315 строки
7.1 KiB
C
315 строки
7.1 KiB
C
/*
|
|
* Page fault handler for SH with an MMU.
|
|
*
|
|
* Copyright (C) 1999 Niibe Yutaka
|
|
* Copyright (C) 2003 - 2007 Paul Mundt
|
|
*
|
|
* Based on linux/arch/i386/mm/fault.c:
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <asm/io_trapped.h>
|
|
#include <asm/system.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/kgdb.h>
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|
unsigned long writeaccess,
|
|
unsigned long address)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct * vma;
|
|
int si_code;
|
|
int fault;
|
|
siginfo_t info;
|
|
|
|
trace_hardirqs_on();
|
|
local_irq_enable();
|
|
|
|
#ifdef CONFIG_SH_KGDB
|
|
if (kgdb_nofault && kgdb_bus_err_hook)
|
|
kgdb_bus_err_hook();
|
|
#endif
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
si_code = SEGV_MAPERR;
|
|
|
|
if (unlikely(address >= TASK_SIZE)) {
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "tsk" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
int offset = pgd_index(address);
|
|
pgd_t *pgd, *pgd_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd = get_TTB() + offset;
|
|
pgd_k = swapper_pg_dir + offset;
|
|
|
|
/* This will never happen with the folded page table. */
|
|
if (!pgd_present(*pgd)) {
|
|
if (!pgd_present(*pgd_k))
|
|
goto bad_area_nosemaphore;
|
|
set_pgd(pgd, *pgd_k);
|
|
return;
|
|
}
|
|
|
|
pud = pud_offset(pgd, address);
|
|
pud_k = pud_offset(pgd_k, address);
|
|
if (pud_present(*pud) || !pud_present(*pud_k))
|
|
goto bad_area_nosemaphore;
|
|
set_pud(pud, *pud_k);
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
if (pmd_present(*pmd) || !pmd_present(*pmd_k))
|
|
goto bad_area_nosemaphore;
|
|
set_pmd(pmd, *pmd_k);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user
|
|
* context, we must not take the fault..
|
|
*/
|
|
if (in_atomic() || !mm)
|
|
goto no_context;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
vma = find_vma(mm, address);
|
|
if (!vma)
|
|
goto bad_area;
|
|
if (vma->vm_start <= address)
|
|
goto good_area;
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto bad_area;
|
|
if (expand_stack(vma, address))
|
|
goto bad_area;
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
si_code = SEGV_ACCERR;
|
|
if (writeaccess) {
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
goto bad_area;
|
|
} else {
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
goto bad_area;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
survive:
|
|
fault = handle_mm_fault(mm, vma, address, writeaccess);
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
if (fault & VM_FAULT_OOM)
|
|
goto out_of_memory;
|
|
else if (fault & VM_FAULT_SIGBUS)
|
|
goto do_sigbus;
|
|
BUG();
|
|
}
|
|
if (fault & VM_FAULT_MAJOR)
|
|
tsk->maj_flt++;
|
|
else
|
|
tsk->min_flt++;
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
bad_area:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
bad_area_nosemaphore:
|
|
if (user_mode(regs)) {
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void *) address;
|
|
force_sig_info(SIGSEGV, &info, tsk);
|
|
return;
|
|
}
|
|
|
|
no_context:
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
if (handle_trapped_io(regs, address))
|
|
return;
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*
|
|
*/
|
|
|
|
bust_spinlocks(1);
|
|
|
|
if (oops_may_print()) {
|
|
unsigned long page;
|
|
|
|
if (address < PAGE_SIZE)
|
|
printk(KERN_ALERT "Unable to handle kernel NULL "
|
|
"pointer dereference");
|
|
else
|
|
printk(KERN_ALERT "Unable to handle kernel paging "
|
|
"request");
|
|
printk(" at virtual address %08lx\n", address);
|
|
printk(KERN_ALERT "pc = %08lx\n", regs->pc);
|
|
page = (unsigned long)get_TTB();
|
|
if (page) {
|
|
page = ((__typeof__(page) *)page)[address >> PGDIR_SHIFT];
|
|
printk(KERN_ALERT "*pde = %08lx\n", page);
|
|
if (page & _PAGE_PRESENT) {
|
|
page &= PAGE_MASK;
|
|
address &= 0x003ff000;
|
|
page = ((__typeof__(page) *)
|
|
__va(page))[address >>
|
|
PAGE_SHIFT];
|
|
printk(KERN_ALERT "*pte = %08lx\n", page);
|
|
}
|
|
}
|
|
}
|
|
|
|
die("Oops", regs, writeaccess);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
|
|
/*
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
* us unable to handle the page fault gracefully.
|
|
*/
|
|
out_of_memory:
|
|
up_read(&mm->mmap_sem);
|
|
if (is_global_init(current)) {
|
|
yield();
|
|
down_read(&mm->mmap_sem);
|
|
goto survive;
|
|
}
|
|
printk("VM: killing process %s\n", tsk->comm);
|
|
if (user_mode(regs))
|
|
do_group_exit(SIGKILL);
|
|
goto no_context;
|
|
|
|
do_sigbus:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Send a sigbus, regardless of whether we were in kernel
|
|
* or user mode.
|
|
*/
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRERR;
|
|
info.si_addr = (void *)address;
|
|
force_sig_info(SIGBUS, &info, tsk);
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
}
|
|
|
|
#ifdef CONFIG_SH_STORE_QUEUES
|
|
/*
|
|
* This is a special case for the SH-4 store queues, as pages for this
|
|
* space still need to be faulted in before it's possible to flush the
|
|
* store queue cache for writeout to the remapped region.
|
|
*/
|
|
#define P3_ADDR_MAX (P4SEG_STORE_QUE + 0x04000000)
|
|
#else
|
|
#define P3_ADDR_MAX P4SEG
|
|
#endif
|
|
|
|
/*
|
|
* Called with interrupts disabled.
|
|
*/
|
|
asmlinkage int __kprobes __do_page_fault(struct pt_regs *regs,
|
|
unsigned long writeaccess,
|
|
unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
pte_t entry;
|
|
|
|
#ifdef CONFIG_SH_KGDB
|
|
if (kgdb_nofault && kgdb_bus_err_hook)
|
|
kgdb_bus_err_hook();
|
|
#endif
|
|
|
|
/*
|
|
* We don't take page faults for P1, P2, and parts of P4, these
|
|
* are always mapped, whether it be due to legacy behaviour in
|
|
* 29-bit mode, or due to PMB configuration in 32-bit mode.
|
|
*/
|
|
if (address >= P3SEG && address < P3_ADDR_MAX) {
|
|
pgd = pgd_offset_k(address);
|
|
} else {
|
|
if (unlikely(address >= TASK_SIZE || !current->mm))
|
|
return 1;
|
|
|
|
pgd = pgd_offset(current->mm, address);
|
|
}
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none_or_clear_bad(pud))
|
|
return 1;
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
return 1;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
entry = *pte;
|
|
if (unlikely(pte_none(entry) || pte_not_present(entry)))
|
|
return 1;
|
|
if (unlikely(writeaccess && !pte_write(entry)))
|
|
return 1;
|
|
|
|
if (writeaccess)
|
|
entry = pte_mkdirty(entry);
|
|
entry = pte_mkyoung(entry);
|
|
|
|
#if defined(CONFIG_CPU_SH4) && !defined(CONFIG_SMP)
|
|
/*
|
|
* ITLB is not affected by "ldtlb" instruction.
|
|
* So, we need to flush the entry by ourselves.
|
|
*/
|
|
local_flush_tlb_one(get_asid(), address & PAGE_MASK);
|
|
#endif
|
|
|
|
set_pte(pte, entry);
|
|
update_mmu_cache(NULL, address, entry);
|
|
|
|
return 0;
|
|
}
|