269 строки
10 KiB
C
269 строки
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* DAMON api
|
|
*
|
|
* Author: SeongJae Park <sjpark@amazon.de>
|
|
*/
|
|
|
|
#ifndef _DAMON_H_
|
|
#define _DAMON_H_
|
|
|
|
#include <linux/mutex.h>
|
|
#include <linux/time64.h>
|
|
#include <linux/types.h>
|
|
|
|
/* Minimal region size. Every damon_region is aligned by this. */
|
|
#define DAMON_MIN_REGION PAGE_SIZE
|
|
|
|
/**
|
|
* struct damon_addr_range - Represents an address region of [@start, @end).
|
|
* @start: Start address of the region (inclusive).
|
|
* @end: End address of the region (exclusive).
|
|
*/
|
|
struct damon_addr_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
};
|
|
|
|
/**
|
|
* struct damon_region - Represents a monitoring target region.
|
|
* @ar: The address range of the region.
|
|
* @sampling_addr: Address of the sample for the next access check.
|
|
* @nr_accesses: Access frequency of this region.
|
|
* @list: List head for siblings.
|
|
*/
|
|
struct damon_region {
|
|
struct damon_addr_range ar;
|
|
unsigned long sampling_addr;
|
|
unsigned int nr_accesses;
|
|
struct list_head list;
|
|
};
|
|
|
|
/**
|
|
* struct damon_target - Represents a monitoring target.
|
|
* @id: Unique identifier for this target.
|
|
* @nr_regions: Number of monitoring target regions of this target.
|
|
* @regions_list: Head of the monitoring target regions of this target.
|
|
* @list: List head for siblings.
|
|
*
|
|
* Each monitoring context could have multiple targets. For example, a context
|
|
* for virtual memory address spaces could have multiple target processes. The
|
|
* @id of each target should be unique among the targets of the context. For
|
|
* example, in the virtual address monitoring context, it could be a pidfd or
|
|
* an address of an mm_struct.
|
|
*/
|
|
struct damon_target {
|
|
unsigned long id;
|
|
unsigned int nr_regions;
|
|
struct list_head regions_list;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct damon_ctx;
|
|
|
|
/**
|
|
* struct damon_primitive Monitoring primitives for given use cases.
|
|
*
|
|
* @init: Initialize primitive-internal data structures.
|
|
* @update: Update primitive-internal data structures.
|
|
* @prepare_access_checks: Prepare next access check of target regions.
|
|
* @check_accesses: Check the accesses to target regions.
|
|
* @reset_aggregated: Reset aggregated accesses monitoring results.
|
|
* @target_valid: Determine if the target is valid.
|
|
* @cleanup: Clean up the context.
|
|
*
|
|
* DAMON can be extended for various address spaces and usages. For this,
|
|
* users should register the low level primitives for their target address
|
|
* space and usecase via the &damon_ctx.primitive. Then, the monitoring thread
|
|
* (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
|
|
* the monitoring, @update after each &damon_ctx.primitive_update_interval, and
|
|
* @check_accesses, @target_valid and @prepare_access_checks after each
|
|
* &damon_ctx.sample_interval. Finally, @reset_aggregated is called after each
|
|
* &damon_ctx.aggr_interval.
|
|
*
|
|
* @init should initialize primitive-internal data structures. For example,
|
|
* this could be used to construct proper monitoring target regions and link
|
|
* those to @damon_ctx.adaptive_targets.
|
|
* @update should update the primitive-internal data structures. For example,
|
|
* this could be used to update monitoring target regions for current status.
|
|
* @prepare_access_checks should manipulate the monitoring regions to be
|
|
* prepared for the next access check.
|
|
* @check_accesses should check the accesses to each region that made after the
|
|
* last preparation and update the number of observed accesses of each region.
|
|
* It should also return max number of observed accesses that made as a result
|
|
* of its update. The value will be used for regions adjustment threshold.
|
|
* @reset_aggregated should reset the access monitoring results that aggregated
|
|
* by @check_accesses.
|
|
* @target_valid should check whether the target is still valid for the
|
|
* monitoring.
|
|
* @cleanup is called from @kdamond just before its termination.
|
|
*/
|
|
struct damon_primitive {
|
|
void (*init)(struct damon_ctx *context);
|
|
void (*update)(struct damon_ctx *context);
|
|
void (*prepare_access_checks)(struct damon_ctx *context);
|
|
unsigned int (*check_accesses)(struct damon_ctx *context);
|
|
void (*reset_aggregated)(struct damon_ctx *context);
|
|
bool (*target_valid)(void *target);
|
|
void (*cleanup)(struct damon_ctx *context);
|
|
};
|
|
|
|
/*
|
|
* struct damon_callback Monitoring events notification callbacks.
|
|
*
|
|
* @before_start: Called before starting the monitoring.
|
|
* @after_sampling: Called after each sampling.
|
|
* @after_aggregation: Called after each aggregation.
|
|
* @before_terminate: Called before terminating the monitoring.
|
|
* @private: User private data.
|
|
*
|
|
* The monitoring thread (&damon_ctx.kdamond) calls @before_start and
|
|
* @before_terminate just before starting and finishing the monitoring,
|
|
* respectively. Therefore, those are good places for installing and cleaning
|
|
* @private.
|
|
*
|
|
* The monitoring thread calls @after_sampling and @after_aggregation for each
|
|
* of the sampling intervals and aggregation intervals, respectively.
|
|
* Therefore, users can safely access the monitoring results without additional
|
|
* protection. For the reason, users are recommended to use these callback for
|
|
* the accesses to the results.
|
|
*
|
|
* If any callback returns non-zero, monitoring stops.
|
|
*/
|
|
struct damon_callback {
|
|
void *private;
|
|
|
|
int (*before_start)(struct damon_ctx *context);
|
|
int (*after_sampling)(struct damon_ctx *context);
|
|
int (*after_aggregation)(struct damon_ctx *context);
|
|
int (*before_terminate)(struct damon_ctx *context);
|
|
};
|
|
|
|
/**
|
|
* struct damon_ctx - Represents a context for each monitoring. This is the
|
|
* main interface that allows users to set the attributes and get the results
|
|
* of the monitoring.
|
|
*
|
|
* @sample_interval: The time between access samplings.
|
|
* @aggr_interval: The time between monitor results aggregations.
|
|
* @primitive_update_interval: The time between monitoring primitive updates.
|
|
*
|
|
* For each @sample_interval, DAMON checks whether each region is accessed or
|
|
* not. It aggregates and keeps the access information (number of accesses to
|
|
* each region) for @aggr_interval time. DAMON also checks whether the target
|
|
* memory regions need update (e.g., by ``mmap()`` calls from the application,
|
|
* in case of virtual memory monitoring) and applies the changes for each
|
|
* @primitive_update_interval. All time intervals are in micro-seconds.
|
|
* Please refer to &struct damon_primitive and &struct damon_callback for more
|
|
* detail.
|
|
*
|
|
* @kdamond: Kernel thread who does the monitoring.
|
|
* @kdamond_stop: Notifies whether kdamond should stop.
|
|
* @kdamond_lock: Mutex for the synchronizations with @kdamond.
|
|
*
|
|
* For each monitoring context, one kernel thread for the monitoring is
|
|
* created. The pointer to the thread is stored in @kdamond.
|
|
*
|
|
* Once started, the monitoring thread runs until explicitly required to be
|
|
* terminated or every monitoring target is invalid. The validity of the
|
|
* targets is checked via the &damon_primitive.target_valid of @primitive. The
|
|
* termination can also be explicitly requested by writing non-zero to
|
|
* @kdamond_stop. The thread sets @kdamond to NULL when it terminates.
|
|
* Therefore, users can know whether the monitoring is ongoing or terminated by
|
|
* reading @kdamond. Reads and writes to @kdamond and @kdamond_stop from
|
|
* outside of the monitoring thread must be protected by @kdamond_lock.
|
|
*
|
|
* Note that the monitoring thread protects only @kdamond and @kdamond_stop via
|
|
* @kdamond_lock. Accesses to other fields must be protected by themselves.
|
|
*
|
|
* @primitive: Set of monitoring primitives for given use cases.
|
|
* @callback: Set of callbacks for monitoring events notifications.
|
|
*
|
|
* @min_nr_regions: The minimum number of adaptive monitoring regions.
|
|
* @max_nr_regions: The maximum number of adaptive monitoring regions.
|
|
* @adaptive_targets: Head of monitoring targets (&damon_target) list.
|
|
*/
|
|
struct damon_ctx {
|
|
unsigned long sample_interval;
|
|
unsigned long aggr_interval;
|
|
unsigned long primitive_update_interval;
|
|
|
|
/* private: internal use only */
|
|
struct timespec64 last_aggregation;
|
|
struct timespec64 last_primitive_update;
|
|
|
|
/* public: */
|
|
struct task_struct *kdamond;
|
|
bool kdamond_stop;
|
|
struct mutex kdamond_lock;
|
|
|
|
struct damon_primitive primitive;
|
|
struct damon_callback callback;
|
|
|
|
unsigned long min_nr_regions;
|
|
unsigned long max_nr_regions;
|
|
struct list_head adaptive_targets;
|
|
};
|
|
|
|
#define damon_next_region(r) \
|
|
(container_of(r->list.next, struct damon_region, list))
|
|
|
|
#define damon_prev_region(r) \
|
|
(container_of(r->list.prev, struct damon_region, list))
|
|
|
|
#define damon_for_each_region(r, t) \
|
|
list_for_each_entry(r, &t->regions_list, list)
|
|
|
|
#define damon_for_each_region_safe(r, next, t) \
|
|
list_for_each_entry_safe(r, next, &t->regions_list, list)
|
|
|
|
#define damon_for_each_target(t, ctx) \
|
|
list_for_each_entry(t, &(ctx)->adaptive_targets, list)
|
|
|
|
#define damon_for_each_target_safe(t, next, ctx) \
|
|
list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
|
|
|
|
#ifdef CONFIG_DAMON
|
|
|
|
struct damon_region *damon_new_region(unsigned long start, unsigned long end);
|
|
inline void damon_insert_region(struct damon_region *r,
|
|
struct damon_region *prev, struct damon_region *next,
|
|
struct damon_target *t);
|
|
void damon_add_region(struct damon_region *r, struct damon_target *t);
|
|
void damon_destroy_region(struct damon_region *r, struct damon_target *t);
|
|
|
|
struct damon_target *damon_new_target(unsigned long id);
|
|
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
|
|
void damon_free_target(struct damon_target *t);
|
|
void damon_destroy_target(struct damon_target *t);
|
|
unsigned int damon_nr_regions(struct damon_target *t);
|
|
|
|
struct damon_ctx *damon_new_ctx(void);
|
|
void damon_destroy_ctx(struct damon_ctx *ctx);
|
|
int damon_set_targets(struct damon_ctx *ctx,
|
|
unsigned long *ids, ssize_t nr_ids);
|
|
int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
|
|
unsigned long aggr_int, unsigned long primitive_upd_int,
|
|
unsigned long min_nr_reg, unsigned long max_nr_reg);
|
|
int damon_nr_running_ctxs(void);
|
|
|
|
int damon_start(struct damon_ctx **ctxs, int nr_ctxs);
|
|
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
|
|
|
|
#endif /* CONFIG_DAMON */
|
|
|
|
#ifdef CONFIG_DAMON_VADDR
|
|
|
|
/* Monitoring primitives for virtual memory address spaces */
|
|
void damon_va_init(struct damon_ctx *ctx);
|
|
void damon_va_update(struct damon_ctx *ctx);
|
|
void damon_va_prepare_access_checks(struct damon_ctx *ctx);
|
|
unsigned int damon_va_check_accesses(struct damon_ctx *ctx);
|
|
bool damon_va_target_valid(void *t);
|
|
void damon_va_cleanup(struct damon_ctx *ctx);
|
|
void damon_va_set_primitives(struct damon_ctx *ctx);
|
|
|
|
#endif /* CONFIG_DAMON_VADDR */
|
|
|
|
#endif /* _DAMON_H */
|