);
}