1852 строки
46 KiB
C
1852 строки
46 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_reflink.h"
|
|
|
|
#include <linux/iversion.h>
|
|
|
|
/*
|
|
* Allocate and initialise an xfs_inode.
|
|
*/
|
|
struct xfs_inode *
|
|
xfs_inode_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_ino_t ino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
/*
|
|
* if this didn't occur in transactions, we could use
|
|
* KM_MAYFAIL and return NULL here on ENOMEM. Set the
|
|
* code up to do this anyway.
|
|
*/
|
|
ip = kmem_zone_alloc(xfs_inode_zone, 0);
|
|
if (!ip)
|
|
return NULL;
|
|
if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
return NULL;
|
|
}
|
|
|
|
/* VFS doesn't initialise i_mode! */
|
|
VFS_I(ip)->i_mode = 0;
|
|
|
|
XFS_STATS_INC(mp, vn_active);
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(!xfs_isiflocked(ip));
|
|
ASSERT(ip->i_ino == 0);
|
|
|
|
/* initialise the xfs inode */
|
|
ip->i_ino = ino;
|
|
ip->i_mount = mp;
|
|
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
|
ip->i_afp = NULL;
|
|
ip->i_cowfp = NULL;
|
|
ip->i_cnextents = 0;
|
|
ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
|
|
memset(&ip->i_df, 0, sizeof(ip->i_df));
|
|
ip->i_flags = 0;
|
|
ip->i_delayed_blks = 0;
|
|
memset(&ip->i_d, 0, sizeof(ip->i_d));
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
INIT_WORK(&ip->i_ioend_work, xfs_end_io);
|
|
INIT_LIST_HEAD(&ip->i_ioend_list);
|
|
spin_lock_init(&ip->i_ioend_lock);
|
|
|
|
return ip;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_free_callback(
|
|
struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
switch (VFS_I(ip)->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
case S_IFLNK:
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
|
break;
|
|
}
|
|
|
|
if (ip->i_afp)
|
|
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
|
if (ip->i_cowfp)
|
|
xfs_idestroy_fork(ip, XFS_COW_FORK);
|
|
|
|
if (ip->i_itemp) {
|
|
ASSERT(!test_bit(XFS_LI_IN_AIL,
|
|
&ip->i_itemp->ili_item.li_flags));
|
|
xfs_inode_item_destroy(ip);
|
|
ip->i_itemp = NULL;
|
|
}
|
|
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
}
|
|
|
|
static void
|
|
__xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/* asserts to verify all state is correct here */
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
XFS_STATS_DEC(ip->i_mount, vn_active);
|
|
|
|
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
|
}
|
|
|
|
void
|
|
xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
ASSERT(!xfs_isiflocked(ip));
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always
|
|
* appears to be reclaimed with an invalid inode number when in the
|
|
* free state. The ip->i_flags_lock provides the barrier against lookup
|
|
* races.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
__xfs_inode_free(ip);
|
|
}
|
|
|
|
/*
|
|
* Queue a new inode reclaim pass if there are reclaimable inodes and there
|
|
* isn't a reclaim pass already in progress. By default it runs every 5s based
|
|
* on the xfs periodic sync default of 30s. Perhaps this should have it's own
|
|
* tunable, but that can be done if this method proves to be ineffective or too
|
|
* aggressive.
|
|
*/
|
|
static void
|
|
xfs_reclaim_work_queue(
|
|
struct xfs_mount *mp)
|
|
{
|
|
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
|
|
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* This is a fast pass over the inode cache to try to get reclaim moving on as
|
|
* many inodes as possible in a short period of time. It kicks itself every few
|
|
* seconds, as well as being kicked by the inode cache shrinker when memory
|
|
* goes low. It scans as quickly as possible avoiding locked inodes or those
|
|
* already being flushed, and once done schedules a future pass.
|
|
*/
|
|
void
|
|
xfs_reclaim_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
|
struct xfs_mount, m_reclaim_work);
|
|
|
|
xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
|
|
xfs_reclaim_work_queue(mp);
|
|
}
|
|
|
|
static void
|
|
xfs_perag_set_reclaim_tag(
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
if (pag->pag_ici_reclaimable++)
|
|
return;
|
|
|
|
/* propagate the reclaim tag up into the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
|
|
XFS_ICI_RECLAIM_TAG);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
|
|
/* schedule periodic background inode reclaim */
|
|
xfs_reclaim_work_queue(mp);
|
|
|
|
trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
|
|
}
|
|
|
|
static void
|
|
xfs_perag_clear_reclaim_tag(
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
if (--pag->pag_ici_reclaimable)
|
|
return;
|
|
|
|
/* clear the reclaim tag from the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
|
|
XFS_ICI_RECLAIM_TAG);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
|
|
}
|
|
|
|
|
|
/*
|
|
* We set the inode flag atomically with the radix tree tag.
|
|
* Once we get tag lookups on the radix tree, this inode flag
|
|
* can go away.
|
|
*/
|
|
void
|
|
xfs_inode_set_reclaim_tag(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
xfs_perag_set_reclaim_tag(pag);
|
|
__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_clear_reclaim_tag(
|
|
struct xfs_perag *pag,
|
|
xfs_ino_t ino)
|
|
{
|
|
radix_tree_tag_clear(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(pag->pag_mount, ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
xfs_perag_clear_reclaim_tag(pag);
|
|
}
|
|
|
|
static void
|
|
xfs_inew_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (!xfs_iflags_test(ip, XFS_INEW))
|
|
break;
|
|
schedule();
|
|
} while (true);
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
/*
|
|
* When we recycle a reclaimable inode, we need to re-initialise the VFS inode
|
|
* part of the structure. This is made more complex by the fact we store
|
|
* information about the on-disk values in the VFS inode and so we can't just
|
|
* overwrite the values unconditionally. Hence we save the parameters we
|
|
* need to retain across reinitialisation, and rewrite them into the VFS inode
|
|
* after reinitialisation even if it fails.
|
|
*/
|
|
static int
|
|
xfs_reinit_inode(
|
|
struct xfs_mount *mp,
|
|
struct inode *inode)
|
|
{
|
|
int error;
|
|
uint32_t nlink = inode->i_nlink;
|
|
uint32_t generation = inode->i_generation;
|
|
uint64_t version = inode_peek_iversion(inode);
|
|
umode_t mode = inode->i_mode;
|
|
dev_t dev = inode->i_rdev;
|
|
kuid_t uid = inode->i_uid;
|
|
kgid_t gid = inode->i_gid;
|
|
|
|
error = inode_init_always(mp->m_super, inode);
|
|
|
|
set_nlink(inode, nlink);
|
|
inode->i_generation = generation;
|
|
inode_set_iversion_queried(inode, version);
|
|
inode->i_mode = mode;
|
|
inode->i_rdev = dev;
|
|
inode->i_uid = uid;
|
|
inode->i_gid = gid;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If we are allocating a new inode, then check what was returned is
|
|
* actually a free, empty inode. If we are not allocating an inode,
|
|
* then check we didn't find a free inode.
|
|
*
|
|
* Returns:
|
|
* 0 if the inode free state matches the lookup context
|
|
* -ENOENT if the inode is free and we are not allocating
|
|
* -EFSCORRUPTED if there is any state mismatch at all
|
|
*/
|
|
static int
|
|
xfs_iget_check_free_state(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
if (flags & XFS_IGET_CREATE) {
|
|
/* should be a free inode */
|
|
if (VFS_I(ip)->i_mode != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
|
|
ip->i_ino, VFS_I(ip)->i_mode);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (ip->i_d.di_nblocks != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx has blocks allocated!",
|
|
ip->i_ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* should be an allocated inode */
|
|
if (VFS_I(ip)->i_mode == 0)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the inode we just found it the cache
|
|
*/
|
|
static int
|
|
xfs_iget_cache_hit(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip,
|
|
xfs_ino_t ino,
|
|
int flags,
|
|
int lock_flags) __releases(RCU)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
/*
|
|
* check for re-use of an inode within an RCU grace period due to the
|
|
* radix tree nodes not being updated yet. We monitor for this by
|
|
* setting the inode number to zero before freeing the inode structure.
|
|
* If the inode has been reallocated and set up, then the inode number
|
|
* will not match, so check for that, too.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != ino) {
|
|
trace_xfs_iget_skip(ip);
|
|
XFS_STATS_INC(mp, xs_ig_frecycle);
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
|
|
/*
|
|
* If we are racing with another cache hit that is currently
|
|
* instantiating this inode or currently recycling it out of
|
|
* reclaimabe state, wait for the initialisation to complete
|
|
* before continuing.
|
|
*
|
|
* XXX(hch): eventually we should do something equivalent to
|
|
* wait_on_inode to wait for these flags to be cleared
|
|
* instead of polling for it.
|
|
*/
|
|
if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
|
|
trace_xfs_iget_skip(ip);
|
|
XFS_STATS_INC(mp, xs_ig_frecycle);
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
/*
|
|
* If IRECLAIMABLE is set, we've torn down the VFS inode already.
|
|
* Need to carefully get it back into useable state.
|
|
*/
|
|
if (ip->i_flags & XFS_IRECLAIMABLE) {
|
|
trace_xfs_iget_reclaim(ip);
|
|
|
|
if (flags & XFS_IGET_INCORE) {
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/*
|
|
* We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
|
|
* from stomping over us while we recycle the inode. We can't
|
|
* clear the radix tree reclaimable tag yet as it requires
|
|
* pag_ici_lock to be held exclusive.
|
|
*/
|
|
ip->i_flags |= XFS_IRECLAIM;
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
error = xfs_reinit_inode(mp, inode);
|
|
if (error) {
|
|
bool wake;
|
|
/*
|
|
* Re-initializing the inode failed, and we are in deep
|
|
* trouble. Try to re-add it to the reclaim list.
|
|
*/
|
|
rcu_read_lock();
|
|
spin_lock(&ip->i_flags_lock);
|
|
wake = !!__xfs_iflags_test(ip, XFS_INEW);
|
|
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
|
|
if (wake)
|
|
wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
|
|
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
|
|
trace_xfs_iget_reclaim_fail(ip);
|
|
goto out_error;
|
|
}
|
|
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* Clear the per-lifetime state in the inode as we are now
|
|
* effectively a new inode and need to return to the initial
|
|
* state before reuse occurs.
|
|
*/
|
|
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
|
ip->i_flags |= XFS_INEW;
|
|
xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
|
|
inode->i_state = I_NEW;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
|
|
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
|
|
init_rwsem(&inode->i_rwsem);
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
} else {
|
|
/* If the VFS inode is being torn down, pause and try again. */
|
|
if (!igrab(inode)) {
|
|
trace_xfs_iget_skip(ip);
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/* We've got a live one. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
trace_xfs_iget_hit(ip);
|
|
}
|
|
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
if (!(flags & XFS_IGET_INCORE))
|
|
xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
|
|
XFS_STATS_INC(mp, xs_ig_found);
|
|
|
|
return 0;
|
|
|
|
out_error:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|
|
|
|
|
|
static int
|
|
xfs_iget_cache_miss(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
struct xfs_inode **ipp,
|
|
int flags,
|
|
int lock_flags)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
|
int iflags;
|
|
|
|
ip = xfs_inode_alloc(mp, ino);
|
|
if (!ip)
|
|
return -ENOMEM;
|
|
|
|
error = xfs_iread(mp, tp, ip, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
if (!xfs_inode_verify_forks(ip)) {
|
|
error = -EFSCORRUPTED;
|
|
goto out_destroy;
|
|
}
|
|
|
|
trace_xfs_iget_miss(ip);
|
|
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* Preload the radix tree so we can insert safely under the
|
|
* write spinlock. Note that we cannot sleep inside the preload
|
|
* region. Since we can be called from transaction context, don't
|
|
* recurse into the file system.
|
|
*/
|
|
if (radix_tree_preload(GFP_NOFS)) {
|
|
error = -EAGAIN;
|
|
goto out_destroy;
|
|
}
|
|
|
|
/*
|
|
* Because the inode hasn't been added to the radix-tree yet it can't
|
|
* be found by another thread, so we can do the non-sleeping lock here.
|
|
*/
|
|
if (lock_flags) {
|
|
if (!xfs_ilock_nowait(ip, lock_flags))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* These values must be set before inserting the inode into the radix
|
|
* tree as the moment it is inserted a concurrent lookup (allowed by the
|
|
* RCU locking mechanism) can find it and that lookup must see that this
|
|
* is an inode currently under construction (i.e. that XFS_INEW is set).
|
|
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
|
|
* memory barrier that ensures this detection works correctly at lookup
|
|
* time.
|
|
*/
|
|
iflags = XFS_INEW;
|
|
if (flags & XFS_IGET_DONTCACHE)
|
|
iflags |= XFS_IDONTCACHE;
|
|
ip->i_udquot = NULL;
|
|
ip->i_gdquot = NULL;
|
|
ip->i_pdquot = NULL;
|
|
xfs_iflags_set(ip, iflags);
|
|
|
|
/* insert the new inode */
|
|
spin_lock(&pag->pag_ici_lock);
|
|
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
|
if (unlikely(error)) {
|
|
WARN_ON(error != -EEXIST);
|
|
XFS_STATS_INC(mp, xs_ig_dup);
|
|
error = -EAGAIN;
|
|
goto out_preload_end;
|
|
}
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_preload_end:
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
out_destroy:
|
|
__destroy_inode(VFS_I(ip));
|
|
xfs_inode_free(ip);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up an inode by number in the given file system.
|
|
* The inode is looked up in the cache held in each AG.
|
|
* If the inode is found in the cache, initialise the vfs inode
|
|
* if necessary.
|
|
*
|
|
* If it is not in core, read it in from the file system's device,
|
|
* add it to the cache and initialise the vfs inode.
|
|
*
|
|
* The inode is locked according to the value of the lock_flags parameter.
|
|
* This flag parameter indicates how and if the inode's IO lock and inode lock
|
|
* should be taken.
|
|
*
|
|
* mp -- the mount point structure for the current file system. It points
|
|
* to the inode hash table.
|
|
* tp -- a pointer to the current transaction if there is one. This is
|
|
* simply passed through to the xfs_iread() call.
|
|
* ino -- the number of the inode desired. This is the unique identifier
|
|
* within the file system for the inode being requested.
|
|
* lock_flags -- flags indicating how to lock the inode. See the comment
|
|
* for xfs_ilock() for a list of valid values.
|
|
*/
|
|
int
|
|
xfs_iget(
|
|
xfs_mount_t *mp,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
xfs_inode_t **ipp)
|
|
{
|
|
xfs_inode_t *ip;
|
|
int error;
|
|
xfs_perag_t *pag;
|
|
xfs_agino_t agino;
|
|
|
|
/*
|
|
* xfs_reclaim_inode() uses the ILOCK to ensure an inode
|
|
* doesn't get freed while it's being referenced during a
|
|
* radix tree traversal here. It assumes this function
|
|
* aqcuires only the ILOCK (and therefore it has no need to
|
|
* involve the IOLOCK in this synchronization).
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
|
|
|
|
/* reject inode numbers outside existing AGs */
|
|
if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
|
|
return -EINVAL;
|
|
|
|
XFS_STATS_INC(mp, xs_ig_attempts);
|
|
|
|
/* get the perag structure and ensure that it's inode capable */
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
again:
|
|
error = 0;
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
|
|
if (ip) {
|
|
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
} else {
|
|
rcu_read_unlock();
|
|
if (flags & XFS_IGET_INCORE) {
|
|
error = -ENODATA;
|
|
goto out_error_or_again;
|
|
}
|
|
XFS_STATS_INC(mp, xs_ig_missed);
|
|
|
|
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
|
|
flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
|
|
*ipp = ip;
|
|
|
|
/*
|
|
* If we have a real type for an on-disk inode, we can setup the inode
|
|
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
|
|
xfs_setup_existing_inode(ip);
|
|
return 0;
|
|
|
|
out_error_or_again:
|
|
if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
|
|
delay(1);
|
|
goto again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* "Is this a cached inode that's also allocated?"
|
|
*
|
|
* Look up an inode by number in the given file system. If the inode is
|
|
* in cache and isn't in purgatory, return 1 if the inode is allocated
|
|
* and 0 if it is not. For all other cases (not in cache, being torn
|
|
* down, etc.), return a negative error code.
|
|
*
|
|
* The caller has to prevent inode allocation and freeing activity,
|
|
* presumably by locking the AGI buffer. This is to ensure that an
|
|
* inode cannot transition from allocated to freed until the caller is
|
|
* ready to allow that. If the inode is in an intermediate state (new,
|
|
* reclaimable, or being reclaimed), -EAGAIN will be returned; if the
|
|
* inode is not in the cache, -ENOENT will be returned. The caller must
|
|
* deal with these scenarios appropriately.
|
|
*
|
|
* This is a specialized use case for the online scrubber; if you're
|
|
* reading this, you probably want xfs_iget.
|
|
*/
|
|
int
|
|
xfs_icache_inode_is_allocated(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
bool *inuse)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
|
|
if (error)
|
|
return error;
|
|
|
|
*inuse = !!(VFS_I(ip)->i_mode);
|
|
xfs_irele(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The inode lookup is done in batches to keep the amount of lock traffic and
|
|
* radix tree lookups to a minimum. The batch size is a trade off between
|
|
* lookup reduction and stack usage. This is in the reclaim path, so we can't
|
|
* be too greedy.
|
|
*/
|
|
#define XFS_LOOKUP_BATCH 32
|
|
|
|
STATIC int
|
|
xfs_inode_ag_walk_grab(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
|
|
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
/*
|
|
* check for stale RCU freed inode
|
|
*
|
|
* If the inode has been reallocated, it doesn't matter if it's not in
|
|
* the AG we are walking - we are walking for writeback, so if it
|
|
* passes all the "valid inode" checks and is dirty, then we'll write
|
|
* it back anyway. If it has been reallocated and still being
|
|
* initialised, the XFS_INEW check below will catch it.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!ip->i_ino)
|
|
goto out_unlock_noent;
|
|
|
|
/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
|
|
if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
|
|
__xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
|
|
goto out_unlock_noent;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
/* nothing to sync during shutdown */
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
return -EFSCORRUPTED;
|
|
|
|
/* If we can't grab the inode, it must on it's way to reclaim. */
|
|
if (!igrab(inode))
|
|
return -ENOENT;
|
|
|
|
/* inode is valid */
|
|
return 0;
|
|
|
|
out_unlock_noent:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inode_ag_walk(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag,
|
|
int (*execute)(struct xfs_inode *ip, int flags,
|
|
void *args),
|
|
int flags,
|
|
void *args,
|
|
int tag,
|
|
int iter_flags)
|
|
{
|
|
uint32_t first_index;
|
|
int last_error = 0;
|
|
int skipped;
|
|
int done;
|
|
int nr_found;
|
|
|
|
restart:
|
|
done = 0;
|
|
skipped = 0;
|
|
first_index = 0;
|
|
nr_found = 0;
|
|
do {
|
|
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
|
|
int error = 0;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
|
|
if (tag == -1)
|
|
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
|
|
(void **)batch, first_index,
|
|
XFS_LOOKUP_BATCH);
|
|
else
|
|
nr_found = radix_tree_gang_lookup_tag(
|
|
&pag->pag_ici_root,
|
|
(void **) batch, first_index,
|
|
XFS_LOOKUP_BATCH, tag);
|
|
|
|
if (!nr_found) {
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the inodes before we drop the lock. if we found
|
|
* nothing, nr == 0 and the loop will be skipped.
|
|
*/
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = batch[i];
|
|
|
|
if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
|
|
batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can occur if
|
|
* we have inodes in the last block of the AG and we
|
|
* are currently pointing to the last inode.
|
|
*
|
|
* Because we may see inodes that are from the wrong AG
|
|
* due to RCU freeing and reallocation, only update the
|
|
* index if it lies in this AG. It was a race that lead
|
|
* us to see this inode, so another lookup from the
|
|
* same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = 1;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (!batch[i])
|
|
continue;
|
|
if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
|
|
xfs_iflags_test(batch[i], XFS_INEW))
|
|
xfs_inew_wait(batch[i]);
|
|
error = execute(batch[i], flags, args);
|
|
xfs_irele(batch[i]);
|
|
if (error == -EAGAIN) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
if (error && last_error != -EFSCORRUPTED)
|
|
last_error = error;
|
|
}
|
|
|
|
/* bail out if the filesystem is corrupted. */
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
} while (nr_found && !done);
|
|
|
|
if (skipped) {
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
/*
|
|
* Background scanning to trim post-EOF preallocated space. This is queued
|
|
* based on the 'speculative_prealloc_lifetime' tunable (5m by default).
|
|
*/
|
|
void
|
|
xfs_queue_eofblocks(
|
|
struct xfs_mount *mp)
|
|
{
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
|
|
queue_delayed_work(mp->m_eofblocks_workqueue,
|
|
&mp->m_eofblocks_work,
|
|
msecs_to_jiffies(xfs_eofb_secs * 1000));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void
|
|
xfs_eofblocks_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
|
struct xfs_mount, m_eofblocks_work);
|
|
|
|
if (!sb_start_write_trylock(mp->m_super))
|
|
return;
|
|
xfs_icache_free_eofblocks(mp, NULL);
|
|
sb_end_write(mp->m_super);
|
|
|
|
xfs_queue_eofblocks(mp);
|
|
}
|
|
|
|
/*
|
|
* Background scanning to trim preallocated CoW space. This is queued
|
|
* based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
|
|
* (We'll just piggyback on the post-EOF prealloc space workqueue.)
|
|
*/
|
|
void
|
|
xfs_queue_cowblocks(
|
|
struct xfs_mount *mp)
|
|
{
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
|
|
queue_delayed_work(mp->m_eofblocks_workqueue,
|
|
&mp->m_cowblocks_work,
|
|
msecs_to_jiffies(xfs_cowb_secs * 1000));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void
|
|
xfs_cowblocks_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
|
struct xfs_mount, m_cowblocks_work);
|
|
|
|
if (!sb_start_write_trylock(mp->m_super))
|
|
return;
|
|
xfs_icache_free_cowblocks(mp, NULL);
|
|
sb_end_write(mp->m_super);
|
|
|
|
xfs_queue_cowblocks(mp);
|
|
}
|
|
|
|
int
|
|
xfs_inode_ag_iterator_flags(
|
|
struct xfs_mount *mp,
|
|
int (*execute)(struct xfs_inode *ip, int flags,
|
|
void *args),
|
|
int flags,
|
|
void *args,
|
|
int iter_flags)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int last_error = 0;
|
|
xfs_agnumber_t ag;
|
|
|
|
ag = 0;
|
|
while ((pag = xfs_perag_get(mp, ag))) {
|
|
ag = pag->pag_agno + 1;
|
|
error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
|
|
iter_flags);
|
|
xfs_perag_put(pag);
|
|
if (error) {
|
|
last_error = error;
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
}
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
int
|
|
xfs_inode_ag_iterator(
|
|
struct xfs_mount *mp,
|
|
int (*execute)(struct xfs_inode *ip, int flags,
|
|
void *args),
|
|
int flags,
|
|
void *args)
|
|
{
|
|
return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
|
|
}
|
|
|
|
int
|
|
xfs_inode_ag_iterator_tag(
|
|
struct xfs_mount *mp,
|
|
int (*execute)(struct xfs_inode *ip, int flags,
|
|
void *args),
|
|
int flags,
|
|
void *args,
|
|
int tag)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int last_error = 0;
|
|
xfs_agnumber_t ag;
|
|
|
|
ag = 0;
|
|
while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
|
|
ag = pag->pag_agno + 1;
|
|
error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
|
|
0);
|
|
xfs_perag_put(pag);
|
|
if (error) {
|
|
last_error = error;
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
}
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
/*
|
|
* Grab the inode for reclaim exclusively.
|
|
* Return 0 if we grabbed it, non-zero otherwise.
|
|
*/
|
|
STATIC int
|
|
xfs_reclaim_inode_grab(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
/* quick check for stale RCU freed inode */
|
|
if (!ip->i_ino)
|
|
return 1;
|
|
|
|
/*
|
|
* If we are asked for non-blocking operation, do unlocked checks to
|
|
* see if the inode already is being flushed or in reclaim to avoid
|
|
* lock traffic.
|
|
*/
|
|
if ((flags & SYNC_TRYLOCK) &&
|
|
__xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
|
|
return 1;
|
|
|
|
/*
|
|
* The radix tree lock here protects a thread in xfs_iget from racing
|
|
* with us starting reclaim on the inode. Once we have the
|
|
* XFS_IRECLAIM flag set it will not touch us.
|
|
*
|
|
* Due to RCU lookup, we may find inodes that have been freed and only
|
|
* have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
|
|
* aren't candidates for reclaim at all, so we must check the
|
|
* XFS_IRECLAIMABLE is set first before proceeding to reclaim.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
|
|
__xfs_iflags_test(ip, XFS_IRECLAIM)) {
|
|
/* not a reclaim candidate. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return 1;
|
|
}
|
|
__xfs_iflags_set(ip, XFS_IRECLAIM);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Inodes in different states need to be treated differently. The following
|
|
* table lists the inode states and the reclaim actions necessary:
|
|
*
|
|
* inode state iflush ret required action
|
|
* --------------- ---------- ---------------
|
|
* bad - reclaim
|
|
* shutdown EIO unpin and reclaim
|
|
* clean, unpinned 0 reclaim
|
|
* stale, unpinned 0 reclaim
|
|
* clean, pinned(*) 0 requeue
|
|
* stale, pinned EAGAIN requeue
|
|
* dirty, async - requeue
|
|
* dirty, sync 0 reclaim
|
|
*
|
|
* (*) dgc: I don't think the clean, pinned state is possible but it gets
|
|
* handled anyway given the order of checks implemented.
|
|
*
|
|
* Also, because we get the flush lock first, we know that any inode that has
|
|
* been flushed delwri has had the flush completed by the time we check that
|
|
* the inode is clean.
|
|
*
|
|
* Note that because the inode is flushed delayed write by AIL pushing, the
|
|
* flush lock may already be held here and waiting on it can result in very
|
|
* long latencies. Hence for sync reclaims, where we wait on the flush lock,
|
|
* the caller should push the AIL first before trying to reclaim inodes to
|
|
* minimise the amount of time spent waiting. For background relaim, we only
|
|
* bother to reclaim clean inodes anyway.
|
|
*
|
|
* Hence the order of actions after gaining the locks should be:
|
|
* bad => reclaim
|
|
* shutdown => unpin and reclaim
|
|
* pinned, async => requeue
|
|
* pinned, sync => unpin
|
|
* stale => reclaim
|
|
* clean => reclaim
|
|
* dirty, async => requeue
|
|
* dirty, sync => flush, wait and reclaim
|
|
*/
|
|
STATIC int
|
|
xfs_reclaim_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_perag *pag,
|
|
int sync_mode)
|
|
{
|
|
struct xfs_buf *bp = NULL;
|
|
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
|
|
int error;
|
|
|
|
restart:
|
|
error = 0;
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
if (!xfs_iflock_nowait(ip)) {
|
|
if (!(sync_mode & SYNC_WAIT))
|
|
goto out;
|
|
xfs_iflock(ip);
|
|
}
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_iunpin_wait(ip);
|
|
/* xfs_iflush_abort() drops the flush lock */
|
|
xfs_iflush_abort(ip, false);
|
|
goto reclaim;
|
|
}
|
|
if (xfs_ipincount(ip)) {
|
|
if (!(sync_mode & SYNC_WAIT))
|
|
goto out_ifunlock;
|
|
xfs_iunpin_wait(ip);
|
|
}
|
|
if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
|
|
xfs_ifunlock(ip);
|
|
goto reclaim;
|
|
}
|
|
|
|
/*
|
|
* Never flush out dirty data during non-blocking reclaim, as it would
|
|
* just contend with AIL pushing trying to do the same job.
|
|
*/
|
|
if (!(sync_mode & SYNC_WAIT))
|
|
goto out_ifunlock;
|
|
|
|
/*
|
|
* Now we have an inode that needs flushing.
|
|
*
|
|
* Note that xfs_iflush will never block on the inode buffer lock, as
|
|
* xfs_ifree_cluster() can lock the inode buffer before it locks the
|
|
* ip->i_lock, and we are doing the exact opposite here. As a result,
|
|
* doing a blocking xfs_imap_to_bp() to get the cluster buffer would
|
|
* result in an ABBA deadlock with xfs_ifree_cluster().
|
|
*
|
|
* As xfs_ifree_cluser() must gather all inodes that are active in the
|
|
* cache to mark them stale, if we hit this case we don't actually want
|
|
* to do IO here - we want the inode marked stale so we can simply
|
|
* reclaim it. Hence if we get an EAGAIN error here, just unlock the
|
|
* inode, back off and try again. Hopefully the next pass through will
|
|
* see the stale flag set on the inode.
|
|
*/
|
|
error = xfs_iflush(ip, &bp);
|
|
if (error == -EAGAIN) {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
/* backoff longer than in xfs_ifree_cluster */
|
|
delay(2);
|
|
goto restart;
|
|
}
|
|
|
|
if (!error) {
|
|
error = xfs_bwrite(bp);
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
reclaim:
|
|
ASSERT(!xfs_isiflocked(ip));
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always appears
|
|
* to be reclaimed with an invalid inode number when in the free state.
|
|
* We do this as early as possible under the ILOCK so that
|
|
* xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
|
|
* detect races with us here. By doing this, we guarantee that once
|
|
* xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
|
|
* it will see either a valid inode that will serialise correctly, or it
|
|
* will see an invalid inode that it can skip.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
|
|
/*
|
|
* Remove the inode from the per-AG radix tree.
|
|
*
|
|
* Because radix_tree_delete won't complain even if the item was never
|
|
* added to the tree assert that it's been there before to catch
|
|
* problems with the inode life time early on.
|
|
*/
|
|
spin_lock(&pag->pag_ici_lock);
|
|
if (!radix_tree_delete(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ino)))
|
|
ASSERT(0);
|
|
xfs_perag_clear_reclaim_tag(pag);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
|
|
/*
|
|
* Here we do an (almost) spurious inode lock in order to coordinate
|
|
* with inode cache radix tree lookups. This is because the lookup
|
|
* can reference the inodes in the cache without taking references.
|
|
*
|
|
* We make that OK here by ensuring that we wait until the inode is
|
|
* unlocked after the lookup before we go ahead and free it.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_qm_dqdetach(ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
__xfs_inode_free(ip);
|
|
return error;
|
|
|
|
out_ifunlock:
|
|
xfs_ifunlock(ip);
|
|
out:
|
|
xfs_iflags_clear(ip, XFS_IRECLAIM);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
/*
|
|
* We could return -EAGAIN here to make reclaim rescan the inode tree in
|
|
* a short while. However, this just burns CPU time scanning the tree
|
|
* waiting for IO to complete and the reclaim work never goes back to
|
|
* the idle state. Instead, return 0 to let the next scheduled
|
|
* background reclaim attempt to reclaim the inode again.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk the AGs and reclaim the inodes in them. Even if the filesystem is
|
|
* corrupted, we still want to try to reclaim all the inodes. If we don't,
|
|
* then a shut down during filesystem unmount reclaim walk leak all the
|
|
* unreclaimed inodes.
|
|
*/
|
|
STATIC int
|
|
xfs_reclaim_inodes_ag(
|
|
struct xfs_mount *mp,
|
|
int flags,
|
|
int *nr_to_scan)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int last_error = 0;
|
|
xfs_agnumber_t ag;
|
|
int trylock = flags & SYNC_TRYLOCK;
|
|
int skipped;
|
|
|
|
restart:
|
|
ag = 0;
|
|
skipped = 0;
|
|
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
|
|
unsigned long first_index = 0;
|
|
int done = 0;
|
|
int nr_found = 0;
|
|
|
|
ag = pag->pag_agno + 1;
|
|
|
|
if (trylock) {
|
|
if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
|
|
skipped++;
|
|
xfs_perag_put(pag);
|
|
continue;
|
|
}
|
|
first_index = pag->pag_ici_reclaim_cursor;
|
|
} else
|
|
mutex_lock(&pag->pag_ici_reclaim_lock);
|
|
|
|
do {
|
|
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
nr_found = radix_tree_gang_lookup_tag(
|
|
&pag->pag_ici_root,
|
|
(void **)batch, first_index,
|
|
XFS_LOOKUP_BATCH,
|
|
XFS_ICI_RECLAIM_TAG);
|
|
if (!nr_found) {
|
|
done = 1;
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the inodes before we drop the lock. if we found
|
|
* nothing, nr == 0 and the loop will be skipped.
|
|
*/
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = batch[i];
|
|
|
|
if (done || xfs_reclaim_inode_grab(ip, flags))
|
|
batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can
|
|
* occur if we have inodes in the last block of
|
|
* the AG and we are currently pointing to the
|
|
* last inode.
|
|
*
|
|
* Because we may see inodes that are from the
|
|
* wrong AG due to RCU freeing and
|
|
* reallocation, only update the index if it
|
|
* lies in this AG. It was a race that lead us
|
|
* to see this inode, so another lookup from
|
|
* the same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
|
|
pag->pag_agno)
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = 1;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (!batch[i])
|
|
continue;
|
|
error = xfs_reclaim_inode(batch[i], pag, flags);
|
|
if (error && last_error != -EFSCORRUPTED)
|
|
last_error = error;
|
|
}
|
|
|
|
*nr_to_scan -= XFS_LOOKUP_BATCH;
|
|
|
|
cond_resched();
|
|
|
|
} while (nr_found && !done && *nr_to_scan > 0);
|
|
|
|
if (trylock && !done)
|
|
pag->pag_ici_reclaim_cursor = first_index;
|
|
else
|
|
pag->pag_ici_reclaim_cursor = 0;
|
|
mutex_unlock(&pag->pag_ici_reclaim_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
/*
|
|
* if we skipped any AG, and we still have scan count remaining, do
|
|
* another pass this time using blocking reclaim semantics (i.e
|
|
* waiting on the reclaim locks and ignoring the reclaim cursors). This
|
|
* ensure that when we get more reclaimers than AGs we block rather
|
|
* than spin trying to execute reclaim.
|
|
*/
|
|
if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
|
|
trylock = 0;
|
|
goto restart;
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
int
|
|
xfs_reclaim_inodes(
|
|
xfs_mount_t *mp,
|
|
int mode)
|
|
{
|
|
int nr_to_scan = INT_MAX;
|
|
|
|
return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
|
|
}
|
|
|
|
/*
|
|
* Scan a certain number of inodes for reclaim.
|
|
*
|
|
* When called we make sure that there is a background (fast) inode reclaim in
|
|
* progress, while we will throttle the speed of reclaim via doing synchronous
|
|
* reclaim of inodes. That means if we come across dirty inodes, we wait for
|
|
* them to be cleaned, which we hope will not be very long due to the
|
|
* background walker having already kicked the IO off on those dirty inodes.
|
|
*/
|
|
long
|
|
xfs_reclaim_inodes_nr(
|
|
struct xfs_mount *mp,
|
|
int nr_to_scan)
|
|
{
|
|
/* kick background reclaimer and push the AIL */
|
|
xfs_reclaim_work_queue(mp);
|
|
xfs_ail_push_all(mp->m_ail);
|
|
|
|
return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
|
|
}
|
|
|
|
/*
|
|
* Return the number of reclaimable inodes in the filesystem for
|
|
* the shrinker to determine how much to reclaim.
|
|
*/
|
|
int
|
|
xfs_reclaim_inodes_count(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t ag = 0;
|
|
int reclaimable = 0;
|
|
|
|
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
|
|
ag = pag->pag_agno + 1;
|
|
reclaimable += pag->pag_ici_reclaimable;
|
|
xfs_perag_put(pag);
|
|
}
|
|
return reclaimable;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inode_match_id(
|
|
struct xfs_inode *ip,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
|
|
!uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
|
|
return 0;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
|
|
!gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
|
|
return 0;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
|
|
ip->i_d.di_projid != eofb->eof_prid)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A union-based inode filtering algorithm. Process the inode if any of the
|
|
* criteria match. This is for global/internal scans only.
|
|
*/
|
|
STATIC int
|
|
xfs_inode_match_id_union(
|
|
struct xfs_inode *ip,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
|
|
uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
|
|
return 1;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
|
|
gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
|
|
return 1;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
|
|
ip->i_d.di_projid == eofb->eof_prid)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inode_free_eofblocks(
|
|
struct xfs_inode *ip,
|
|
int flags,
|
|
void *args)
|
|
{
|
|
int ret = 0;
|
|
struct xfs_eofblocks *eofb = args;
|
|
int match;
|
|
|
|
if (!xfs_can_free_eofblocks(ip, false)) {
|
|
/* inode could be preallocated or append-only */
|
|
trace_xfs_inode_free_eofblocks_invalid(ip);
|
|
xfs_inode_clear_eofblocks_tag(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the mapping is dirty the operation can block and wait for some
|
|
* time. Unless we are waiting, skip it.
|
|
*/
|
|
if (!(flags & SYNC_WAIT) &&
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
|
|
return 0;
|
|
|
|
if (eofb) {
|
|
if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
|
|
match = xfs_inode_match_id_union(ip, eofb);
|
|
else
|
|
match = xfs_inode_match_id(ip, eofb);
|
|
if (!match)
|
|
return 0;
|
|
|
|
/* skip the inode if the file size is too small */
|
|
if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
|
|
XFS_ISIZE(ip) < eofb->eof_min_file_size)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (flags & SYNC_WAIT)
|
|
ret = -EAGAIN;
|
|
return ret;
|
|
}
|
|
ret = xfs_free_eofblocks(ip);
|
|
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__xfs_icache_free_eofblocks(
|
|
struct xfs_mount *mp,
|
|
struct xfs_eofblocks *eofb,
|
|
int (*execute)(struct xfs_inode *ip, int flags,
|
|
void *args),
|
|
int tag)
|
|
{
|
|
int flags = SYNC_TRYLOCK;
|
|
|
|
if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
|
|
flags = SYNC_WAIT;
|
|
|
|
return xfs_inode_ag_iterator_tag(mp, execute, flags,
|
|
eofb, tag);
|
|
}
|
|
|
|
int
|
|
xfs_icache_free_eofblocks(
|
|
struct xfs_mount *mp,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
|
|
XFS_ICI_EOFBLOCKS_TAG);
|
|
}
|
|
|
|
/*
|
|
* Run eofblocks scans on the quotas applicable to the inode. For inodes with
|
|
* multiple quotas, we don't know exactly which quota caused an allocation
|
|
* failure. We make a best effort by including each quota under low free space
|
|
* conditions (less than 1% free space) in the scan.
|
|
*/
|
|
static int
|
|
__xfs_inode_free_quota_eofblocks(
|
|
struct xfs_inode *ip,
|
|
int (*execute)(struct xfs_mount *mp,
|
|
struct xfs_eofblocks *eofb))
|
|
{
|
|
int scan = 0;
|
|
struct xfs_eofblocks eofb = {0};
|
|
struct xfs_dquot *dq;
|
|
|
|
/*
|
|
* Run a sync scan to increase effectiveness and use the union filter to
|
|
* cover all applicable quotas in a single scan.
|
|
*/
|
|
eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
|
|
dq = xfs_inode_dquot(ip, XFS_DQ_USER);
|
|
if (dq && xfs_dquot_lowsp(dq)) {
|
|
eofb.eof_uid = VFS_I(ip)->i_uid;
|
|
eofb.eof_flags |= XFS_EOF_FLAGS_UID;
|
|
scan = 1;
|
|
}
|
|
}
|
|
|
|
if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
|
|
dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
|
|
if (dq && xfs_dquot_lowsp(dq)) {
|
|
eofb.eof_gid = VFS_I(ip)->i_gid;
|
|
eofb.eof_flags |= XFS_EOF_FLAGS_GID;
|
|
scan = 1;
|
|
}
|
|
}
|
|
|
|
if (scan)
|
|
execute(ip->i_mount, &eofb);
|
|
|
|
return scan;
|
|
}
|
|
|
|
int
|
|
xfs_inode_free_quota_eofblocks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
|
|
}
|
|
|
|
static inline unsigned long
|
|
xfs_iflag_for_tag(
|
|
int tag)
|
|
{
|
|
switch (tag) {
|
|
case XFS_ICI_EOFBLOCKS_TAG:
|
|
return XFS_IEOFBLOCKS;
|
|
case XFS_ICI_COWBLOCKS_TAG:
|
|
return XFS_ICOWBLOCKS;
|
|
default:
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
__xfs_inode_set_blocks_tag(
|
|
xfs_inode_t *ip,
|
|
void (*execute)(struct xfs_mount *mp),
|
|
void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
|
|
int error, unsigned long caller_ip),
|
|
int tag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
int tagged;
|
|
|
|
/*
|
|
* Don't bother locking the AG and looking up in the radix trees
|
|
* if we already know that we have the tag set.
|
|
*/
|
|
if (ip->i_flags & xfs_iflag_for_tag(tag))
|
|
return;
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags |= xfs_iflag_for_tag(tag);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
|
|
radix_tree_tag_set(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
|
|
if (!tagged) {
|
|
/* propagate the eofblocks tag up into the perag radix tree */
|
|
spin_lock(&ip->i_mount->m_perag_lock);
|
|
radix_tree_tag_set(&ip->i_mount->m_perag_tree,
|
|
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
|
|
tag);
|
|
spin_unlock(&ip->i_mount->m_perag_lock);
|
|
|
|
/* kick off background trimming */
|
|
execute(ip->i_mount);
|
|
|
|
set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
|
|
}
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_eofblocks_tag(ip);
|
|
return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
|
|
trace_xfs_perag_set_eofblocks,
|
|
XFS_ICI_EOFBLOCKS_TAG);
|
|
}
|
|
|
|
static void
|
|
__xfs_inode_clear_blocks_tag(
|
|
xfs_inode_t *ip,
|
|
void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
|
|
int error, unsigned long caller_ip),
|
|
int tag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags &= ~xfs_iflag_for_tag(tag);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
radix_tree_tag_clear(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
|
|
if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
|
|
/* clear the eofblocks tag from the perag radix tree */
|
|
spin_lock(&ip->i_mount->m_perag_lock);
|
|
radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
|
|
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
|
|
tag);
|
|
spin_unlock(&ip->i_mount->m_perag_lock);
|
|
clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
|
|
}
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_eofblocks_tag(ip);
|
|
return __xfs_inode_clear_blocks_tag(ip,
|
|
trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
|
|
}
|
|
|
|
/*
|
|
* Set ourselves up to free CoW blocks from this file. If it's already clean
|
|
* then we can bail out quickly, but otherwise we must back off if the file
|
|
* is undergoing some kind of write.
|
|
*/
|
|
static bool
|
|
xfs_prep_free_cowblocks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/*
|
|
* Just clear the tag if we have an empty cow fork or none at all. It's
|
|
* possible the inode was fully unshared since it was originally tagged.
|
|
*/
|
|
if (!xfs_inode_has_cow_data(ip)) {
|
|
trace_xfs_inode_free_cowblocks_invalid(ip);
|
|
xfs_inode_clear_cowblocks_tag(ip);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If the mapping is dirty or under writeback we cannot touch the
|
|
* CoW fork. Leave it alone if we're in the midst of a directio.
|
|
*/
|
|
if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
|
|
atomic_read(&VFS_I(ip)->i_dio_count))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Automatic CoW Reservation Freeing
|
|
*
|
|
* These functions automatically garbage collect leftover CoW reservations
|
|
* that were made on behalf of a cowextsize hint when we start to run out
|
|
* of quota or when the reservations sit around for too long. If the file
|
|
* has dirty pages or is undergoing writeback, its CoW reservations will
|
|
* be retained.
|
|
*
|
|
* The actual garbage collection piggybacks off the same code that runs
|
|
* the speculative EOF preallocation garbage collector.
|
|
*/
|
|
STATIC int
|
|
xfs_inode_free_cowblocks(
|
|
struct xfs_inode *ip,
|
|
int flags,
|
|
void *args)
|
|
{
|
|
struct xfs_eofblocks *eofb = args;
|
|
int match;
|
|
int ret = 0;
|
|
|
|
if (!xfs_prep_free_cowblocks(ip))
|
|
return 0;
|
|
|
|
if (eofb) {
|
|
if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
|
|
match = xfs_inode_match_id_union(ip, eofb);
|
|
else
|
|
match = xfs_inode_match_id(ip, eofb);
|
|
if (!match)
|
|
return 0;
|
|
|
|
/* skip the inode if the file size is too small */
|
|
if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
|
|
XFS_ISIZE(ip) < eofb->eof_min_file_size)
|
|
return 0;
|
|
}
|
|
|
|
/* Free the CoW blocks */
|
|
xfs_ilock(ip, XFS_IOLOCK_EXCL);
|
|
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
|
|
|
|
/*
|
|
* Check again, nobody else should be able to dirty blocks or change
|
|
* the reflink iflag now that we have the first two locks held.
|
|
*/
|
|
if (xfs_prep_free_cowblocks(ip))
|
|
ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
|
|
|
|
xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
|
|
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
xfs_icache_free_cowblocks(
|
|
struct xfs_mount *mp,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
|
|
XFS_ICI_COWBLOCKS_TAG);
|
|
}
|
|
|
|
int
|
|
xfs_inode_free_quota_cowblocks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_cowblocks_tag(ip);
|
|
return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
|
|
trace_xfs_perag_set_cowblocks,
|
|
XFS_ICI_COWBLOCKS_TAG);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_cowblocks_tag(ip);
|
|
return __xfs_inode_clear_blocks_tag(ip,
|
|
trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
|
|
}
|
|
|
|
/* Disable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_stop_block_reaping(
|
|
struct xfs_mount *mp)
|
|
{
|
|
cancel_delayed_work_sync(&mp->m_eofblocks_work);
|
|
cancel_delayed_work_sync(&mp->m_cowblocks_work);
|
|
}
|
|
|
|
/* Enable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_start_block_reaping(
|
|
struct xfs_mount *mp)
|
|
{
|
|
xfs_queue_eofblocks(mp);
|
|
xfs_queue_cowblocks(mp);
|
|
}
|