851 строка
29 KiB
C
851 строка
29 KiB
C
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
|
|
/*
|
|
* hcd.h - DesignWare HS OTG Controller host-mode declarations
|
|
*
|
|
* Copyright (C) 2004-2013 Synopsys, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The names of the above-listed copyright holders may not be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* ALTERNATIVELY, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option) any
|
|
* later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#ifndef __DWC2_HCD_H__
|
|
#define __DWC2_HCD_H__
|
|
|
|
/*
|
|
* This file contains the structures, constants, and interfaces for the
|
|
* Host Contoller Driver (HCD)
|
|
*
|
|
* The Host Controller Driver (HCD) is responsible for translating requests
|
|
* from the USB Driver into the appropriate actions on the DWC_otg controller.
|
|
* It isolates the USBD from the specifics of the controller by providing an
|
|
* API to the USBD.
|
|
*/
|
|
|
|
struct dwc2_qh;
|
|
|
|
/**
|
|
* struct dwc2_host_chan - Software host channel descriptor
|
|
*
|
|
* @hc_num: Host channel number, used for register address lookup
|
|
* @dev_addr: Address of the device
|
|
* @ep_num: Endpoint of the device
|
|
* @ep_is_in: Endpoint direction
|
|
* @speed: Device speed. One of the following values:
|
|
* - USB_SPEED_LOW
|
|
* - USB_SPEED_FULL
|
|
* - USB_SPEED_HIGH
|
|
* @ep_type: Endpoint type. One of the following values:
|
|
* - USB_ENDPOINT_XFER_CONTROL: 0
|
|
* - USB_ENDPOINT_XFER_ISOC: 1
|
|
* - USB_ENDPOINT_XFER_BULK: 2
|
|
* - USB_ENDPOINT_XFER_INTR: 3
|
|
* @max_packet: Max packet size in bytes
|
|
* @data_pid_start: PID for initial transaction.
|
|
* 0: DATA0
|
|
* 1: DATA2
|
|
* 2: DATA1
|
|
* 3: MDATA (non-Control EP),
|
|
* SETUP (Control EP)
|
|
* @multi_count: Number of additional periodic transactions per
|
|
* (micro)frame
|
|
* @xfer_buf: Pointer to current transfer buffer position
|
|
* @xfer_dma: DMA address of xfer_buf
|
|
* @xfer_len: Total number of bytes to transfer
|
|
* @xfer_count: Number of bytes transferred so far
|
|
* @start_pkt_count: Packet count at start of transfer
|
|
* @xfer_started: True if the transfer has been started
|
|
* @ping: True if a PING request should be issued on this channel
|
|
* @error_state: True if the error count for this transaction is non-zero
|
|
* @halt_on_queue: True if this channel should be halted the next time a
|
|
* request is queued for the channel. This is necessary in
|
|
* slave mode if no request queue space is available when
|
|
* an attempt is made to halt the channel.
|
|
* @halt_pending: True if the host channel has been halted, but the core
|
|
* is not finished flushing queued requests
|
|
* @do_split: Enable split for the channel
|
|
* @complete_split: Enable complete split
|
|
* @hub_addr: Address of high speed hub for the split
|
|
* @hub_port: Port of the low/full speed device for the split
|
|
* @xact_pos: Split transaction position. One of the following values:
|
|
* - DWC2_HCSPLT_XACTPOS_MID
|
|
* - DWC2_HCSPLT_XACTPOS_BEGIN
|
|
* - DWC2_HCSPLT_XACTPOS_END
|
|
* - DWC2_HCSPLT_XACTPOS_ALL
|
|
* @requests: Number of requests issued for this channel since it was
|
|
* assigned to the current transfer (not counting PINGs)
|
|
* @schinfo: Scheduling micro-frame bitmap
|
|
* @ntd: Number of transfer descriptors for the transfer
|
|
* @halt_status: Reason for halting the host channel
|
|
* @hcint Contents of the HCINT register when the interrupt came
|
|
* @qh: QH for the transfer being processed by this channel
|
|
* @hc_list_entry: For linking to list of host channels
|
|
* @desc_list_addr: Current QH's descriptor list DMA address
|
|
* @desc_list_sz: Current QH's descriptor list size
|
|
* @split_order_list_entry: List entry for keeping track of the order of splits
|
|
*
|
|
* This structure represents the state of a single host channel when acting in
|
|
* host mode. It contains the data items needed to transfer packets to an
|
|
* endpoint via a host channel.
|
|
*/
|
|
struct dwc2_host_chan {
|
|
u8 hc_num;
|
|
|
|
unsigned dev_addr:7;
|
|
unsigned ep_num:4;
|
|
unsigned ep_is_in:1;
|
|
unsigned speed:4;
|
|
unsigned ep_type:2;
|
|
unsigned max_packet:11;
|
|
unsigned data_pid_start:2;
|
|
#define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
|
|
#define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
|
|
#define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
|
|
#define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
|
|
#define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
|
|
|
|
unsigned multi_count:2;
|
|
|
|
u8 *xfer_buf;
|
|
dma_addr_t xfer_dma;
|
|
u32 xfer_len;
|
|
u32 xfer_count;
|
|
u16 start_pkt_count;
|
|
u8 xfer_started;
|
|
u8 do_ping;
|
|
u8 error_state;
|
|
u8 halt_on_queue;
|
|
u8 halt_pending;
|
|
u8 do_split;
|
|
u8 complete_split;
|
|
u8 hub_addr;
|
|
u8 hub_port;
|
|
u8 xact_pos;
|
|
#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
|
|
#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
|
|
#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
|
|
#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
|
|
|
|
u8 requests;
|
|
u8 schinfo;
|
|
u16 ntd;
|
|
enum dwc2_halt_status halt_status;
|
|
u32 hcint;
|
|
struct dwc2_qh *qh;
|
|
struct list_head hc_list_entry;
|
|
dma_addr_t desc_list_addr;
|
|
u32 desc_list_sz;
|
|
struct list_head split_order_list_entry;
|
|
};
|
|
|
|
struct dwc2_hcd_pipe_info {
|
|
u8 dev_addr;
|
|
u8 ep_num;
|
|
u8 pipe_type;
|
|
u8 pipe_dir;
|
|
u16 mps;
|
|
};
|
|
|
|
struct dwc2_hcd_iso_packet_desc {
|
|
u32 offset;
|
|
u32 length;
|
|
u32 actual_length;
|
|
u32 status;
|
|
};
|
|
|
|
struct dwc2_qtd;
|
|
|
|
struct dwc2_hcd_urb {
|
|
void *priv;
|
|
struct dwc2_qtd *qtd;
|
|
void *buf;
|
|
dma_addr_t dma;
|
|
void *setup_packet;
|
|
dma_addr_t setup_dma;
|
|
u32 length;
|
|
u32 actual_length;
|
|
u32 status;
|
|
u32 error_count;
|
|
u32 packet_count;
|
|
u32 flags;
|
|
u16 interval;
|
|
struct dwc2_hcd_pipe_info pipe_info;
|
|
struct dwc2_hcd_iso_packet_desc iso_descs[0];
|
|
};
|
|
|
|
/* Phases for control transfers */
|
|
enum dwc2_control_phase {
|
|
DWC2_CONTROL_SETUP,
|
|
DWC2_CONTROL_DATA,
|
|
DWC2_CONTROL_STATUS,
|
|
};
|
|
|
|
/* Transaction types */
|
|
enum dwc2_transaction_type {
|
|
DWC2_TRANSACTION_NONE,
|
|
DWC2_TRANSACTION_PERIODIC,
|
|
DWC2_TRANSACTION_NON_PERIODIC,
|
|
DWC2_TRANSACTION_ALL,
|
|
};
|
|
|
|
/* The number of elements per LS bitmap (per port on multi_tt) */
|
|
#define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
|
|
BITS_PER_LONG)
|
|
|
|
/**
|
|
* struct dwc2_tt - dwc2 data associated with a usb_tt
|
|
*
|
|
* @refcount: Number of Queue Heads (QHs) holding a reference.
|
|
* @usb_tt: Pointer back to the official usb_tt.
|
|
* @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
|
|
* for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
|
|
* elements (so sizeof(long) times that in bytes).
|
|
*
|
|
* This structure is stored in the hcpriv of the official usb_tt.
|
|
*/
|
|
struct dwc2_tt {
|
|
int refcount;
|
|
struct usb_tt *usb_tt;
|
|
unsigned long periodic_bitmaps[];
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
|
|
*
|
|
* @start_schedule_usecs: The start time on the main bus schedule. Note that
|
|
* the main bus schedule is tightly packed and this
|
|
* time should be interpreted as tightly packed (so
|
|
* uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
|
|
* instead of 125 us).
|
|
* @duration_us: How long this transfer goes.
|
|
*/
|
|
|
|
struct dwc2_hs_transfer_time {
|
|
u32 start_schedule_us;
|
|
u16 duration_us;
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_qh - Software queue head structure
|
|
*
|
|
* @hsotg: The HCD state structure for the DWC OTG controller
|
|
* @ep_type: Endpoint type. One of the following values:
|
|
* - USB_ENDPOINT_XFER_CONTROL
|
|
* - USB_ENDPOINT_XFER_BULK
|
|
* - USB_ENDPOINT_XFER_INT
|
|
* - USB_ENDPOINT_XFER_ISOC
|
|
* @ep_is_in: Endpoint direction
|
|
* @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
|
|
* @dev_speed: Device speed. One of the following values:
|
|
* - USB_SPEED_LOW
|
|
* - USB_SPEED_FULL
|
|
* - USB_SPEED_HIGH
|
|
* @data_toggle: Determines the PID of the next data packet for
|
|
* non-controltransfers. Ignored for control transfers.
|
|
* One of the following values:
|
|
* - DWC2_HC_PID_DATA0
|
|
* - DWC2_HC_PID_DATA1
|
|
* @ping_state: Ping state
|
|
* @do_split: Full/low speed endpoint on high-speed hub requires split
|
|
* @td_first: Index of first activated isochronous transfer descriptor
|
|
* @td_last: Index of last activated isochronous transfer descriptor
|
|
* @host_us: Bandwidth in microseconds per transfer as seen by host
|
|
* @device_us: Bandwidth in microseconds per transfer as seen by device
|
|
* @host_interval: Interval between transfers as seen by the host. If
|
|
* the host is high speed and the device is low speed this
|
|
* will be 8 times device interval.
|
|
* @device_interval: Interval between transfers as seen by the device.
|
|
* interval.
|
|
* @next_active_frame: (Micro)frame _before_ we next need to put something on
|
|
* the bus. We'll move the qh to active here. If the
|
|
* host is in high speed mode this will be a uframe. If
|
|
* the host is in low speed mode this will be a full frame.
|
|
* @start_active_frame: If we are partway through a split transfer, this will be
|
|
* what next_active_frame was when we started. Otherwise
|
|
* it should always be the same as next_active_frame.
|
|
* @num_hs_transfers: Number of transfers in hs_transfers.
|
|
* Normally this is 1 but can be more than one for splits.
|
|
* Always >= 1 unless the host is in low/full speed mode.
|
|
* @hs_transfers: Transfers that are scheduled as seen by the high speed
|
|
* bus. Not used if host is in low or full speed mode (but
|
|
* note that it IS USED if the device is low or full speed
|
|
* as long as the HOST is in high speed mode).
|
|
* @ls_start_schedule_slice: Start time (in slices) on the low speed bus
|
|
* schedule that's being used by this device. This
|
|
* will be on the periodic_bitmap in a
|
|
* "struct dwc2_tt". Not used if this device is high
|
|
* speed. Note that this is in "schedule slice" which
|
|
* is tightly packed.
|
|
* @ls_duration_us: Duration on the low speed bus schedule.
|
|
* @ntd: Actual number of transfer descriptors in a list
|
|
* @qtd_list: List of QTDs for this QH
|
|
* @channel: Host channel currently processing transfers for this QH
|
|
* @qh_list_entry: Entry for QH in either the periodic or non-periodic
|
|
* schedule
|
|
* @desc_list: List of transfer descriptors
|
|
* @desc_list_dma: Physical address of desc_list
|
|
* @desc_list_sz: Size of descriptors list
|
|
* @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
|
|
* descriptor and indicates original XferSize value for the
|
|
* descriptor
|
|
* @unreserve_timer: Timer for releasing periodic reservation.
|
|
* @dwc2_tt: Pointer to our tt info (or NULL if no tt).
|
|
* @ttport: Port number within our tt.
|
|
* @tt_buffer_dirty True if clear_tt_buffer_complete is pending
|
|
* @unreserve_pending: True if we planned to unreserve but haven't yet.
|
|
* @schedule_low_speed: True if we have a low/full speed component (either the
|
|
* host is in low/full speed mode or do_split).
|
|
*
|
|
* A Queue Head (QH) holds the static characteristics of an endpoint and
|
|
* maintains a list of transfers (QTDs) for that endpoint. A QH structure may
|
|
* be entered in either the non-periodic or periodic schedule.
|
|
*/
|
|
struct dwc2_qh {
|
|
struct dwc2_hsotg *hsotg;
|
|
u8 ep_type;
|
|
u8 ep_is_in;
|
|
u16 maxp;
|
|
u8 dev_speed;
|
|
u8 data_toggle;
|
|
u8 ping_state;
|
|
u8 do_split;
|
|
u8 td_first;
|
|
u8 td_last;
|
|
u16 host_us;
|
|
u16 device_us;
|
|
u16 host_interval;
|
|
u16 device_interval;
|
|
u16 next_active_frame;
|
|
u16 start_active_frame;
|
|
s16 num_hs_transfers;
|
|
struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
|
|
u32 ls_start_schedule_slice;
|
|
u16 ntd;
|
|
struct list_head qtd_list;
|
|
struct dwc2_host_chan *channel;
|
|
struct list_head qh_list_entry;
|
|
struct dwc2_dma_desc *desc_list;
|
|
dma_addr_t desc_list_dma;
|
|
u32 desc_list_sz;
|
|
u32 *n_bytes;
|
|
struct timer_list unreserve_timer;
|
|
struct dwc2_tt *dwc_tt;
|
|
int ttport;
|
|
unsigned tt_buffer_dirty:1;
|
|
unsigned unreserve_pending:1;
|
|
unsigned schedule_low_speed:1;
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_qtd - Software queue transfer descriptor (QTD)
|
|
*
|
|
* @control_phase: Current phase for control transfers (Setup, Data, or
|
|
* Status)
|
|
* @in_process: Indicates if this QTD is currently processed by HW
|
|
* @data_toggle: Determines the PID of the next data packet for the
|
|
* data phase of control transfers. Ignored for other
|
|
* transfer types. One of the following values:
|
|
* - DWC2_HC_PID_DATA0
|
|
* - DWC2_HC_PID_DATA1
|
|
* @complete_split: Keeps track of the current split type for FS/LS
|
|
* endpoints on a HS Hub
|
|
* @isoc_split_pos: Position of the ISOC split in full/low speed
|
|
* @isoc_frame_index: Index of the next frame descriptor for an isochronous
|
|
* transfer. A frame descriptor describes the buffer
|
|
* position and length of the data to be transferred in the
|
|
* next scheduled (micro)frame of an isochronous transfer.
|
|
* It also holds status for that transaction. The frame
|
|
* index starts at 0.
|
|
* @isoc_split_offset: Position of the ISOC split in the buffer for the
|
|
* current frame
|
|
* @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
|
|
* @error_count: Holds the number of bus errors that have occurred for
|
|
* a transaction within this transfer
|
|
* @n_desc: Number of DMA descriptors for this QTD
|
|
* @isoc_frame_index_last: Last activated frame (packet) index, used in
|
|
* descriptor DMA mode only
|
|
* @urb: URB for this transfer
|
|
* @qh: Queue head for this QTD
|
|
* @qtd_list_entry: For linking to the QH's list of QTDs
|
|
*
|
|
* A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
|
|
* interrupt, or isochronous transfer. A single QTD is created for each URB
|
|
* (of one of these types) submitted to the HCD. The transfer associated with
|
|
* a QTD may require one or multiple transactions.
|
|
*
|
|
* A QTD is linked to a Queue Head, which is entered in either the
|
|
* non-periodic or periodic schedule for execution. When a QTD is chosen for
|
|
* execution, some or all of its transactions may be executed. After
|
|
* execution, the state of the QTD is updated. The QTD may be retired if all
|
|
* its transactions are complete or if an error occurred. Otherwise, it
|
|
* remains in the schedule so more transactions can be executed later.
|
|
*/
|
|
struct dwc2_qtd {
|
|
enum dwc2_control_phase control_phase;
|
|
u8 in_process;
|
|
u8 data_toggle;
|
|
u8 complete_split;
|
|
u8 isoc_split_pos;
|
|
u16 isoc_frame_index;
|
|
u16 isoc_split_offset;
|
|
u16 isoc_td_last;
|
|
u16 isoc_td_first;
|
|
u32 ssplit_out_xfer_count;
|
|
u8 error_count;
|
|
u8 n_desc;
|
|
u16 isoc_frame_index_last;
|
|
struct dwc2_hcd_urb *urb;
|
|
struct dwc2_qh *qh;
|
|
struct list_head qtd_list_entry;
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
struct hc_xfer_info {
|
|
struct dwc2_hsotg *hsotg;
|
|
struct dwc2_host_chan *chan;
|
|
};
|
|
#endif
|
|
|
|
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
|
|
|
|
/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
|
|
static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return (struct usb_hcd *)hsotg->priv;
|
|
}
|
|
|
|
/*
|
|
* Inline used to disable one channel interrupt. Channel interrupts are
|
|
* disabled when the channel is halted or released by the interrupt handler.
|
|
* There is no need to handle further interrupts of that type until the
|
|
* channel is re-assigned. In fact, subsequent handling may cause crashes
|
|
* because the channel structures are cleaned up when the channel is released.
|
|
*/
|
|
static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
|
|
{
|
|
u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
|
|
|
|
mask &= ~intr;
|
|
dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
|
|
}
|
|
|
|
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
|
|
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
|
|
enum dwc2_halt_status halt_status);
|
|
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_host_chan *chan);
|
|
|
|
/*
|
|
* Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
|
|
* are read as 1, they won't clear when written back.
|
|
*/
|
|
static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
|
|
|
|
hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
|
|
return hprt0;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->ep_num;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->pipe_type;
|
|
}
|
|
|
|
static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->mps;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->dev_addr;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return pipe->pipe_dir == USB_DIR_IN;
|
|
}
|
|
|
|
static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
|
|
{
|
|
return !dwc2_hcd_is_pipe_in(pipe);
|
|
}
|
|
|
|
int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
|
|
void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
|
|
|
|
/* Transaction Execution Functions */
|
|
enum dwc2_transaction_type dwc2_hcd_select_transactions(
|
|
struct dwc2_hsotg *hsotg);
|
|
void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
|
|
enum dwc2_transaction_type tr_type);
|
|
|
|
/* Schedule Queue Functions */
|
|
/* Implemented in hcd_queue.c */
|
|
struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hcd_urb *urb,
|
|
gfp_t mem_flags);
|
|
void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
|
int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
|
void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
|
void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
|
|
int sched_csplit);
|
|
|
|
void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
|
|
int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
|
|
struct dwc2_qh *qh);
|
|
|
|
/* Unlinks and frees a QTD */
|
|
static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_qtd *qtd,
|
|
struct dwc2_qh *qh)
|
|
{
|
|
list_del(&qtd->qtd_list_entry);
|
|
kfree(qtd);
|
|
qtd = NULL;
|
|
}
|
|
|
|
/* Descriptor DMA support functions */
|
|
void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_qh *qh);
|
|
void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_host_chan *chan, int chnum,
|
|
enum dwc2_halt_status halt_status);
|
|
|
|
int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
|
|
gfp_t mem_flags);
|
|
void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
|
|
|
/* Check if QH is non-periodic */
|
|
#define dwc2_qh_is_non_per(_qh_ptr_) \
|
|
((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
|
|
(_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
|
|
|
|
#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
|
|
static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
|
|
static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
|
|
static inline bool dbg_urb(struct urb *urb) { return true; }
|
|
static inline bool dbg_perio(void) { return true; }
|
|
#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
|
|
static inline bool dbg_hc(struct dwc2_host_chan *hc)
|
|
{
|
|
return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
|
|
hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
|
|
}
|
|
|
|
static inline bool dbg_qh(struct dwc2_qh *qh)
|
|
{
|
|
return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
|
|
qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
|
|
}
|
|
|
|
static inline bool dbg_urb(struct urb *urb)
|
|
{
|
|
return usb_pipetype(urb->pipe) == PIPE_BULK ||
|
|
usb_pipetype(urb->pipe) == PIPE_CONTROL;
|
|
}
|
|
|
|
static inline bool dbg_perio(void) { return false; }
|
|
#endif
|
|
|
|
/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
|
|
#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
|
|
|
|
/* Packet size for any kind of endpoint descriptor */
|
|
#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
|
|
|
|
/*
|
|
* Returns true if frame1 index is greater than frame2 index. The comparison
|
|
* is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
|
|
* frame number when the max index frame number is reached.
|
|
*/
|
|
static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
|
|
{
|
|
u16 diff = fr_idx1 - fr_idx2;
|
|
u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
|
|
|
|
return diff && !sign;
|
|
}
|
|
|
|
/*
|
|
* Returns true if frame1 is less than or equal to frame2. The comparison is
|
|
* done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
|
|
* frame number when the max frame number is reached.
|
|
*/
|
|
static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
|
|
{
|
|
return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
|
|
}
|
|
|
|
/*
|
|
* Returns true if frame1 is greater than frame2. The comparison is done
|
|
* modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
|
|
* number when the max frame number is reached.
|
|
*/
|
|
static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
|
|
{
|
|
return (frame1 != frame2) &&
|
|
((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
|
|
}
|
|
|
|
/*
|
|
* Increments frame by the amount specified by inc. The addition is done
|
|
* modulo HFNUM_MAX_FRNUM. Returns the incremented value.
|
|
*/
|
|
static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
|
|
{
|
|
return (frame + inc) & HFNUM_MAX_FRNUM;
|
|
}
|
|
|
|
static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
|
|
{
|
|
return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
|
|
}
|
|
|
|
static inline u16 dwc2_full_frame_num(u16 frame)
|
|
{
|
|
return (frame & HFNUM_MAX_FRNUM) >> 3;
|
|
}
|
|
|
|
static inline u16 dwc2_micro_frame_num(u16 frame)
|
|
{
|
|
return frame & 0x7;
|
|
}
|
|
|
|
/*
|
|
* Returns the Core Interrupt Status register contents, ANDed with the Core
|
|
* Interrupt Mask register contents
|
|
*/
|
|
static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return dwc2_readl(hsotg->regs + GINTSTS) &
|
|
dwc2_readl(hsotg->regs + GINTMSK);
|
|
}
|
|
|
|
static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
|
|
{
|
|
return dwc2_urb->status;
|
|
}
|
|
|
|
static inline u32 dwc2_hcd_urb_get_actual_length(
|
|
struct dwc2_hcd_urb *dwc2_urb)
|
|
{
|
|
return dwc2_urb->actual_length;
|
|
}
|
|
|
|
static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
|
|
{
|
|
return dwc2_urb->error_count;
|
|
}
|
|
|
|
static inline void dwc2_hcd_urb_set_iso_desc_params(
|
|
struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
|
|
u32 length)
|
|
{
|
|
dwc2_urb->iso_descs[desc_num].offset = offset;
|
|
dwc2_urb->iso_descs[desc_num].length = length;
|
|
}
|
|
|
|
static inline u32 dwc2_hcd_urb_get_iso_desc_status(
|
|
struct dwc2_hcd_urb *dwc2_urb, int desc_num)
|
|
{
|
|
return dwc2_urb->iso_descs[desc_num].status;
|
|
}
|
|
|
|
static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
|
|
struct dwc2_hcd_urb *dwc2_urb, int desc_num)
|
|
{
|
|
return dwc2_urb->iso_descs[desc_num].actual_length;
|
|
}
|
|
|
|
static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct dwc2_qh *qh = ep->hcpriv;
|
|
|
|
if (qh && !list_empty(&qh->qh_list_entry))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct dwc2_qh *qh = ep->hcpriv;
|
|
|
|
if (!qh) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return qh->host_us;
|
|
}
|
|
|
|
void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_host_chan *chan, int chnum,
|
|
struct dwc2_qtd *qtd);
|
|
|
|
/* HCD Core API */
|
|
|
|
/**
|
|
* dwc2_handle_hcd_intr() - Called on every hardware interrupt
|
|
*
|
|
* @hsotg: The DWC2 HCD
|
|
*
|
|
* Returns IRQ_HANDLED if interrupt is handled
|
|
* Return IRQ_NONE if interrupt is not handled
|
|
*/
|
|
irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
|
|
|
|
/**
|
|
* dwc2_hcd_stop() - Halts the DWC_otg host mode operation
|
|
*
|
|
* @hsotg: The DWC2 HCD
|
|
*/
|
|
void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
|
|
|
|
/**
|
|
* dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
|
|
* and 0 otherwise
|
|
*
|
|
* @hsotg: The DWC2 HCD
|
|
*/
|
|
int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
|
|
|
|
/**
|
|
* dwc2_hcd_dump_state() - Dumps hsotg state
|
|
*
|
|
* @hsotg: The DWC2 HCD
|
|
*
|
|
* NOTE: This function will be removed once the peripheral controller code
|
|
* is integrated and the driver is stable
|
|
*/
|
|
void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
|
|
|
|
/**
|
|
* dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
|
|
*
|
|
* @hsotg: The DWC2 HCD
|
|
*
|
|
* This can be used to determine average interrupt latency. Frame remaining is
|
|
* also shown for start transfer and two additional sample points.
|
|
*
|
|
* NOTE: This function will be removed once the peripheral controller code
|
|
* is integrated and the driver is stable
|
|
*/
|
|
void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
|
|
|
|
/* URB interface */
|
|
|
|
/* Transfer flags */
|
|
#define URB_GIVEBACK_ASAP 0x1
|
|
#define URB_SEND_ZERO_PACKET 0x2
|
|
|
|
/* Host driver callbacks */
|
|
struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
|
|
void *context, gfp_t mem_flags,
|
|
int *ttport);
|
|
|
|
void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_tt *dwc_tt);
|
|
int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
|
|
void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
|
|
int status);
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* Macro to sample the remaining PHY clocks left in the current frame. This
|
|
* may be used during debugging to determine the average time it takes to
|
|
* execute sections of code. There are two possible sample points, "a" and
|
|
* "b", so the _letter_ argument must be one of these values.
|
|
*
|
|
* To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
|
|
* example, "cat /sys/devices/lm0/hcd_frrem".
|
|
*/
|
|
#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
|
|
do { \
|
|
struct hfnum_data _hfnum_; \
|
|
struct dwc2_qtd *_qtd_; \
|
|
\
|
|
_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
|
|
qtd_list_entry); \
|
|
if (usb_pipeint(_qtd_->urb->pipe) && \
|
|
(_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
|
|
_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
|
|
switch (_hfnum_.b.frnum & 0x7) { \
|
|
case 7: \
|
|
(_hcd_)->hfnum_7_samples_##_letter_++; \
|
|
(_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
|
|
_hfnum_.b.frrem; \
|
|
break; \
|
|
case 0: \
|
|
(_hcd_)->hfnum_0_samples_##_letter_++; \
|
|
(_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
|
|
_hfnum_.b.frrem; \
|
|
break; \
|
|
default: \
|
|
(_hcd_)->hfnum_other_samples_##_letter_++; \
|
|
(_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
|
|
_hfnum_.b.frrem; \
|
|
break; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
|
|
#endif
|
|
|
|
#endif /* __DWC2_HCD_H__ */
|