WSL2-Linux-Kernel/drivers/clk/clk-versaclock5.c

1256 строки
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for IDT Versaclock 5
*
* Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
*/
/*
* Possible optimizations:
* - Use spread spectrum
* - Use integer divider in FOD if applicable
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/rational.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <dt-bindings/clk/versaclock.h>
/* VersaClock5 registers */
#define VC5_OTP_CONTROL 0x00
/* Factory-reserved register block */
#define VC5_RSVD_DEVICE_ID 0x01
#define VC5_RSVD_ADC_GAIN_7_0 0x02
#define VC5_RSVD_ADC_GAIN_15_8 0x03
#define VC5_RSVD_ADC_OFFSET_7_0 0x04
#define VC5_RSVD_ADC_OFFSET_15_8 0x05
#define VC5_RSVD_TEMPY 0x06
#define VC5_RSVD_OFFSET_TBIN 0x07
#define VC5_RSVD_GAIN 0x08
#define VC5_RSVD_TEST_NP 0x09
#define VC5_RSVD_UNUSED 0x0a
#define VC5_RSVD_BANDGAP_TRIM_UP 0x0b
#define VC5_RSVD_BANDGAP_TRIM_DN 0x0c
#define VC5_RSVD_CLK_R_12_CLK_AMP_4 0x0d
#define VC5_RSVD_CLK_R_34_CLK_AMP_4 0x0e
#define VC5_RSVD_CLK_AMP_123 0x0f
/* Configuration register block */
#define VC5_PRIM_SRC_SHDN 0x10
#define VC5_PRIM_SRC_SHDN_EN_XTAL BIT(7)
#define VC5_PRIM_SRC_SHDN_EN_CLKIN BIT(6)
#define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ BIT(3)
#define VC5_PRIM_SRC_SHDN_SP BIT(1)
#define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN BIT(0)
#define VC5_VCO_BAND 0x11
#define VC5_XTAL_X1_LOAD_CAP 0x12
#define VC5_XTAL_X2_LOAD_CAP 0x13
#define VC5_REF_DIVIDER 0x15
#define VC5_REF_DIVIDER_SEL_PREDIV2 BIT(7)
#define VC5_REF_DIVIDER_REF_DIV(n) ((n) & 0x3f)
#define VC5_VCO_CTRL_AND_PREDIV 0x16
#define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV BIT(7)
#define VC5_FEEDBACK_INT_DIV 0x17
#define VC5_FEEDBACK_INT_DIV_BITS 0x18
#define VC5_FEEDBACK_FRAC_DIV(n) (0x19 + (n))
#define VC5_RC_CONTROL0 0x1e
#define VC5_RC_CONTROL1 0x1f
/* These registers are named "Unused Factory Reserved Registers" */
#define VC5_RESERVED_X0(idx) (0x20 + ((idx) * 0x10))
#define VC5_RESERVED_X0_BYPASS_SYNC BIT(7) /* bypass_sync<idx> bit */
/* Output divider control for divider 1,2,3,4 */
#define VC5_OUT_DIV_CONTROL(idx) (0x21 + ((idx) * 0x10))
#define VC5_OUT_DIV_CONTROL_RESET BIT(7)
#define VC5_OUT_DIV_CONTROL_SELB_NORM BIT(3)
#define VC5_OUT_DIV_CONTROL_SEL_EXT BIT(2)
#define VC5_OUT_DIV_CONTROL_INT_MODE BIT(1)
#define VC5_OUT_DIV_CONTROL_EN_FOD BIT(0)
#define VC5_OUT_DIV_FRAC(idx, n) (0x22 + ((idx) * 0x10) + (n))
#define VC5_OUT_DIV_FRAC4_OD_SCEE BIT(1)
#define VC5_OUT_DIV_STEP_SPREAD(idx, n) (0x26 + ((idx) * 0x10) + (n))
#define VC5_OUT_DIV_SPREAD_MOD(idx, n) (0x29 + ((idx) * 0x10) + (n))
#define VC5_OUT_DIV_SKEW_INT(idx, n) (0x2b + ((idx) * 0x10) + (n))
#define VC5_OUT_DIV_INT(idx, n) (0x2d + ((idx) * 0x10) + (n))
#define VC5_OUT_DIV_SKEW_FRAC(idx) (0x2f + ((idx) * 0x10))
/* Clock control register for clock 1,2 */
#define VC5_CLK_OUTPUT_CFG(idx, n) (0x60 + ((idx) * 0x2) + (n))
#define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT 5
#define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL (VC5_LVPECL)
#define VC5_CLK_OUTPUT_CFG0_CFG_CMOS (VC5_CMOS)
#define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33 (VC5_HCSL33)
#define VC5_CLK_OUTPUT_CFG0_CFG_LVDS (VC5_LVDS)
#define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2 (VC5_CMOS2)
#define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD (VC5_CMOSD)
#define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25 (VC5_HCSL25)
#define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT 3
#define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_PWR_18 (0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_PWR_25 (2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_PWR_33 (3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT 0
#define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_SLEW_80 (0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_SLEW_85 (1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_SLEW_90 (2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
#define VC5_CLK_OUTPUT_CFG0_SLEW_100 (3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
#define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF BIT(0)
#define VC5_CLK_OE_SHDN 0x68
#define VC5_CLK_OS_SHDN 0x69
#define VC5_GLOBAL_REGISTER 0x76
#define VC5_GLOBAL_REGISTER_GLOBAL_RESET BIT(5)
/* PLL/VCO runs between 2.5 GHz and 3.0 GHz */
#define VC5_PLL_VCO_MIN 2500000000UL
#define VC5_PLL_VCO_MAX 3000000000UL
/* VC5 Input mux settings */
#define VC5_MUX_IN_XIN BIT(0)
#define VC5_MUX_IN_CLKIN BIT(1)
/* Maximum number of clk_out supported by this driver */
#define VC5_MAX_CLK_OUT_NUM 5
/* Maximum number of FODs supported by this driver */
#define VC5_MAX_FOD_NUM 4
/* flags to describe chip features */
/* chip has built-in oscilator */
#define VC5_HAS_INTERNAL_XTAL BIT(0)
/* chip has PFD requency doubler */
#define VC5_HAS_PFD_FREQ_DBL BIT(1)
/* chip has bits to disable FOD sync */
#define VC5_HAS_BYPASS_SYNC_BIT BIT(2)
/* Supported IDT VC5 models. */
enum vc5_model {
IDT_VC5_5P49V5923,
IDT_VC5_5P49V5925,
IDT_VC5_5P49V5933,
IDT_VC5_5P49V5935,
IDT_VC6_5P49V6901,
IDT_VC6_5P49V6965,
};
/* Structure to describe features of a particular VC5 model */
struct vc5_chip_info {
const enum vc5_model model;
const unsigned int clk_fod_cnt;
const unsigned int clk_out_cnt;
const u32 flags;
};
struct vc5_driver_data;
struct vc5_hw_data {
struct clk_hw hw;
struct vc5_driver_data *vc5;
u32 div_int;
u32 div_frc;
unsigned int num;
};
struct vc5_out_data {
struct clk_hw hw;
struct vc5_driver_data *vc5;
unsigned int num;
unsigned int clk_output_cfg0;
unsigned int clk_output_cfg0_mask;
};
struct vc5_driver_data {
struct i2c_client *client;
struct regmap *regmap;
const struct vc5_chip_info *chip_info;
struct clk *pin_xin;
struct clk *pin_clkin;
unsigned char clk_mux_ins;
struct clk_hw clk_mux;
struct clk_hw clk_mul;
struct clk_hw clk_pfd;
struct vc5_hw_data clk_pll;
struct vc5_hw_data clk_fod[VC5_MAX_FOD_NUM];
struct vc5_out_data clk_out[VC5_MAX_CLK_OUT_NUM];
};
/*
* VersaClock5 i2c regmap
*/
static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
{
/* Factory reserved regs, make them read-only */
if (reg <= 0xf)
return false;
/* Factory reserved regs, make them read-only */
if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
return false;
return true;
}
static const struct regmap_config vc5_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.max_register = 0x76,
.writeable_reg = vc5_regmap_is_writeable,
};
/*
* VersaClock5 input multiplexer between XTAL and CLKIN divider
*/
static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
{
struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_mux);
const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
unsigned int src;
regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
src &= mask;
if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
return 0;
if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
return 1;
dev_warn(&vc5->client->dev,
"Invalid clock input configuration (%02x)\n", src);
return 0;
}
static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_mux);
const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
u8 src;
if ((index > 1) || !vc5->clk_mux_ins)
return -EINVAL;
if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
if (index == 0)
src = VC5_PRIM_SRC_SHDN_EN_XTAL;
if (index == 1)
src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
} else {
if (index != 0)
return -EINVAL;
if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
src = VC5_PRIM_SRC_SHDN_EN_XTAL;
else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
else /* Invalid; should have been caught by vc5_probe() */
return -EINVAL;
}
return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
}
static const struct clk_ops vc5_mux_ops = {
.set_parent = vc5_mux_set_parent,
.get_parent = vc5_mux_get_parent,
};
static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_mul);
unsigned int premul;
regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
parent_rate *= 2;
return parent_rate;
}
static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
return rate;
else
return -EINVAL;
}
static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_mul);
u32 mask;
if ((parent_rate * 2) == rate)
mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
else
mask = 0;
regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
mask);
return 0;
}
static const struct clk_ops vc5_dbl_ops = {
.recalc_rate = vc5_dbl_recalc_rate,
.round_rate = vc5_dbl_round_rate,
.set_rate = vc5_dbl_set_rate,
};
static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_pfd);
unsigned int prediv, div;
regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
/* The bypass_prediv is set, PLL fed from Ref_in directly. */
if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
return parent_rate;
regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
/* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
return parent_rate / 2;
else
return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
}
static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long idiv;
/* PLL cannot operate with input clock above 50 MHz. */
if (rate > 50000000)
return -EINVAL;
/* CLKIN within range of PLL input, feed directly to PLL. */
if (*parent_rate <= 50000000)
return *parent_rate;
idiv = DIV_ROUND_UP(*parent_rate, rate);
if (idiv > 127)
return -EINVAL;
return *parent_rate / idiv;
}
static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_pfd);
unsigned long idiv;
u8 div;
/* CLKIN within range of PLL input, feed directly to PLL. */
if (parent_rate <= 50000000) {
regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV,
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
return 0;
}
idiv = DIV_ROUND_UP(parent_rate, rate);
/* We have dedicated div-2 predivider. */
if (idiv == 2)
div = VC5_REF_DIVIDER_SEL_PREDIV2;
else
div = VC5_REF_DIVIDER_REF_DIV(idiv);
regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV, 0);
return 0;
}
static const struct clk_ops vc5_pfd_ops = {
.recalc_rate = vc5_pfd_recalc_rate,
.round_rate = vc5_pfd_round_rate,
.set_rate = vc5_pfd_set_rate,
};
/*
* VersaClock5 PLL/VCO
*/
static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
u32 div_int, div_frc;
u8 fb[5];
regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
div_int = (fb[0] << 4) | (fb[1] >> 4);
div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
/* The PLL divider has 12 integer bits and 24 fractional bits */
return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
}
static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
u32 div_int;
u64 div_frc;
if (rate < VC5_PLL_VCO_MIN)
rate = VC5_PLL_VCO_MIN;
if (rate > VC5_PLL_VCO_MAX)
rate = VC5_PLL_VCO_MAX;
/* Determine integer part, which is 12 bit wide */
div_int = rate / *parent_rate;
if (div_int > 0xfff)
rate = *parent_rate * 0xfff;
/* Determine best fractional part, which is 24 bit wide */
div_frc = rate % *parent_rate;
div_frc *= BIT(24) - 1;
do_div(div_frc, *parent_rate);
hwdata->div_int = div_int;
hwdata->div_frc = (u32)div_frc;
return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
}
static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
u8 fb[5];
fb[0] = hwdata->div_int >> 4;
fb[1] = hwdata->div_int << 4;
fb[2] = hwdata->div_frc >> 16;
fb[3] = hwdata->div_frc >> 8;
fb[4] = hwdata->div_frc;
return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
}
static const struct clk_ops vc5_pll_ops = {
.recalc_rate = vc5_pll_recalc_rate,
.round_rate = vc5_pll_round_rate,
.set_rate = vc5_pll_set_rate,
};
static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
/* VCO frequency is divided by two before entering FOD */
u32 f_in = parent_rate / 2;
u32 div_int, div_frc;
u8 od_int[2];
u8 od_frc[4];
regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
od_int, 2);
regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
od_frc, 4);
div_int = (od_int[0] << 4) | (od_int[1] >> 4);
div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
(od_frc[2] << 6) | (od_frc[3] >> 2);
/* Avoid division by zero if the output is not configured. */
if (div_int == 0 && div_frc == 0)
return 0;
/* The PLL divider has 12 integer bits and 30 fractional bits */
return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
}
static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
/* VCO frequency is divided by two before entering FOD */
u32 f_in = *parent_rate / 2;
u32 div_int;
u64 div_frc;
/* Determine integer part, which is 12 bit wide */
div_int = f_in / rate;
/*
* WARNING: The clock chip does not output signal if the integer part
* of the divider is 0xfff and fractional part is non-zero.
* Clamp the divider at 0xffe to keep the code simple.
*/
if (div_int > 0xffe) {
div_int = 0xffe;
rate = f_in / div_int;
}
/* Determine best fractional part, which is 30 bit wide */
div_frc = f_in % rate;
div_frc <<= 24;
do_div(div_frc, rate);
hwdata->div_int = div_int;
hwdata->div_frc = (u32)div_frc;
return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
}
static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
u8 data[14] = {
hwdata->div_frc >> 22, hwdata->div_frc >> 14,
hwdata->div_frc >> 6, hwdata->div_frc << 2,
0, 0, 0, 0, 0,
0, 0,
hwdata->div_int >> 4, hwdata->div_int << 4,
0
};
regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
data, 14);
/*
* Toggle magic bit in undocumented register for unknown reason.
* This is what the IDT timing commander tool does and the chip
* datasheet somewhat implies this is needed, but the register
* and the bit is not documented.
*/
regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
VC5_GLOBAL_REGISTER_GLOBAL_RESET, 0);
regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
VC5_GLOBAL_REGISTER_GLOBAL_RESET,
VC5_GLOBAL_REGISTER_GLOBAL_RESET);
return 0;
}
static const struct clk_ops vc5_fod_ops = {
.recalc_rate = vc5_fod_recalc_rate,
.round_rate = vc5_fod_round_rate,
.set_rate = vc5_fod_set_rate,
};
static int vc5_clk_out_prepare(struct clk_hw *hw)
{
struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_SEL_EXT |
VC5_OUT_DIV_CONTROL_EN_FOD;
unsigned int src;
int ret;
/*
* When enabling a FOD, all currently enabled FODs are briefly
* stopped in order to synchronize all of them. This causes a clock
* disruption to any unrelated chips that might be already using
* other clock outputs. Bypass the sync feature to avoid the issue,
* which is possible on the VersaClock 6E family via reserved
* registers.
*/
if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
ret = regmap_update_bits(vc5->regmap,
VC5_RESERVED_X0(hwdata->num),
VC5_RESERVED_X0_BYPASS_SYNC,
VC5_RESERVED_X0_BYPASS_SYNC);
if (ret)
return ret;
}
/*
* If the input mux is disabled, enable it first and
* select source from matching FOD.
*/
regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
if ((src & mask) == 0) {
src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
ret = regmap_update_bits(vc5->regmap,
VC5_OUT_DIV_CONTROL(hwdata->num),
mask | VC5_OUT_DIV_CONTROL_RESET, src);
if (ret)
return ret;
}
/* Enable the clock buffer */
regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
VC5_CLK_OUTPUT_CFG1_EN_CLKBUF,
VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
if (hwdata->clk_output_cfg0_mask) {
dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
hwdata->num, hwdata->clk_output_cfg0_mask,
hwdata->clk_output_cfg0);
regmap_update_bits(vc5->regmap,
VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
hwdata->clk_output_cfg0_mask,
hwdata->clk_output_cfg0);
}
return 0;
}
static void vc5_clk_out_unprepare(struct clk_hw *hw)
{
struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
/* Disable the clock buffer */
regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
VC5_CLK_OUTPUT_CFG1_EN_CLKBUF, 0);
}
static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
{
struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_SEL_EXT |
VC5_OUT_DIV_CONTROL_EN_FOD;
const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_EN_FOD;
const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_SEL_EXT;
unsigned int src;
regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
src &= mask;
if (src == 0) /* Input mux set to DISABLED */
return 0;
if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
return 0;
if (src == extclk)
return 1;
dev_warn(&vc5->client->dev,
"Invalid clock output configuration (%02x)\n", src);
return 0;
}
static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
{
struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
struct vc5_driver_data *vc5 = hwdata->vc5;
const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_SEL_EXT |
VC5_OUT_DIV_CONTROL_EN_FOD;
const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_SEL_EXT;
u8 src = VC5_OUT_DIV_CONTROL_RESET;
if (index == 0)
src |= VC5_OUT_DIV_CONTROL_EN_FOD;
else
src |= extclk;
return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
mask, src);
}
static const struct clk_ops vc5_clk_out_ops = {
.prepare = vc5_clk_out_prepare,
.unprepare = vc5_clk_out_unprepare,
.set_parent = vc5_clk_out_set_parent,
.get_parent = vc5_clk_out_get_parent,
};
static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
void *data)
{
struct vc5_driver_data *vc5 = data;
unsigned int idx = clkspec->args[0];
if (idx >= vc5->chip_info->clk_out_cnt)
return ERR_PTR(-EINVAL);
return &vc5->clk_out[idx].hw;
}
static int vc5_map_index_to_output(const enum vc5_model model,
const unsigned int n)
{
switch (model) {
case IDT_VC5_5P49V5933:
return (n == 0) ? 0 : 3;
case IDT_VC5_5P49V5923:
case IDT_VC5_5P49V5925:
case IDT_VC5_5P49V5935:
case IDT_VC6_5P49V6901:
case IDT_VC6_5P49V6965:
default:
return n;
}
}
static int vc5_update_mode(struct device_node *np_output,
struct vc5_out_data *clk_out)
{
u32 value;
if (!of_property_read_u32(np_output, "idt,mode", &value)) {
clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
switch (value) {
case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
clk_out->clk_output_cfg0 |=
value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int vc5_update_power(struct device_node *np_output,
struct vc5_out_data *clk_out)
{
u32 value;
if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
&value)) {
clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
switch (value) {
case 1800000:
clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
break;
case 2500000:
clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
break;
case 3300000:
clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int vc5_map_cap_value(u32 femtofarads)
{
int mapped_value;
/*
* The datasheet explicitly states 9000 - 25000 with 0.5pF
* steps, but the Programmer's guide shows the steps are 0.430pF.
* After getting feedback from Renesas, the .5pF steps were the
* goal, but 430nF was the actual values.
* Because of this, the actual range goes to 22760 instead of 25000
*/
if (femtofarads < 9000 || femtofarads > 22760)
return -EINVAL;
/*
* The Programmer's guide shows XTAL[5:0] but in reality,
* XTAL[0] and XTAL[1] are both LSB which makes the math
* strange. With clarfication from Renesas, setting the
* values should be simpler by ignoring XTAL[0]
*/
mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
/*
* Since the calculation ignores XTAL[0], there is one
* special case where mapped_value = 32. In reality, this means
* the real mapped value should be 111111b. In other cases,
* the mapped_value needs to be shifted 1 to the left.
*/
if (mapped_value > 31)
mapped_value = 0x3f;
else
mapped_value <<= 1;
return mapped_value;
}
static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
{
u32 value;
int mapped_value;
if (!of_property_read_u32(node, "idt,xtal-load-femtofarads", &value)) {
mapped_value = vc5_map_cap_value(value);
if (mapped_value < 0)
return mapped_value;
/*
* The mapped_value is really the high 6 bits of
* VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
* shift the value 2 places.
*/
regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03, mapped_value << 2);
regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03, mapped_value << 2);
}
return 0;
}
static int vc5_update_slew(struct device_node *np_output,
struct vc5_out_data *clk_out)
{
u32 value;
if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
switch (value) {
case 80:
clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
break;
case 85:
clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
break;
case 90:
clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
break;
case 100:
clk_out->clk_output_cfg0 |=
VC5_CLK_OUTPUT_CFG0_SLEW_100;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int vc5_get_output_config(struct i2c_client *client,
struct vc5_out_data *clk_out)
{
struct device_node *np_output;
char *child_name;
int ret = 0;
child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
if (!child_name)
return -ENOMEM;
np_output = of_get_child_by_name(client->dev.of_node, child_name);
kfree(child_name);
if (!np_output)
return 0;
ret = vc5_update_mode(np_output, clk_out);
if (ret)
goto output_error;
ret = vc5_update_power(np_output, clk_out);
if (ret)
goto output_error;
ret = vc5_update_slew(np_output, clk_out);
output_error:
if (ret) {
dev_err(&client->dev,
"Invalid clock output configuration OUT%d\n",
clk_out->num + 1);
}
of_node_put(np_output);
return ret;
}
static const struct of_device_id clk_vc5_of_match[];
static int vc5_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
unsigned int oe, sd, src_mask = 0, src_val = 0;
struct vc5_driver_data *vc5;
struct clk_init_data init;
const char *parent_names[2];
unsigned int n, idx = 0;
int ret;
vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
if (!vc5)
return -ENOMEM;
i2c_set_clientdata(client, vc5);
vc5->client = client;
vc5->chip_info = of_device_get_match_data(&client->dev);
vc5->pin_xin = devm_clk_get(&client->dev, "xin");
if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
return -EPROBE_DEFER;
vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
return -EPROBE_DEFER;
vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
if (IS_ERR(vc5->regmap))
return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap),
"failed to allocate register map\n");
ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd);
if (!ret) {
src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
if (sd)
src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
} else if (ret != -EINVAL) {
return dev_err_probe(&client->dev, ret,
"could not read idt,shutdown\n");
}
ret = of_property_read_u32(client->dev.of_node,
"idt,output-enable-active", &oe);
if (!ret) {
src_mask |= VC5_PRIM_SRC_SHDN_SP;
if (oe)
src_val |= VC5_PRIM_SRC_SHDN_SP;
} else if (ret != -EINVAL) {
return dev_err_probe(&client->dev, ret,
"could not read idt,output-enable-active\n");
}
regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask, src_val);
/* Register clock input mux */
memset(&init, 0, sizeof(init));
if (!IS_ERR(vc5->pin_xin)) {
vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
} else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
vc5->pin_xin = clk_register_fixed_rate(&client->dev,
"internal-xtal", NULL,
0, 25000000);
if (IS_ERR(vc5->pin_xin))
return PTR_ERR(vc5->pin_xin);
vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
}
if (!IS_ERR(vc5->pin_clkin)) {
vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
parent_names[init.num_parents++] =
__clk_get_name(vc5->pin_clkin);
}
if (!init.num_parents)
return dev_err_probe(&client->dev, -EINVAL,
"no input clock specified!\n");
/* Configure Optional Loading Capacitance for external XTAL */
if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
ret = vc5_update_cap_load(client->dev.of_node, vc5);
if (ret)
goto err_clk_register;
}
init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
init.ops = &vc5_mux_ops;
init.flags = 0;
init.parent_names = parent_names;
vc5->clk_mux.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
/* Register frequency doubler */
memset(&init, 0, sizeof(init));
init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
client->dev.of_node);
init.ops = &vc5_dbl_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_names;
parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
init.num_parents = 1;
vc5->clk_mul.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
}
/* Register PFD */
memset(&init, 0, sizeof(init));
init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
init.ops = &vc5_pfd_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_names;
if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
else
parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
init.num_parents = 1;
vc5->clk_pfd.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
/* Register PLL */
memset(&init, 0, sizeof(init));
init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
init.ops = &vc5_pll_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_names;
parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
init.num_parents = 1;
vc5->clk_pll.num = 0;
vc5->clk_pll.vc5 = vc5;
vc5->clk_pll.hw.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
/* Register FODs */
for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
idx = vc5_map_index_to_output(vc5->chip_info->model, n);
memset(&init, 0, sizeof(init));
init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
client->dev.of_node, idx);
init.ops = &vc5_fod_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_names;
parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
init.num_parents = 1;
vc5->clk_fod[n].num = idx;
vc5->clk_fod[n].vc5 = vc5;
vc5->clk_fod[n].hw.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
}
/* Register MUX-connected OUT0_I2C_SELB output */
memset(&init, 0, sizeof(init));
init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
client->dev.of_node);
init.ops = &vc5_clk_out_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_names;
parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
init.num_parents = 1;
vc5->clk_out[0].num = idx;
vc5->clk_out[0].vc5 = vc5;
vc5->clk_out[0].hw.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
/* Register FOD-connected OUTx outputs */
for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
if (n == 1)
parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
else
parent_names[1] =
clk_hw_get_name(&vc5->clk_out[n - 1].hw);
memset(&init, 0, sizeof(init));
init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
client->dev.of_node, idx + 1);
init.ops = &vc5_clk_out_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_names;
init.num_parents = 2;
vc5->clk_out[n].num = idx;
vc5->clk_out[n].vc5 = vc5;
vc5->clk_out[n].hw.init = &init;
ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
if (ret)
goto err_clk_register;
kfree(init.name); /* clock framework made a copy of the name */
/* Fetch Clock Output configuration from DT (if specified) */
ret = vc5_get_output_config(client, &vc5->clk_out[n]);
if (ret)
goto err_clk;
}
ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
if (ret) {
dev_err_probe(&client->dev, ret,
"unable to add clk provider\n");
goto err_clk;
}
return 0;
err_clk_register:
dev_err_probe(&client->dev, ret,
"unable to register %s\n", init.name);
kfree(init.name); /* clock framework made a copy of the name */
err_clk:
if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
clk_unregister_fixed_rate(vc5->pin_xin);
return ret;
}
static int vc5_remove(struct i2c_client *client)
{
struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
of_clk_del_provider(client->dev.of_node);
if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
clk_unregister_fixed_rate(vc5->pin_xin);
return 0;
}
static int __maybe_unused vc5_suspend(struct device *dev)
{
struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
regcache_cache_only(vc5->regmap, true);
regcache_mark_dirty(vc5->regmap);
return 0;
}
static int __maybe_unused vc5_resume(struct device *dev)
{
struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
int ret;
regcache_cache_only(vc5->regmap, false);
ret = regcache_sync(vc5->regmap);
if (ret)
dev_err(dev, "Failed to restore register map: %d\n", ret);
return ret;
}
static const struct vc5_chip_info idt_5p49v5923_info = {
.model = IDT_VC5_5P49V5923,
.clk_fod_cnt = 2,
.clk_out_cnt = 3,
.flags = 0,
};
static const struct vc5_chip_info idt_5p49v5925_info = {
.model = IDT_VC5_5P49V5925,
.clk_fod_cnt = 4,
.clk_out_cnt = 5,
.flags = 0,
};
static const struct vc5_chip_info idt_5p49v5933_info = {
.model = IDT_VC5_5P49V5933,
.clk_fod_cnt = 2,
.clk_out_cnt = 3,
.flags = VC5_HAS_INTERNAL_XTAL,
};
static const struct vc5_chip_info idt_5p49v5935_info = {
.model = IDT_VC5_5P49V5935,
.clk_fod_cnt = 4,
.clk_out_cnt = 5,
.flags = VC5_HAS_INTERNAL_XTAL,
};
static const struct vc5_chip_info idt_5p49v6901_info = {
.model = IDT_VC6_5P49V6901,
.clk_fod_cnt = 4,
.clk_out_cnt = 5,
.flags = VC5_HAS_PFD_FREQ_DBL,
};
static const struct vc5_chip_info idt_5p49v6965_info = {
.model = IDT_VC6_5P49V6965,
.clk_fod_cnt = 4,
.clk_out_cnt = 5,
.flags = VC5_HAS_BYPASS_SYNC_BIT,
};
static const struct i2c_device_id vc5_id[] = {
{ "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
{ "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
{ "5p49v5933", .driver_data = IDT_VC5_5P49V5933 },
{ "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
{ "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
{ "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
{ }
};
MODULE_DEVICE_TABLE(i2c, vc5_id);
static const struct of_device_id clk_vc5_of_match[] = {
{ .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
{ .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
{ .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
{ .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
{ .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
{ .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
{ },
};
MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
static struct i2c_driver vc5_driver = {
.driver = {
.name = "vc5",
.pm = &vc5_pm_ops,
.of_match_table = clk_vc5_of_match,
},
.probe = vc5_probe,
.remove = vc5_remove,
.id_table = vc5_id,
};
module_i2c_driver(vc5_driver);
MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
MODULE_DESCRIPTION("IDT VersaClock 5 driver");
MODULE_LICENSE("GPL");