WSL2-Linux-Kernel/sound/oss/swarm_cs4297a.c

2743 строки
87 KiB
C

/*******************************************************************************
*
* "swarm_cs4297a.c" -- Cirrus Logic-Crystal CS4297a linux audio driver.
*
* Copyright (C) 2001 Broadcom Corporation.
* Copyright (C) 2000,2001 Cirrus Logic Corp.
* -- adapted from drivers by Thomas Sailer,
* -- but don't bug him; Problems should go to:
* -- tom woller (twoller@crystal.cirrus.com) or
* (audio@crystal.cirrus.com).
* -- adapted from cs4281 PCI driver for cs4297a on
* BCM1250 Synchronous Serial interface
* (Kip Walker, Broadcom Corp.)
* Copyright (C) 2004 Maciej W. Rozycki
* Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module command line parameters:
* none
*
* Supported devices:
* /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
* /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
* /dev/midi simple MIDI UART interface, no ioctl
*
* Modification History
* 08/20/00 trw - silence and no stopping DAC until release
* 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop.
* 09/18/00 trw - added 16bit only record with conversion
* 09/24/00 trw - added Enhanced Full duplex (separate simultaneous
* capture/playback rates)
* 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin
* libOSSm.so)
* 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal)
* 11/03/00 trw - fixed interrupt loss/stutter, added debug.
* 11/10/00 bkz - added __devinit to cs4297a_hw_init()
* 11/10/00 trw - fixed SMP and capture spinlock hang.
* 12/04/00 trw - cleaned up CSDEBUG flags and added "defaultorder" moduleparm.
* 12/05/00 trw - fixed polling (myth2), and added underrun swptr fix.
* 12/08/00 trw - added PM support.
* 12/14/00 trw - added wrapper code, builds under 2.4.0, 2.2.17-20, 2.2.17-8
* (RH/Dell base), 2.2.18, 2.2.12. cleaned up code mods by ident.
* 12/19/00 trw - added PM support for 2.2 base (apm_callback). other PM cleanup.
* 12/21/00 trw - added fractional "defaultorder" inputs. if >100 then use
* defaultorder-100 as power of 2 for the buffer size. example:
* 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
*
*******************************************************************************/
#include <linux/list.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/ac97_codec.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/mutex.h>
#include <linux/kernel.h>
#include <asm/byteorder.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/sibyte/sb1250_regs.h>
#include <asm/sibyte/sb1250_int.h>
#include <asm/sibyte/sb1250_dma.h>
#include <asm/sibyte/sb1250_scd.h>
#include <asm/sibyte/sb1250_syncser.h>
#include <asm/sibyte/sb1250_mac.h>
#include <asm/sibyte/sb1250.h>
struct cs4297a_state;
static void stop_dac(struct cs4297a_state *s);
static void stop_adc(struct cs4297a_state *s);
static void start_dac(struct cs4297a_state *s);
static void start_adc(struct cs4297a_state *s);
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
// ---------------------------------------------------------------------
#define CS4297a_MAGIC 0xf00beef1
// buffer order determines the size of the dma buffer for the driver.
// under Linux, a smaller buffer allows more responsiveness from many of the
// applications (e.g. games). A larger buffer allows some of the apps (esound)
// to not underrun the dma buffer as easily. As default, use 32k (order=3)
// rather than 64k as some of the games work more responsively.
// log base 2( buff sz = 32k).
//static unsigned long defaultorder = 3;
//MODULE_PARM(defaultorder, "i");
//
// Turn on/off debugging compilation by commenting out "#define CSDEBUG"
//
#define CSDEBUG 0
#if CSDEBUG
#define CSDEBUG_INTERFACE 1
#else
#undef CSDEBUG_INTERFACE
#endif
//
// cs_debugmask areas
//
#define CS_INIT 0x00000001 // initialization and probe functions
#define CS_ERROR 0x00000002 // tmp debugging bit placeholder
#define CS_INTERRUPT 0x00000004 // interrupt handler (separate from all other)
#define CS_FUNCTION 0x00000008 // enter/leave functions
#define CS_WAVE_WRITE 0x00000010 // write information for wave
#define CS_WAVE_READ 0x00000020 // read information for wave
#define CS_AC97 0x00000040 // AC97 register access
#define CS_DESCR 0x00000080 // descriptor management
#define CS_OPEN 0x00000400 // all open functions in the driver
#define CS_RELEASE 0x00000800 // all release functions in the driver
#define CS_PARMS 0x00001000 // functional and operational parameters
#define CS_IOCTL 0x00002000 // ioctl (non-mixer)
#define CS_TMP 0x10000000 // tmp debug mask bit
//
// CSDEBUG is usual mode is set to 1, then use the
// cs_debuglevel and cs_debugmask to turn on or off debugging.
// Debug level of 1 has been defined to be kernel errors and info
// that should be printed on any released driver.
//
#if CSDEBUG
#define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;}
#else
#define CS_DBGOUT(mask,level,x)
#endif
#if CSDEBUG
static unsigned long cs_debuglevel = 4; // levels range from 1-9
static unsigned long cs_debugmask = CS_INIT /*| CS_IOCTL*/;
module_param(cs_debuglevel, int, 0);
module_param(cs_debugmask, int, 0);
#endif
#define CS_TRUE 1
#define CS_FALSE 0
#define CS_TYPE_ADC 0
#define CS_TYPE_DAC 1
#define SER_BASE (A_SER_BASE_1 + KSEG1)
#define SS_CSR(t) (SER_BASE+t)
#define SS_TXTBL(t) (SER_BASE+R_SER_TX_TABLE_BASE+(t*8))
#define SS_RXTBL(t) (SER_BASE+R_SER_RX_TABLE_BASE+(t*8))
#define FRAME_BYTES 32
#define FRAME_SAMPLE_BYTES 4
/* Should this be variable? */
#define SAMPLE_BUF_SIZE (16*1024)
#define SAMPLE_FRAME_COUNT (SAMPLE_BUF_SIZE / FRAME_SAMPLE_BYTES)
/* The driver can explode/shrink the frames to/from a smaller sample
buffer */
#define DMA_BLOAT_FACTOR 1
#define DMA_DESCR (SAMPLE_FRAME_COUNT / DMA_BLOAT_FACTOR)
#define DMA_BUF_SIZE (DMA_DESCR * FRAME_BYTES)
/* Use the maxmium count (255 == 5.1 ms between interrupts) */
#define DMA_INT_CNT ((1 << S_DMA_INT_PKTCNT) - 1)
/* Figure this out: how many TX DMAs ahead to schedule a reg access */
#define REG_LATENCY 150
#define FRAME_TX_US 20
#define SERDMA_NEXTBUF(d,f) (((d)->f+1) % (d)->ringsz)
static const char invalid_magic[] =
KERN_CRIT "cs4297a: invalid magic value\n";
#define VALIDATE_STATE(s) \
({ \
if (!(s) || (s)->magic != CS4297a_MAGIC) { \
printk(invalid_magic); \
return -ENXIO; \
} \
})
struct list_head cs4297a_devs = { &cs4297a_devs, &cs4297a_devs };
typedef struct serdma_descr_s {
u64 descr_a;
u64 descr_b;
} serdma_descr_t;
typedef unsigned long paddr_t;
typedef struct serdma_s {
unsigned ringsz;
serdma_descr_t *descrtab;
serdma_descr_t *descrtab_end;
paddr_t descrtab_phys;
serdma_descr_t *descr_add;
serdma_descr_t *descr_rem;
u64 *dma_buf; // buffer for DMA contents (frames)
paddr_t dma_buf_phys;
u16 *sample_buf; // tmp buffer for sample conversions
u16 *sb_swptr;
u16 *sb_hwptr;
u16 *sb_end;
dma_addr_t dmaaddr;
// unsigned buforder; // Log base 2 of 'dma_buf' size in bytes..
unsigned numfrag; // # of 'fragments' in the buffer.
unsigned fragshift; // Log base 2 of fragment size.
unsigned hwptr, swptr;
unsigned total_bytes; // # bytes process since open.
unsigned blocks; // last returned blocks value GETOPTR
unsigned wakeup; // interrupt occurred on block
int count;
unsigned underrun; // underrun flag
unsigned error; // over/underrun
wait_queue_head_t wait;
wait_queue_head_t reg_wait;
// redundant, but makes calculations easier
unsigned fragsize; // 2**fragshift..
unsigned sbufsz; // 2**buforder.
unsigned fragsamples;
// OSS stuff
unsigned mapped:1; // Buffer mapped in cs4297a_mmap()?
unsigned ready:1; // prog_dmabuf_dac()/adc() successful?
unsigned endcleared:1;
unsigned type:1; // adc or dac buffer (CS_TYPE_XXX)
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} serdma_t;
struct cs4297a_state {
// magic
unsigned int magic;
struct list_head list;
// soundcore stuff
int dev_audio;
int dev_mixer;
// hardware resources
unsigned int irq;
struct {
unsigned int rx_ovrrn; /* FIFO */
unsigned int rx_overflow; /* staging buffer */
unsigned int tx_underrun;
unsigned int rx_bad;
unsigned int rx_good;
} stats;
// mixer registers
struct {
unsigned short vol[10];
unsigned int recsrc;
unsigned int modcnt;
unsigned short micpreamp;
} mix;
// wave stuff
struct properties {
unsigned fmt;
unsigned fmt_original; // original requested format
unsigned channels;
unsigned rate;
} prop_dac, prop_adc;
unsigned conversion:1; // conversion from 16 to 8 bit in progress
unsigned ena;
spinlock_t lock;
struct mutex open_mutex;
struct mutex open_sem_adc;
struct mutex open_sem_dac;
fmode_t open_mode;
wait_queue_head_t open_wait;
wait_queue_head_t open_wait_adc;
wait_queue_head_t open_wait_dac;
dma_addr_t dmaaddr_sample_buf;
unsigned buforder_sample_buf; // Log base 2 of 'dma_buf' size in bytes..
serdma_t dma_dac, dma_adc;
volatile u16 read_value;
volatile u16 read_reg;
volatile u64 reg_request;
};
#if 1
#define prog_codec(a,b)
#define dealloc_dmabuf(a,b);
#endif
static int prog_dmabuf_adc(struct cs4297a_state *s)
{
s->dma_adc.ready = 1;
return 0;
}
static int prog_dmabuf_dac(struct cs4297a_state *s)
{
s->dma_dac.ready = 1;
return 0;
}
static void clear_advance(void *buf, unsigned bsize, unsigned bptr,
unsigned len, unsigned char c)
{
if (bptr + len > bsize) {
unsigned x = bsize - bptr;
memset(((char *) buf) + bptr, c, x);
bptr = 0;
len -= x;
}
CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
"cs4297a: clear_advance(): memset %d at 0x%.8x for %d size \n",
(unsigned)c, (unsigned)((char *) buf) + bptr, len));
memset(((char *) buf) + bptr, c, len);
}
#if CSDEBUG
// DEBUG ROUTINES
#define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int)
#define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int)
#define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int)
#define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int)
static void cs_printioctl(unsigned int x)
{
unsigned int i;
unsigned char vidx;
// Index of mixtable1[] member is Device ID
// and must be <= SOUND_MIXER_NRDEVICES.
// Value of array member is index into s->mix.vol[]
static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = 1, // voice
[SOUND_MIXER_LINE1] = 2, // AUX
[SOUND_MIXER_CD] = 3, // CD
[SOUND_MIXER_LINE] = 4, // Line
[SOUND_MIXER_SYNTH] = 5, // FM
[SOUND_MIXER_MIC] = 6, // Mic
[SOUND_MIXER_SPEAKER] = 7, // Speaker
[SOUND_MIXER_RECLEV] = 8, // Recording level
[SOUND_MIXER_VOLUME] = 9 // Master Volume
};
switch (x) {
case SOUND_MIXER_CS_GETDBGMASK:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_CS_GETDBGMASK:\n"));
break;
case SOUND_MIXER_CS_GETDBGLEVEL:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_CS_GETDBGLEVEL:\n"));
break;
case SOUND_MIXER_CS_SETDBGMASK:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_CS_SETDBGMASK:\n"));
break;
case SOUND_MIXER_CS_SETDBGLEVEL:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_CS_SETDBGLEVEL:\n"));
break;
case OSS_GETVERSION:
CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n"));
break;
case SNDCTL_DSP_SYNC:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n"));
break;
case SNDCTL_DSP_SETDUPLEX:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n"));
break;
case SNDCTL_DSP_GETCAPS:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n"));
break;
case SNDCTL_DSP_RESET:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n"));
break;
case SNDCTL_DSP_SPEED:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n"));
break;
case SNDCTL_DSP_STEREO:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n"));
break;
case SNDCTL_DSP_CHANNELS:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n"));
break;
case SNDCTL_DSP_GETFMTS:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n"));
break;
case SNDCTL_DSP_SETFMT:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n"));
break;
case SNDCTL_DSP_POST:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n"));
break;
case SNDCTL_DSP_GETTRIGGER:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n"));
break;
case SNDCTL_DSP_SETTRIGGER:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n"));
break;
case SNDCTL_DSP_GETOSPACE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n"));
break;
case SNDCTL_DSP_GETISPACE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n"));
break;
case SNDCTL_DSP_NONBLOCK:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n"));
break;
case SNDCTL_DSP_GETODELAY:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n"));
break;
case SNDCTL_DSP_GETIPTR:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n"));
break;
case SNDCTL_DSP_GETOPTR:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n"));
break;
case SNDCTL_DSP_GETBLKSIZE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n"));
break;
case SNDCTL_DSP_SETFRAGMENT:
CS_DBGOUT(CS_IOCTL, 4,
printk("SNDCTL_DSP_SETFRAGMENT:\n"));
break;
case SNDCTL_DSP_SUBDIVIDE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n"));
break;
case SOUND_PCM_READ_RATE:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n"));
break;
case SOUND_PCM_READ_CHANNELS:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_PCM_READ_CHANNELS:\n"));
break;
case SOUND_PCM_READ_BITS:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n"));
break;
case SOUND_PCM_WRITE_FILTER:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_PCM_WRITE_FILTER:\n"));
break;
case SNDCTL_DSP_SETSYNCRO:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n"));
break;
case SOUND_PCM_READ_FILTER:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n"));
break;
case SOUND_MIXER_PRIVATE1:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n"));
break;
case SOUND_MIXER_PRIVATE2:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n"));
break;
case SOUND_MIXER_PRIVATE3:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n"));
break;
case SOUND_MIXER_PRIVATE4:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n"));
break;
case SOUND_MIXER_PRIVATE5:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n"));
break;
case SOUND_MIXER_INFO:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n"));
break;
case SOUND_OLD_MIXER_INFO:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n"));
break;
default:
switch (_IOC_NR(x)) {
case SOUND_MIXER_VOLUME:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_VOLUME:\n"));
break;
case SOUND_MIXER_SPEAKER:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_SPEAKER:\n"));
break;
case SOUND_MIXER_RECLEV:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_RECLEV:\n"));
break;
case SOUND_MIXER_MIC:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_MIC:\n"));
break;
case SOUND_MIXER_SYNTH:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_SYNTH:\n"));
break;
case SOUND_MIXER_RECSRC:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_RECSRC:\n"));
break;
case SOUND_MIXER_DEVMASK:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_DEVMASK:\n"));
break;
case SOUND_MIXER_RECMASK:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_RECMASK:\n"));
break;
case SOUND_MIXER_STEREODEVS:
CS_DBGOUT(CS_IOCTL, 4,
printk("SOUND_MIXER_STEREODEVS:\n"));
break;
case SOUND_MIXER_CAPS:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n"));
break;
default:
i = _IOC_NR(x);
if (i >= SOUND_MIXER_NRDEVICES
|| !(vidx = mixtable1[i])) {
CS_DBGOUT(CS_IOCTL, 4, printk
("UNKNOWN IOCTL: 0x%.8x NR=%d\n",
x, i));
} else {
CS_DBGOUT(CS_IOCTL, 4, printk
("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n",
x, i));
}
break;
}
}
}
#endif
static int ser_init(struct cs4297a_state *s)
{
int i;
CS_DBGOUT(CS_INIT, 2,
printk(KERN_INFO "cs4297a: Setting up serial parameters\n"));
__raw_writeq(M_SYNCSER_CMD_RX_RESET | M_SYNCSER_CMD_TX_RESET, SS_CSR(R_SER_CMD));
__raw_writeq(M_SYNCSER_MSB_FIRST, SS_CSR(R_SER_MODE));
__raw_writeq(32, SS_CSR(R_SER_MINFRM_SZ));
__raw_writeq(32, SS_CSR(R_SER_MAXFRM_SZ));
__raw_writeq(1, SS_CSR(R_SER_TX_RD_THRSH));
__raw_writeq(4, SS_CSR(R_SER_TX_WR_THRSH));
__raw_writeq(8, SS_CSR(R_SER_RX_RD_THRSH));
/* This looks good from experimentation */
__raw_writeq((M_SYNCSER_TXSYNC_INT | V_SYNCSER_TXSYNC_DLY(0) | M_SYNCSER_TXCLK_EXT |
M_SYNCSER_RXSYNC_INT | V_SYNCSER_RXSYNC_DLY(1) | M_SYNCSER_RXCLK_EXT | M_SYNCSER_RXSYNC_EDGE),
SS_CSR(R_SER_LINE_MODE));
/* This looks good from experimentation */
__raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE,
SS_TXTBL(0));
__raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
SS_TXTBL(1));
__raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
SS_TXTBL(2));
__raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE |
M_SYNCSER_SEQ_STROBE | M_SYNCSER_SEQ_LAST, SS_TXTBL(3));
__raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE,
SS_RXTBL(0));
__raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
SS_RXTBL(1));
__raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
SS_RXTBL(2));
__raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE |
M_SYNCSER_SEQ_LAST, SS_RXTBL(3));
for (i=4; i<16; i++) {
/* Just in case... */
__raw_writeq(M_SYNCSER_SEQ_LAST, SS_TXTBL(i));
__raw_writeq(M_SYNCSER_SEQ_LAST, SS_RXTBL(i));
}
return 0;
}
static int init_serdma(serdma_t *dma)
{
CS_DBGOUT(CS_INIT, 2,
printk(KERN_ERR "cs4297a: desc - %d sbufsize - %d dbufsize - %d\n",
DMA_DESCR, SAMPLE_BUF_SIZE, DMA_BUF_SIZE));
/* Descriptors */
dma->ringsz = DMA_DESCR;
dma->descrtab = kzalloc(dma->ringsz * sizeof(serdma_descr_t), GFP_KERNEL);
if (!dma->descrtab) {
printk(KERN_ERR "cs4297a: kzalloc descrtab failed\n");
return -1;
}
dma->descrtab_end = dma->descrtab + dma->ringsz;
/* XXX bloddy mess, use proper DMA API here ... */
dma->descrtab_phys = CPHYSADDR((long)dma->descrtab);
dma->descr_add = dma->descr_rem = dma->descrtab;
/* Frame buffer area */
dma->dma_buf = kzalloc(DMA_BUF_SIZE, GFP_KERNEL);
if (!dma->dma_buf) {
printk(KERN_ERR "cs4297a: kzalloc dma_buf failed\n");
kfree(dma->descrtab);
return -1;
}
dma->dma_buf_phys = CPHYSADDR((long)dma->dma_buf);
/* Samples buffer area */
dma->sbufsz = SAMPLE_BUF_SIZE;
dma->sample_buf = kmalloc(dma->sbufsz, GFP_KERNEL);
if (!dma->sample_buf) {
printk(KERN_ERR "cs4297a: kmalloc sample_buf failed\n");
kfree(dma->descrtab);
kfree(dma->dma_buf);
return -1;
}
dma->sb_swptr = dma->sb_hwptr = dma->sample_buf;
dma->sb_end = (u16 *)((void *)dma->sample_buf + dma->sbufsz);
dma->fragsize = dma->sbufsz >> 1;
CS_DBGOUT(CS_INIT, 4,
printk(KERN_ERR "cs4297a: descrtab - %08x dma_buf - %x sample_buf - %x\n",
(int)dma->descrtab, (int)dma->dma_buf,
(int)dma->sample_buf));
return 0;
}
static int dma_init(struct cs4297a_state *s)
{
int i;
CS_DBGOUT(CS_INIT, 2,
printk(KERN_INFO "cs4297a: Setting up DMA\n"));
if (init_serdma(&s->dma_adc) ||
init_serdma(&s->dma_dac))
return -1;
if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX))||
__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) {
panic("DMA state corrupted?!");
}
/* Initialize now - the descr/buffer pairings will never
change... */
for (i=0; i<DMA_DESCR; i++) {
s->dma_dac.descrtab[i].descr_a = M_DMA_SERRX_SOP | V_DMA_DSCRA_A_SIZE(1) |
(s->dma_dac.dma_buf_phys + i*FRAME_BYTES);
s->dma_dac.descrtab[i].descr_b = V_DMA_DSCRB_PKT_SIZE(FRAME_BYTES);
s->dma_adc.descrtab[i].descr_a = V_DMA_DSCRA_A_SIZE(1) |
(s->dma_adc.dma_buf_phys + i*FRAME_BYTES);
s->dma_adc.descrtab[i].descr_b = 0;
}
__raw_writeq((M_DMA_EOP_INT_EN | V_DMA_INT_PKTCNT(DMA_INT_CNT) |
V_DMA_RINGSZ(DMA_DESCR) | M_DMA_TDX_EN),
SS_CSR(R_SER_DMA_CONFIG0_RX));
__raw_writeq(M_DMA_L2CA, SS_CSR(R_SER_DMA_CONFIG1_RX));
__raw_writeq(s->dma_adc.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_RX));
__raw_writeq(V_DMA_RINGSZ(DMA_DESCR), SS_CSR(R_SER_DMA_CONFIG0_TX));
__raw_writeq(M_DMA_L2CA | M_DMA_NO_DSCR_UPDT, SS_CSR(R_SER_DMA_CONFIG1_TX));
__raw_writeq(s->dma_dac.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_TX));
/* Prep the receive DMA descriptor ring */
__raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
__raw_writeq(M_SYNCSER_DMA_RX_EN | M_SYNCSER_DMA_TX_EN, SS_CSR(R_SER_DMA_ENABLE));
__raw_writeq((M_SYNCSER_RX_SYNC_ERR | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_EOP_COUNT),
SS_CSR(R_SER_INT_MASK));
/* Enable the rx/tx; let the codec warm up to the sync and
start sending good frames before the receive FIFO is
enabled */
__raw_writeq(M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD));
udelay(1000);
__raw_writeq(M_SYNCSER_CMD_RX_EN | M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD));
/* XXXKW is this magic? (the "1" part) */
while ((__raw_readq(SS_CSR(R_SER_STATUS)) & 0xf1) != 1)
;
CS_DBGOUT(CS_INIT, 4,
printk(KERN_INFO "cs4297a: status: %08x\n",
(unsigned int)(__raw_readq(SS_CSR(R_SER_STATUS)) & 0xffffffff)));
return 0;
}
static int serdma_reg_access(struct cs4297a_state *s, u64 data)
{
serdma_t *d = &s->dma_dac;
u64 *data_p;
unsigned swptr;
unsigned long flags;
serdma_descr_t *descr;
if (s->reg_request) {
printk(KERN_ERR "cs4297a: attempt to issue multiple reg_access\n");
return -1;
}
if (s->ena & FMODE_WRITE) {
/* Since a writer has the DSP open, we have to mux the
request in */
s->reg_request = data;
interruptible_sleep_on(&s->dma_dac.reg_wait);
/* XXXKW how can I deal with the starvation case where
the opener isn't writing? */
} else {
/* Be safe when changing ring pointers */
spin_lock_irqsave(&s->lock, flags);
if (d->hwptr != d->swptr) {
printk(KERN_ERR "cs4297a: reg access found bookkeeping error (hw/sw = %d/%d\n",
d->hwptr, d->swptr);
spin_unlock_irqrestore(&s->lock, flags);
return -1;
}
swptr = d->swptr;
d->hwptr = d->swptr = (d->swptr + 1) % d->ringsz;
spin_unlock_irqrestore(&s->lock, flags);
descr = &d->descrtab[swptr];
data_p = &d->dma_buf[swptr * 4];
*data_p = cpu_to_be64(data);
__raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_TX));
CS_DBGOUT(CS_DESCR, 4,
printk(KERN_INFO "cs4297a: add_tx %p (%x -> %x)\n",
data_p, swptr, d->hwptr));
}
CS_DBGOUT(CS_FUNCTION, 6,
printk(KERN_INFO "cs4297a: serdma_reg_access()-\n"));
return 0;
}
//****************************************************************************
// "cs4297a_read_ac97" -- Reads an AC97 register
//****************************************************************************
static int cs4297a_read_ac97(struct cs4297a_state *s, u32 offset,
u32 * value)
{
CS_DBGOUT(CS_AC97, 1,
printk(KERN_INFO "cs4297a: read reg %2x\n", offset));
if (serdma_reg_access(s, (0xCLL << 60) | (1LL << 47) | ((u64)(offset & 0x7F) << 40)))
return -1;
interruptible_sleep_on(&s->dma_adc.reg_wait);
*value = s->read_value;
CS_DBGOUT(CS_AC97, 2,
printk(KERN_INFO "cs4297a: rdr reg %x -> %x\n", s->read_reg, s->read_value));
return 0;
}
//****************************************************************************
// "cs4297a_write_ac97()"-- writes an AC97 register
//****************************************************************************
static int cs4297a_write_ac97(struct cs4297a_state *s, u32 offset,
u32 value)
{
CS_DBGOUT(CS_AC97, 1,
printk(KERN_INFO "cs4297a: write reg %2x -> %04x\n", offset, value));
return (serdma_reg_access(s, (0xELL << 60) | ((u64)(offset & 0x7F) << 40) | ((value & 0xffff) << 12)));
}
static void stop_dac(struct cs4297a_state *s)
{
unsigned long flags;
CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4297a: stop_dac():\n"));
spin_lock_irqsave(&s->lock, flags);
s->ena &= ~FMODE_WRITE;
#if 0
/* XXXKW what do I really want here? My theory for now is
that I just flip the "ena" bit, and the interrupt handler
will stop processing the xmit channel */
__raw_writeq((s->ena & FMODE_READ) ? M_SYNCSER_DMA_RX_EN : 0,
SS_CSR(R_SER_DMA_ENABLE));
#endif
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_dac(struct cs4297a_state *s)
{
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: start_dac()+\n"));
spin_lock_irqsave(&s->lock, flags);
if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped ||
(s->dma_dac.count > 0
&& s->dma_dac.ready))) {
s->ena |= FMODE_WRITE;
/* XXXKW what do I really want here? My theory for
now is that I just flip the "ena" bit, and the
interrupt handler will start processing the xmit
channel */
CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO
"cs4297a: start_dac(): start dma\n"));
}
spin_unlock_irqrestore(&s->lock, flags);
CS_DBGOUT(CS_FUNCTION, 3,
printk(KERN_INFO "cs4297a: start_dac()-\n"));
}
static void stop_adc(struct cs4297a_state *s)
{
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 3,
printk(KERN_INFO "cs4297a: stop_adc()+\n"));
spin_lock_irqsave(&s->lock, flags);
s->ena &= ~FMODE_READ;
if (s->conversion == 1) {
s->conversion = 0;
s->prop_adc.fmt = s->prop_adc.fmt_original;
}
/* Nothing to do really, I need to keep the DMA going
XXXKW when do I get here, and is there more I should do? */
spin_unlock_irqrestore(&s->lock, flags);
CS_DBGOUT(CS_FUNCTION, 3,
printk(KERN_INFO "cs4297a: stop_adc()-\n"));
}
static void start_adc(struct cs4297a_state *s)
{
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 2,
printk(KERN_INFO "cs4297a: start_adc()+\n"));
if (!(s->ena & FMODE_READ) &&
(s->dma_adc.mapped || s->dma_adc.count <=
(signed) (s->dma_adc.sbufsz - 2 * s->dma_adc.fragsize))
&& s->dma_adc.ready) {
if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) {
//
// now only use 16 bit capture, due to truncation issue
// in the chip, noticable distortion occurs.
// allocate buffer and then convert from 16 bit to
// 8 bit for the user buffer.
//
s->prop_adc.fmt_original = s->prop_adc.fmt;
if (s->prop_adc.fmt & AFMT_S8) {
s->prop_adc.fmt &= ~AFMT_S8;
s->prop_adc.fmt |= AFMT_S16_LE;
}
if (s->prop_adc.fmt & AFMT_U8) {
s->prop_adc.fmt &= ~AFMT_U8;
s->prop_adc.fmt |= AFMT_U16_LE;
}
//
// prog_dmabuf_adc performs a stop_adc() but that is
// ok since we really haven't started the DMA yet.
//
prog_codec(s, CS_TYPE_ADC);
prog_dmabuf_adc(s);
s->conversion = 1;
}
spin_lock_irqsave(&s->lock, flags);
s->ena |= FMODE_READ;
/* Nothing to do really, I am probably already
DMAing... XXXKW when do I get here, and is there
more I should do? */
spin_unlock_irqrestore(&s->lock, flags);
CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO
"cs4297a: start_adc(): start adc\n"));
}
CS_DBGOUT(CS_FUNCTION, 2,
printk(KERN_INFO "cs4297a: start_adc()-\n"));
}
// call with spinlock held!
static void cs4297a_update_ptr(struct cs4297a_state *s, int intflag)
{
int good_diff, diff, diff2;
u64 *data_p, data;
u32 *s_ptr;
unsigned hwptr;
u32 status;
serdma_t *d;
serdma_descr_t *descr;
// update ADC pointer
status = intflag ? __raw_readq(SS_CSR(R_SER_STATUS)) : 0;
if ((s->ena & FMODE_READ) || (status & (M_SYNCSER_RX_EOP_COUNT))) {
d = &s->dma_adc;
hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
d->descrtab_phys) / sizeof(serdma_descr_t));
if (s->ena & FMODE_READ) {
CS_DBGOUT(CS_FUNCTION, 2,
printk(KERN_INFO "cs4297a: upd_rcv sw->hw->hw %x/%x/%x (int-%d)n",
d->swptr, d->hwptr, hwptr, intflag));
/* Number of DMA buffers available for software: */
diff2 = diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz;
d->hwptr = hwptr;
good_diff = 0;
s_ptr = (u32 *)&(d->dma_buf[d->swptr*4]);
descr = &d->descrtab[d->swptr];
while (diff2--) {
u64 data = be64_to_cpu(*(u64 *)s_ptr);
u64 descr_a;
u16 left, right;
descr_a = descr->descr_a;
descr->descr_a &= ~M_DMA_SERRX_SOP;
if ((descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)s_ptr)) {
printk(KERN_ERR "cs4297a: RX Bad address (read)\n");
}
if (((data & 0x9800000000000000) != 0x9800000000000000) ||
(!(descr_a & M_DMA_SERRX_SOP)) ||
(G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) {
s->stats.rx_bad++;
printk(KERN_DEBUG "cs4297a: RX Bad attributes (read)\n");
continue;
}
s->stats.rx_good++;
if ((data >> 61) == 7) {
s->read_value = (data >> 12) & 0xffff;
s->read_reg = (data >> 40) & 0x7f;
wake_up(&d->reg_wait);
}
if (d->count && (d->sb_hwptr == d->sb_swptr)) {
s->stats.rx_overflow++;
printk(KERN_DEBUG "cs4297a: RX overflow\n");
continue;
}
good_diff++;
left = ((be32_to_cpu(s_ptr[1]) & 0xff) << 8) |
((be32_to_cpu(s_ptr[2]) >> 24) & 0xff);
right = (be32_to_cpu(s_ptr[2]) >> 4) & 0xffff;
*d->sb_hwptr++ = cpu_to_be16(left);
*d->sb_hwptr++ = cpu_to_be16(right);
if (d->sb_hwptr == d->sb_end)
d->sb_hwptr = d->sample_buf;
descr++;
if (descr == d->descrtab_end) {
descr = d->descrtab;
s_ptr = (u32 *)s->dma_adc.dma_buf;
} else {
s_ptr += 8;
}
}
d->total_bytes += good_diff * FRAME_SAMPLE_BYTES;
d->count += good_diff * FRAME_SAMPLE_BYTES;
if (d->count > d->sbufsz) {
printk(KERN_ERR "cs4297a: bogus receive overflow!!\n");
}
d->swptr = (d->swptr + diff) % d->ringsz;
__raw_writeq(diff, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
if (d->mapped) {
if (d->count >= (signed) d->fragsize)
wake_up(&d->wait);
} else {
if (d->count > 0) {
CS_DBGOUT(CS_WAVE_READ, 4,
printk(KERN_INFO
"cs4297a: update count -> %d\n", d->count));
wake_up(&d->wait);
}
}
} else {
/* Receive is going even if no one is
listening (for register accesses and to
avoid FIFO overrun) */
diff2 = diff = (hwptr + d->ringsz - d->hwptr) % d->ringsz;
if (!diff) {
printk(KERN_ERR "cs4297a: RX full or empty?\n");
}
descr = &d->descrtab[d->swptr];
data_p = &d->dma_buf[d->swptr*4];
/* Force this to happen at least once; I got
here because of an interrupt, so there must
be a buffer to process. */
do {
data = be64_to_cpu(*data_p);
if ((descr->descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)data_p)) {
printk(KERN_ERR "cs4297a: RX Bad address %d (%llx %lx)\n", d->swptr,
(long long)(descr->descr_a & M_DMA_DSCRA_A_ADDR),
(long)CPHYSADDR((long)data_p));
}
if (!(data & (1LL << 63)) ||
!(descr->descr_a & M_DMA_SERRX_SOP) ||
(G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) {
s->stats.rx_bad++;
printk(KERN_DEBUG "cs4297a: RX Bad attributes\n");
} else {
s->stats.rx_good++;
if ((data >> 61) == 7) {
s->read_value = (data >> 12) & 0xffff;
s->read_reg = (data >> 40) & 0x7f;
wake_up(&d->reg_wait);
}
}
descr->descr_a &= ~M_DMA_SERRX_SOP;
descr++;
d->swptr++;
data_p += 4;
if (descr == d->descrtab_end) {
descr = d->descrtab;
d->swptr = 0;
data_p = d->dma_buf;
}
__raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
} while (--diff);
d->hwptr = hwptr;
CS_DBGOUT(CS_DESCR, 6,
printk(KERN_INFO "cs4297a: hw/sw %x/%x\n", d->hwptr, d->swptr));
}
CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
"cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
(unsigned)s, d->hwptr,
d->total_bytes, d->count));
}
/* XXXKW worry about s->reg_request -- there is a starvation
case if s->ena has FMODE_WRITE on, but the client isn't
doing writes */
// update DAC pointer
//
// check for end of buffer, means that we are going to wait for another interrupt
// to allow silence to fill the fifos on the part, to keep pops down to a minimum.
//
if (s->ena & FMODE_WRITE) {
serdma_t *d = &s->dma_dac;
hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
d->descrtab_phys) / sizeof(serdma_descr_t));
diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz;
CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
"cs4297a: cs4297a_update_ptr(): hw/hw/sw %x/%x/%x diff %d count %d\n",
d->hwptr, hwptr, d->swptr, diff, d->count));
d->hwptr = hwptr;
/* XXXKW stereo? conversion? Just assume 2 16-bit samples for now */
d->total_bytes += diff * FRAME_SAMPLE_BYTES;
if (d->mapped) {
d->count += diff * FRAME_SAMPLE_BYTES;
if (d->count >= d->fragsize) {
d->wakeup = 1;
wake_up(&d->wait);
if (d->count > d->sbufsz)
d->count &= d->sbufsz - 1;
}
} else {
d->count -= diff * FRAME_SAMPLE_BYTES;
if (d->count <= 0) {
//
// fill with silence, and do not shut down the DAC.
// Continue to play silence until the _release.
//
CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO
"cs4297a: cs4297a_update_ptr(): memset %d at 0x%.8x for %d size \n",
(unsigned)(s->prop_dac.fmt &
(AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
(unsigned)d->dma_buf,
d->ringsz));
memset(d->dma_buf, 0, d->ringsz * FRAME_BYTES);
if (d->count < 0) {
d->underrun = 1;
s->stats.tx_underrun++;
d->count = 0;
CS_DBGOUT(CS_ERROR, 9, printk(KERN_INFO
"cs4297a: cs4297a_update_ptr(): underrun\n"));
}
} else if (d->count <=
(signed) d->fragsize
&& !d->endcleared) {
/* XXXKW what is this for? */
clear_advance(d->dma_buf,
d->sbufsz,
d->swptr,
d->fragsize,
0);
d->endcleared = 1;
}
if ( (d->count <= (signed) d->sbufsz/2) || intflag)
{
CS_DBGOUT(CS_WAVE_WRITE, 4,
printk(KERN_INFO
"cs4297a: update count -> %d\n", d->count));
wake_up(&d->wait);
}
}
CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
"cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
(unsigned) s, d->hwptr,
d->total_bytes, d->count));
}
}
static int mixer_ioctl(struct cs4297a_state *s, unsigned int cmd,
unsigned long arg)
{
// Index to mixer_src[] is value of AC97 Input Mux Select Reg.
// Value of array member is recording source Device ID Mask.
static const unsigned int mixer_src[8] = {
SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1,
SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0
};
// Index of mixtable1[] member is Device ID
// and must be <= SOUND_MIXER_NRDEVICES.
// Value of array member is index into s->mix.vol[]
static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = 1, // voice
[SOUND_MIXER_LINE1] = 2, // AUX
[SOUND_MIXER_CD] = 3, // CD
[SOUND_MIXER_LINE] = 4, // Line
[SOUND_MIXER_SYNTH] = 5, // FM
[SOUND_MIXER_MIC] = 6, // Mic
[SOUND_MIXER_SPEAKER] = 7, // Speaker
[SOUND_MIXER_RECLEV] = 8, // Recording level
[SOUND_MIXER_VOLUME] = 9 // Master Volume
};
static const unsigned mixreg[] = {
AC97_PCMOUT_VOL,
AC97_AUX_VOL,
AC97_CD_VOL,
AC97_LINEIN_VOL
};
unsigned char l, r, rl, rr, vidx;
unsigned char attentbl[11] =
{ 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 };
unsigned temp1;
int i, val;
VALIDATE_STATE(s);
CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
"cs4297a: mixer_ioctl(): s=0x%.8x cmd=0x%.8x\n",
(unsigned) s, cmd));
#if CSDEBUG
cs_printioctl(cmd);
#endif
#if CSDEBUG_INTERFACE
if ((cmd == SOUND_MIXER_CS_GETDBGMASK) ||
(cmd == SOUND_MIXER_CS_SETDBGMASK) ||
(cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
(cmd == SOUND_MIXER_CS_SETDBGLEVEL))
{
switch (cmd) {
case SOUND_MIXER_CS_GETDBGMASK:
return put_user(cs_debugmask,
(unsigned long *) arg);
case SOUND_MIXER_CS_GETDBGLEVEL:
return put_user(cs_debuglevel,
(unsigned long *) arg);
case SOUND_MIXER_CS_SETDBGMASK:
if (get_user(val, (unsigned long *) arg))
return -EFAULT;
cs_debugmask = val;
return 0;
case SOUND_MIXER_CS_SETDBGLEVEL:
if (get_user(val, (unsigned long *) arg))
return -EFAULT;
cs_debuglevel = val;
return 0;
default:
CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
"cs4297a: mixer_ioctl(): ERROR unknown debug cmd\n"));
return 0;
}
}
#endif
if (cmd == SOUND_MIXER_PRIVATE1) {
return -EINVAL;
}
if (cmd == SOUND_MIXER_PRIVATE2) {
// enable/disable/query spatializer
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != -1) {
temp1 = (val & 0x3f) >> 2;
cs4297a_write_ac97(s, AC97_3D_CONTROL, temp1);
cs4297a_read_ac97(s, AC97_GENERAL_PURPOSE,
&temp1);
cs4297a_write_ac97(s, AC97_GENERAL_PURPOSE,
temp1 | 0x2000);
}
cs4297a_read_ac97(s, AC97_3D_CONTROL, &temp1);
return put_user((temp1 << 2) | 3, (int *) arg);
}
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, "CS4297a", sizeof(info.id));
strlcpy(info.name, "Crystal CS4297a", sizeof(info.name));
info.modify_counter = s->mix.modcnt;
if (copy_to_user((void *) arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, "CS4297a", sizeof(info.id));
strlcpy(info.name, "Crystal CS4297a", sizeof(info.name));
if (copy_to_user((void *) arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int *) arg);
if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
// If ioctl has only the SIOC_READ bit(bit 31)
// on, process the only-read commands.
if (_SIOC_DIR(cmd) == _SIOC_READ) {
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
cs4297a_read_ac97(s, AC97_RECORD_SELECT,
&temp1);
return put_user(mixer_src[temp1 & 7], (int *) arg);
case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device
return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE |
SOUND_MASK_VOLUME | SOUND_MASK_RECLEV,
(int *) arg);
case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source
return put_user(SOUND_MASK_LINE | SOUND_MASK_VOLUME,
(int *) arg);
case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo
return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE |
SOUND_MASK_VOLUME | SOUND_MASK_RECLEV,
(int *) arg);
case SOUND_MIXER_CAPS:
return put_user(SOUND_CAP_EXCL_INPUT, (int *) arg);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES
|| !(vidx = mixtable1[i]))
return -EINVAL;
return put_user(s->mix.vol[vidx - 1], (int *) arg);
}
}
// If ioctl doesn't have both the SIOC_READ and
// the SIOC_WRITE bit set, return invalid.
if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE))
return -EINVAL;
// Increment the count of volume writes.
s->mix.modcnt++;
// Isolate the command; it must be a write.
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
if (get_user(val, (int *) arg))
return -EFAULT;
i = hweight32(val); // i = # bits on in val.
if (i != 1) // One & only 1 bit must be on.
return 0;
for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) {
if (val == mixer_src[i]) {
temp1 = (i << 8) | i;
cs4297a_write_ac97(s,
AC97_RECORD_SELECT,
temp1);
return 0;
}
}
return 0;
case SOUND_MIXER_VOLUME:
if (get_user(val, (int *) arg))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100; // Max soundcard.h vol is 100.
if (l < 6) {
rl = 63;
l = 0;
} else
rl = attentbl[(10 * l) / 100]; // Convert 0-100 vol to 63-0 atten.
r = (val >> 8) & 0xff;
if (r > 100)
r = 100; // Max right volume is 100, too
if (r < 6) {
rr = 63;
r = 0;
} else
rr = attentbl[(10 * r) / 100]; // Convert volume to attenuation.
if ((rl > 60) && (rr > 60)) // If both l & r are 'low',
temp1 = 0x8000; // turn on the mute bit.
else
temp1 = 0;
temp1 |= (rl << 8) | rr;
cs4297a_write_ac97(s, AC97_MASTER_VOL_STEREO, temp1);
cs4297a_write_ac97(s, AC97_PHONE_VOL, temp1);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[8] = ((unsigned int) r << 8) | l;
#else
s->mix.vol[8] = val;
#endif
return put_user(s->mix.vol[8], (int *) arg);
case SOUND_MIXER_SPEAKER:
if (get_user(val, (int *) arg))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
if (l < 3) {
rl = 0;
l = 0;
} else {
rl = (l * 2 - 5) / 13; // Convert 0-100 range to 0-15.
l = (rl * 13 + 5) / 2;
}
if (rl < 3) {
temp1 = 0x8000;
rl = 0;
} else
temp1 = 0;
rl = 15 - rl; // Convert volume to attenuation.
temp1 |= rl << 1;
cs4297a_write_ac97(s, AC97_PCBEEP_VOL, temp1);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[6] = l << 8;
#else
s->mix.vol[6] = val;
#endif
return put_user(s->mix.vol[6], (int *) arg);
case SOUND_MIXER_RECLEV:
if (get_user(val, (int *) arg))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
r = (val >> 8) & 0xff;
if (r > 100)
r = 100;
rl = (l * 2 - 5) / 13; // Convert 0-100 scale to 0-15.
rr = (r * 2 - 5) / 13;
if (rl < 3 && rr < 3)
temp1 = 0x8000;
else
temp1 = 0;
temp1 = temp1 | (rl << 8) | rr;
cs4297a_write_ac97(s, AC97_RECORD_GAIN, temp1);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[7] = ((unsigned int) r << 8) | l;
#else
s->mix.vol[7] = val;
#endif
return put_user(s->mix.vol[7], (int *) arg);
case SOUND_MIXER_MIC:
if (get_user(val, (int *) arg))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
if (l < 1) {
l = 0;
rl = 0;
} else {
rl = ((unsigned) l * 5 - 4) / 16; // Convert 0-100 range to 0-31.
l = (rl * 16 + 4) / 5;
}
cs4297a_read_ac97(s, AC97_MIC_VOL, &temp1);
temp1 &= 0x40; // Isolate 20db gain bit.
if (rl < 3) {
temp1 |= 0x8000;
rl = 0;
}
rl = 31 - rl; // Convert volume to attenuation.
temp1 |= rl;
cs4297a_write_ac97(s, AC97_MIC_VOL, temp1);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[5] = val << 8;
#else
s->mix.vol[5] = val;
#endif
return put_user(s->mix.vol[5], (int *) arg);
case SOUND_MIXER_SYNTH:
if (get_user(val, (int *) arg))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
if (get_user(val, (int *) arg))
return -EFAULT;
r = (val >> 8) & 0xff;
if (r > 100)
r = 100;
rl = (l * 2 - 11) / 3; // Convert 0-100 range to 0-63.
rr = (r * 2 - 11) / 3;
if (rl < 3) // If l is low, turn on
temp1 = 0x0080; // the mute bit.
else
temp1 = 0;
rl = 63 - rl; // Convert vol to attenuation.
// writel(temp1 | rl, s->pBA0 + FMLVC);
if (rr < 3) // If rr is low, turn on
temp1 = 0x0080; // the mute bit.
else
temp1 = 0;
rr = 63 - rr; // Convert vol to attenuation.
// writel(temp1 | rr, s->pBA0 + FMRVC);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[4] = (r << 8) | l;
#else
s->mix.vol[4] = val;
#endif
return put_user(s->mix.vol[4], (int *) arg);
default:
CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
"cs4297a: mixer_ioctl(): default\n"));
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
return -EINVAL;
if (get_user(val, (int *) arg))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
if (l < 1) {
l = 0;
rl = 31;
} else
rl = (attentbl[(l * 10) / 100]) >> 1;
r = (val >> 8) & 0xff;
if (r > 100)
r = 100;
if (r < 1) {
r = 0;
rr = 31;
} else
rr = (attentbl[(r * 10) / 100]) >> 1;
if ((rl > 30) && (rr > 30))
temp1 = 0x8000;
else
temp1 = 0;
temp1 = temp1 | (rl << 8) | rr;
cs4297a_write_ac97(s, mixreg[vidx - 1], temp1);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l;
#else
s->mix.vol[vidx - 1] = val;
#endif
return put_user(s->mix.vol[vidx - 1], (int *) arg);
}
}
// ---------------------------------------------------------------------
static int cs4297a_open_mixdev(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct cs4297a_state *s=NULL;
struct list_head *entry;
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()+\n"));
list_for_each(entry, &cs4297a_devs)
{
s = list_entry(entry, struct cs4297a_state, list);
if(s->dev_mixer == minor)
break;
}
if (!s)
{
CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- -ENODEV\n"));
return -ENODEV;
}
VALIDATE_STATE(s);
file->private_data = s;
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- 0\n"));
return nonseekable_open(inode, file);
}
static int cs4297a_release_mixdev(struct inode *inode, struct file *file)
{
struct cs4297a_state *s =
(struct cs4297a_state *) file->private_data;
VALIDATE_STATE(s);
return 0;
}
static int cs4297a_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return mixer_ioctl((struct cs4297a_state *) file->private_data, cmd,
arg);
}
// ******************************************************************************************
// Mixer file operations struct.
// ******************************************************************************************
static const struct file_operations cs4297a_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = cs4297a_ioctl_mixdev,
.open = cs4297a_open_mixdev,
.release = cs4297a_release_mixdev,
};
// ---------------------------------------------------------------------
static int drain_adc(struct cs4297a_state *s, int nonblock)
{
/* This routine serves no purpose currently - any samples
sitting in the receive queue will just be processed by the
background consumer. This would be different if DMA
actually stopped when there were no clients. */
return 0;
}
static int drain_dac(struct cs4297a_state *s, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
unsigned hwptr;
unsigned tmo;
int count;
if (s->dma_dac.mapped)
return 0;
if (nonblock)
return -EBUSY;
add_wait_queue(&s->dma_dac.wait, &wait);
while ((count = __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) ||
(s->dma_dac.count > 0)) {
if (!signal_pending(current)) {
set_current_state(TASK_INTERRUPTIBLE);
/* XXXKW is this calculation working? */
tmo = ((count * FRAME_TX_US) * HZ) / 1000000;
schedule_timeout(tmo + 1);
} else {
/* XXXKW do I care if there is a signal pending? */
}
}
spin_lock_irqsave(&s->lock, flags);
/* Reset the bookkeeping */
hwptr = (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t));
s->dma_dac.hwptr = s->dma_dac.swptr = hwptr;
spin_unlock_irqrestore(&s->lock, flags);
remove_wait_queue(&s->dma_dac.wait, &wait);
current->state = TASK_RUNNING;
return 0;
}
// ---------------------------------------------------------------------
static ssize_t cs4297a_read(struct file *file, char *buffer, size_t count,
loff_t * ppos)
{
struct cs4297a_state *s =
(struct cs4297a_state *) file->private_data;
ssize_t ret;
unsigned long flags;
int cnt, count_fr, cnt_by;
unsigned copied = 0;
CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
printk(KERN_INFO "cs4297a: cs4297a_read()+ %d \n", count));
VALIDATE_STATE(s);
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
//
// "count" is the amount of bytes to read (from app), is decremented each loop
// by the amount of bytes that have been returned to the user buffer.
// "cnt" is the running total of each read from the buffer (changes each loop)
// "buffer" points to the app's buffer
// "ret" keeps a running total of the amount of bytes that have been copied
// to the user buffer.
// "copied" is the total bytes copied into the user buffer for each loop.
//
while (count > 0) {
CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
"_read() count>0 count=%d .count=%d .swptr=%d .hwptr=%d \n",
count, s->dma_adc.count,
s->dma_adc.swptr, s->dma_adc.hwptr));
spin_lock_irqsave(&s->lock, flags);
/* cnt will be the number of available samples (16-bit
stereo); it starts out as the maxmimum consequetive
samples */
cnt = (s->dma_adc.sb_end - s->dma_adc.sb_swptr) / 2;
count_fr = s->dma_adc.count / FRAME_SAMPLE_BYTES;
// dma_adc.count is the current total bytes that have not been read.
// if the amount of unread bytes from the current sw pointer to the
// end of the buffer is greater than the current total bytes that
// have not been read, then set the "cnt" (unread bytes) to the
// amount of unread bytes.
if (count_fr < cnt)
cnt = count_fr;
cnt_by = cnt * FRAME_SAMPLE_BYTES;
spin_unlock_irqrestore(&s->lock, flags);
//
// if we are converting from 8/16 then we need to copy
// twice the number of 16 bit bytes then 8 bit bytes.
//
if (s->conversion) {
if (cnt_by > (count * 2)) {
cnt = (count * 2) / FRAME_SAMPLE_BYTES;
cnt_by = count * 2;
}
} else {
if (cnt_by > count) {
cnt = count / FRAME_SAMPLE_BYTES;
cnt_by = count;
}
}
//
// "cnt" NOW is the smaller of the amount that will be read,
// and the amount that is requested in this read (or partial).
// if there are no bytes in the buffer to read, then start the
// ADC and wait for the interrupt handler to wake us up.
//
if (cnt <= 0) {
// start up the dma engine and then continue back to the top of
// the loop when wake up occurs.
start_adc(s);
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
interruptible_sleep_on(&s->dma_adc.wait);
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
// there are bytes in the buffer to read.
// copy from the hw buffer over to the user buffer.
// user buffer is designated by "buffer"
// virtual address to copy from is dma_buf+swptr
// the "cnt" is the number of bytes to read.
CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO
"_read() copy_to cnt=%d count=%d ", cnt_by, count));
CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
" .sbufsz=%d .count=%d buffer=0x%.8x ret=%d\n",
s->dma_adc.sbufsz, s->dma_adc.count,
(unsigned) buffer, ret));
if (copy_to_user (buffer, ((void *)s->dma_adc.sb_swptr), cnt_by))
return ret ? ret : -EFAULT;
copied = cnt_by;
/* Return the descriptors */
spin_lock_irqsave(&s->lock, flags);
CS_DBGOUT(CS_FUNCTION, 2,
printk(KERN_INFO "cs4297a: upd_rcv sw->hw %x/%x\n", s->dma_adc.swptr, s->dma_adc.hwptr));
s->dma_adc.count -= cnt_by;
s->dma_adc.sb_swptr += cnt * 2;
if (s->dma_adc.sb_swptr == s->dma_adc.sb_end)
s->dma_adc.sb_swptr = s->dma_adc.sample_buf;
spin_unlock_irqrestore(&s->lock, flags);
count -= copied;
buffer += copied;
ret += copied;
start_adc(s);
}
CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
printk(KERN_INFO "cs4297a: cs4297a_read()- %d\n", ret));
return ret;
}
static ssize_t cs4297a_write(struct file *file, const char *buffer,
size_t count, loff_t * ppos)
{
struct cs4297a_state *s =
(struct cs4297a_state *) file->private_data;
ssize_t ret;
unsigned long flags;
unsigned swptr, hwptr;
int cnt;
CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
printk(KERN_INFO "cs4297a: cs4297a_write()+ count=%d\n",
count));
VALIDATE_STATE(s);
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
while (count > 0) {
serdma_t *d = &s->dma_dac;
int copy_cnt;
u32 *s_tmpl;
u32 *t_tmpl;
u32 left, right;
int swap = (s->prop_dac.fmt == AFMT_S16_LE) || (s->prop_dac.fmt == AFMT_U16_LE);
/* XXXXXX this is broken for BLOAT_FACTOR */
spin_lock_irqsave(&s->lock, flags);
if (d->count < 0) {
d->count = 0;
d->swptr = d->hwptr;
}
if (d->underrun) {
d->underrun = 0;
hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
d->descrtab_phys) / sizeof(serdma_descr_t));
d->swptr = d->hwptr = hwptr;
}
swptr = d->swptr;
cnt = d->sbufsz - (swptr * FRAME_SAMPLE_BYTES);
/* Will this write fill up the buffer? */
if (d->count + cnt > d->sbufsz)
cnt = d->sbufsz - d->count;
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
start_dac(s);
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
interruptible_sleep_on(&d->wait);
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
if (copy_from_user(d->sample_buf, buffer, cnt))
return ret ? ret : -EFAULT;
copy_cnt = cnt;
s_tmpl = (u32 *)d->sample_buf;
t_tmpl = (u32 *)(d->dma_buf + (swptr * 4));
/* XXXKW assuming 16-bit stereo! */
do {
u32 tmp;
t_tmpl[0] = cpu_to_be32(0x98000000);
tmp = be32_to_cpu(s_tmpl[0]);
left = tmp & 0xffff;
right = tmp >> 16;
if (swap) {
left = swab16(left);
right = swab16(right);
}
t_tmpl[1] = cpu_to_be32(left >> 8);
t_tmpl[2] = cpu_to_be32(((left & 0xff) << 24) |
(right << 4));
s_tmpl++;
t_tmpl += 8;
copy_cnt -= 4;
} while (copy_cnt);
/* Mux in any pending read/write accesses */
if (s->reg_request) {
*(u64 *)(d->dma_buf + (swptr * 4)) |=
cpu_to_be64(s->reg_request);
s->reg_request = 0;
wake_up(&s->dma_dac.reg_wait);
}
CS_DBGOUT(CS_WAVE_WRITE, 4,
printk(KERN_INFO
"cs4297a: copy in %d to swptr %x\n", cnt, swptr));
swptr = (swptr + (cnt/FRAME_SAMPLE_BYTES)) % d->ringsz;
__raw_writeq(cnt/FRAME_SAMPLE_BYTES, SS_CSR(R_SER_DMA_DSCR_COUNT_TX));
spin_lock_irqsave(&s->lock, flags);
d->swptr = swptr;
d->count += cnt;
d->endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
start_dac(s);
}
CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
printk(KERN_INFO "cs4297a: cs4297a_write()- %d\n", ret));
return ret;
}
static unsigned int cs4297a_poll(struct file *file,
struct poll_table_struct *wait)
{
struct cs4297a_state *s =
(struct cs4297a_state *) file->private_data;
unsigned long flags;
unsigned int mask = 0;
CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
printk(KERN_INFO "cs4297a: cs4297a_poll()+\n"));
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE) {
CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
printk(KERN_INFO
"cs4297a: cs4297a_poll() wait on FMODE_WRITE\n"));
if(!s->dma_dac.ready && prog_dmabuf_dac(s))
return 0;
poll_wait(file, &s->dma_dac.wait, wait);
}
if (file->f_mode & FMODE_READ) {
CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
printk(KERN_INFO
"cs4297a: cs4297a_poll() wait on FMODE_READ\n"));
if(!s->dma_dac.ready && prog_dmabuf_adc(s))
return 0;
poll_wait(file, &s->dma_adc.wait, wait);
}
spin_lock_irqsave(&s->lock, flags);
cs4297a_update_ptr(s,CS_FALSE);
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >=
(signed) s->dma_dac.fragsize) {
if (s->dma_dac.wakeup)
mask |= POLLOUT | POLLWRNORM;
else
mask = 0;
s->dma_dac.wakeup = 0;
}
} else {
if ((signed) (s->dma_dac.sbufsz/2) >= s->dma_dac.count)
mask |= POLLOUT | POLLWRNORM;
}
} else if (file->f_mode & FMODE_READ) {
if (s->dma_adc.mapped) {
if (s->dma_adc.count >= (signed) s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
} else {
if (s->dma_adc.count > 0)
mask |= POLLIN | POLLRDNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
printk(KERN_INFO "cs4297a: cs4297a_poll()- 0x%.8x\n",
mask));
return mask;
}
static int cs4297a_mmap(struct file *file, struct vm_area_struct *vma)
{
/* XXXKW currently no mmap support */
return -EINVAL;
return 0;
}
static int cs4297a_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct cs4297a_state *s =
(struct cs4297a_state *) file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, mapped, ret;
CS_DBGOUT(CS_FUNCTION|CS_IOCTL, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): file=0x%.8x cmd=0x%.8x\n",
(unsigned) file, cmd));
#if CSDEBUG
cs_printioctl(cmd);
#endif
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
switch (cmd) {
case OSS_GETVERSION:
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): SOUND_VERSION=0x%.8x\n",
SOUND_VERSION));
return put_user(SOUND_VERSION, (int *) arg);
case SNDCTL_DSP_SYNC:
CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_SYNC\n"));
if (file->f_mode & FMODE_WRITE)
return drain_dac(s,
0 /*file->f_flags & O_NONBLOCK */
);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
DSP_CAP_TRIGGER | DSP_CAP_MMAP,
(int *) arg);
case SNDCTL_DSP_RESET:
CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_RESET\n"));
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq(s->irq);
s->dma_dac.count = s->dma_dac.total_bytes =
s->dma_dac.blocks = s->dma_dac.wakeup = 0;
s->dma_dac.swptr = s->dma_dac.hwptr =
(int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t));
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq(s->irq);
s->dma_adc.count = s->dma_adc.total_bytes =
s->dma_adc.blocks = s->dma_dac.wakeup = 0;
s->dma_adc.swptr = s->dma_adc.hwptr =
(int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t));
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, (int *) arg))
return -EFAULT;
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_SPEED val=%d -> 48000\n", val));
val = 48000;
return put_user(val, (int *) arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, (int *) arg))
return -EFAULT;
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_STEREO val=%d\n", val));
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
s->prop_adc.channels = val ? 2 : 1;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
s->prop_dac.channels = val ? 2 : 1;
}
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, (int *) arg))
return -EFAULT;
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_CHANNELS val=%d\n",
val));
if (val != 0) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val >= 2)
s->prop_adc.channels = 2;
else
s->prop_adc.channels = 1;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val >= 2)
s->prop_dac.channels = 2;
else
s->prop_dac.channels = 1;
}
}
if (file->f_mode & FMODE_WRITE)
val = s->prop_dac.channels;
else if (file->f_mode & FMODE_READ)
val = s->prop_adc.channels;
return put_user(val, (int *) arg);
case SNDCTL_DSP_GETFMTS: // Returns a mask
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_GETFMT val=0x%.8x\n",
AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
AFMT_U8));
return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
AFMT_U8, (int *) arg);
case SNDCTL_DSP_SETFMT:
if (get_user(val, (int *) arg))
return -EFAULT;
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_SETFMT val=0x%.8x\n",
val));
if (val != AFMT_QUERY) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val != AFMT_S16_LE
&& val != AFMT_U16_LE && val != AFMT_S8
&& val != AFMT_U8)
val = AFMT_U8;
s->prop_adc.fmt = val;
s->prop_adc.fmt_original = s->prop_adc.fmt;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val != AFMT_S16_LE
&& val != AFMT_U16_LE && val != AFMT_S8
&& val != AFMT_U8)
val = AFMT_U8;
s->prop_dac.fmt = val;
s->prop_dac.fmt_original = s->prop_dac.fmt;
}
} else {
if (file->f_mode & FMODE_WRITE)
val = s->prop_dac.fmt_original;
else if (file->f_mode & FMODE_READ)
val = s->prop_adc.fmt_original;
}
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_SETFMT return val=0x%.8x\n",
val));
return put_user(val, (int *) arg);
case SNDCTL_DSP_POST:
CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): DSP_POST\n"));
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (file->f_mode & s->ena & FMODE_READ)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & s->ena & FMODE_WRITE)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, (int *) arg);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!s->dma_adc.ready
&& (ret = prog_dmabuf_adc(s)))
return ret;
start_adc(s);
} else
stop_adc(s);
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!s->dma_dac.ready
&& (ret = prog_dmabuf_dac(s)))
return ret;
start_dac(s);
} else
stop_dac(s);
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)))
return val;
spin_lock_irqsave(&s->lock, flags);
cs4297a_update_ptr(s,CS_FALSE);
abinfo.fragsize = s->dma_dac.fragsize;
if (s->dma_dac.mapped)
abinfo.bytes = s->dma_dac.sbufsz;
else
abinfo.bytes =
s->dma_dac.sbufsz - s->dma_dac.count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO
"cs4297a: cs4297a_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n",
abinfo.fragsize,abinfo.bytes,abinfo.fragstotal,
abinfo.fragments));
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *) arg, &abinfo,
sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)))
return val;
spin_lock_irqsave(&s->lock, flags);
cs4297a_update_ptr(s,CS_FALSE);
if (s->conversion) {
abinfo.fragsize = s->dma_adc.fragsize / 2;
abinfo.bytes = s->dma_adc.count / 2;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments =
abinfo.bytes >> (s->dma_adc.fragshift - 1);
} else {
abinfo.fragsize = s->dma_adc.fragsize;
abinfo.bytes = s->dma_adc.count;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments =
abinfo.bytes >> s->dma_adc.fragshift;
}
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *) arg, &abinfo,
sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
spin_lock(&file->f_lock);
file->f_flags |= O_NONBLOCK;
spin_unlock(&file->f_lock);
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if(!s->dma_dac.ready && prog_dmabuf_dac(s))
return 0;
spin_lock_irqsave(&s->lock, flags);
cs4297a_update_ptr(s,CS_FALSE);
val = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
return put_user(val, (int *) arg);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if(!s->dma_adc.ready && prog_dmabuf_adc(s))
return 0;
spin_lock_irqsave(&s->lock, flags);
cs4297a_update_ptr(s,CS_FALSE);
cinfo.bytes = s->dma_adc.total_bytes;
if (s->dma_adc.mapped) {
cinfo.blocks =
(cinfo.bytes >> s->dma_adc.fragshift) -
s->dma_adc.blocks;
s->dma_adc.blocks =
cinfo.bytes >> s->dma_adc.fragshift;
} else {
if (s->conversion) {
cinfo.blocks =
s->dma_adc.count /
2 >> (s->dma_adc.fragshift - 1);
} else
cinfo.blocks =
s->dma_adc.count >> s->dma_adc.
fragshift;
}
if (s->conversion)
cinfo.ptr = s->dma_adc.hwptr / 2;
else
cinfo.ptr = s->dma_adc.hwptr;
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize - 1;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if(!s->dma_dac.ready && prog_dmabuf_dac(s))
return 0;
spin_lock_irqsave(&s->lock, flags);
cs4297a_update_ptr(s,CS_FALSE);
cinfo.bytes = s->dma_dac.total_bytes;
if (s->dma_dac.mapped) {
cinfo.blocks =
(cinfo.bytes >> s->dma_dac.fragshift) -
s->dma_dac.blocks;
s->dma_dac.blocks =
cinfo.bytes >> s->dma_dac.fragshift;
} else {
cinfo.blocks =
s->dma_dac.count >> s->dma_dac.fragshift;
}
cinfo.ptr = s->dma_dac.hwptr;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize - 1;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf_dac(s)))
return val;
return put_user(s->dma_dac.fragsize, (int *) arg);
}
if ((val = prog_dmabuf_adc(s)))
return val;
if (s->conversion)
return put_user(s->dma_adc.fragsize / 2,
(int *) arg);
else
return put_user(s->dma_adc.fragsize, (int *) arg);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, (int *) arg))
return -EFAULT;
return 0; // Say OK, but do nothing.
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision)
|| (file->f_mode & FMODE_WRITE
&& s->dma_dac.subdivision)) return -EINVAL;
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
s->dma_adc.subdivision = val;
else if (file->f_mode & FMODE_WRITE)
s->dma_dac.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
if (file->f_mode & FMODE_READ)
return put_user(s->prop_adc.rate, (int *) arg);
else if (file->f_mode & FMODE_WRITE)
return put_user(s->prop_dac.rate, (int *) arg);
case SOUND_PCM_READ_CHANNELS:
if (file->f_mode & FMODE_READ)
return put_user(s->prop_adc.channels, (int *) arg);
else if (file->f_mode & FMODE_WRITE)
return put_user(s->prop_dac.channels, (int *) arg);
case SOUND_PCM_READ_BITS:
if (file->f_mode & FMODE_READ)
return
put_user(
(s->prop_adc.
fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
(int *) arg);
else if (file->f_mode & FMODE_WRITE)
return
put_user(
(s->prop_dac.
fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
(int *) arg);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return mixer_ioctl(s, cmd, arg);
}
static int cs4297a_release(struct inode *inode, struct file *file)
{
struct cs4297a_state *s =
(struct cs4297a_state *) file->private_data;
CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO
"cs4297a: cs4297a_release(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
(unsigned) inode, (unsigned) file, file->f_mode));
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE) {
drain_dac(s, file->f_flags & O_NONBLOCK);
mutex_lock(&s->open_sem_dac);
stop_dac(s);
dealloc_dmabuf(s, &s->dma_dac);
s->open_mode &= ~FMODE_WRITE;
mutex_unlock(&s->open_sem_dac);
wake_up(&s->open_wait_dac);
}
if (file->f_mode & FMODE_READ) {
drain_adc(s, file->f_flags & O_NONBLOCK);
mutex_lock(&s->open_sem_adc);
stop_adc(s);
dealloc_dmabuf(s, &s->dma_adc);
s->open_mode &= ~FMODE_READ;
mutex_unlock(&s->open_sem_adc);
wake_up(&s->open_wait_adc);
}
return 0;
}
static int cs4297a_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct cs4297a_state *s=NULL;
struct list_head *entry;
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
"cs4297a: cs4297a_open(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
(unsigned) inode, (unsigned) file, file->f_mode));
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
"cs4297a: status = %08x\n", (int)__raw_readq(SS_CSR(R_SER_STATUS_DEBUG))));
list_for_each(entry, &cs4297a_devs)
{
s = list_entry(entry, struct cs4297a_state, list);
if (!((s->dev_audio ^ minor) & ~0xf))
break;
}
if (entry == &cs4297a_devs)
return -ENODEV;
if (!s) {
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
"cs4297a: cs4297a_open(): Error - unable to find audio state struct\n"));
return -ENODEV;
}
VALIDATE_STATE(s);
file->private_data = s;
// wait for device to become free
if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) {
CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO
"cs4297a: cs4297a_open(): Error - must open READ and/or WRITE\n"));
return -ENODEV;
}
if (file->f_mode & FMODE_WRITE) {
if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)) != 0) {
printk(KERN_ERR "cs4297a: TX pipe needs to drain\n");
while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)))
;
}
mutex_lock(&s->open_sem_dac);
while (s->open_mode & FMODE_WRITE) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_sem_dac);
return -EBUSY;
}
mutex_unlock(&s->open_sem_dac);
interruptible_sleep_on(&s->open_wait_dac);
if (signal_pending(current)) {
printk("open - sig pending\n");
return -ERESTARTSYS;
}
mutex_lock(&s->open_sem_dac);
}
}
if (file->f_mode & FMODE_READ) {
mutex_lock(&s->open_sem_adc);
while (s->open_mode & FMODE_READ) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_sem_adc);
return -EBUSY;
}
mutex_unlock(&s->open_sem_adc);
interruptible_sleep_on(&s->open_wait_adc);
if (signal_pending(current)) {
printk("open - sig pending\n");
return -ERESTARTSYS;
}
mutex_lock(&s->open_sem_adc);
}
}
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
if (file->f_mode & FMODE_READ) {
s->prop_adc.fmt = AFMT_S16_BE;
s->prop_adc.fmt_original = s->prop_adc.fmt;
s->prop_adc.channels = 2;
s->prop_adc.rate = 48000;
s->conversion = 0;
s->ena &= ~FMODE_READ;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
s->dma_adc.subdivision = 0;
mutex_unlock(&s->open_sem_adc);
if (prog_dmabuf_adc(s)) {
CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
"cs4297a: adc Program dmabufs failed.\n"));
cs4297a_release(inode, file);
return -ENOMEM;
}
}
if (file->f_mode & FMODE_WRITE) {
s->prop_dac.fmt = AFMT_S16_BE;
s->prop_dac.fmt_original = s->prop_dac.fmt;
s->prop_dac.channels = 2;
s->prop_dac.rate = 48000;
s->conversion = 0;
s->ena &= ~FMODE_WRITE;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
s->dma_dac.subdivision = 0;
mutex_unlock(&s->open_sem_dac);
if (prog_dmabuf_dac(s)) {
CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
"cs4297a: dac Program dmabufs failed.\n"));
cs4297a_release(inode, file);
return -ENOMEM;
}
}
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2,
printk(KERN_INFO "cs4297a: cs4297a_open()- 0\n"));
return nonseekable_open(inode, file);
}
// ******************************************************************************************
// Wave (audio) file operations struct.
// ******************************************************************************************
static const struct file_operations cs4297a_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = cs4297a_read,
.write = cs4297a_write,
.poll = cs4297a_poll,
.ioctl = cs4297a_ioctl,
.mmap = cs4297a_mmap,
.open = cs4297a_open,
.release = cs4297a_release,
};
static void cs4297a_interrupt(int irq, void *dev_id)
{
struct cs4297a_state *s = (struct cs4297a_state *) dev_id;
u32 status;
status = __raw_readq(SS_CSR(R_SER_STATUS_DEBUG));
CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
"cs4297a: cs4297a_interrupt() HISR=0x%.8x\n", status));
#if 0
/* XXXKW what check *should* be done here? */
if (!(status & (M_SYNCSER_RX_EOP_COUNT | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_SYNC_ERR))) {
status = __raw_readq(SS_CSR(R_SER_STATUS));
printk(KERN_ERR "cs4297a: unexpected interrupt (status %08x)\n", status);
return;
}
#endif
if (status & M_SYNCSER_RX_SYNC_ERR) {
status = __raw_readq(SS_CSR(R_SER_STATUS));
printk(KERN_ERR "cs4297a: rx sync error (status %08x)\n", status);
return;
}
if (status & M_SYNCSER_RX_OVERRUN) {
int newptr, i;
s->stats.rx_ovrrn++;
printk(KERN_ERR "cs4297a: receive FIFO overrun\n");
/* Fix things up: get the receive descriptor pool
clean and give them back to the hardware */
while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX)))
;
newptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t));
for (i=0; i<DMA_DESCR; i++) {
s->dma_adc.descrtab[i].descr_a &= ~M_DMA_SERRX_SOP;
}
s->dma_adc.swptr = s->dma_adc.hwptr = newptr;
s->dma_adc.count = 0;
s->dma_adc.sb_swptr = s->dma_adc.sb_hwptr = s->dma_adc.sample_buf;
__raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
}
spin_lock(&s->lock);
cs4297a_update_ptr(s,CS_TRUE);
spin_unlock(&s->lock);
CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
"cs4297a: cs4297a_interrupt()-\n"));
}
#if 0
static struct initvol {
int mixch;
int vol;
} initvol[] __initdata = {
{SOUND_MIXER_WRITE_VOLUME, 0x4040},
{SOUND_MIXER_WRITE_PCM, 0x4040},
{SOUND_MIXER_WRITE_SYNTH, 0x4040},
{SOUND_MIXER_WRITE_CD, 0x4040},
{SOUND_MIXER_WRITE_LINE, 0x4040},
{SOUND_MIXER_WRITE_LINE1, 0x4040},
{SOUND_MIXER_WRITE_RECLEV, 0x0000},
{SOUND_MIXER_WRITE_SPEAKER, 0x4040},
{SOUND_MIXER_WRITE_MIC, 0x0000}
};
#endif
static int __init cs4297a_init(void)
{
struct cs4297a_state *s;
u32 pwr, id;
mm_segment_t fs;
int rval;
#ifndef CONFIG_BCM_CS4297A_CSWARM
u64 cfg;
int mdio_val;
#endif
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
"cs4297a: cs4297a_init_module()+ \n"));
#ifndef CONFIG_BCM_CS4297A_CSWARM
mdio_val = __raw_readq(KSEG1 + A_MAC_REGISTER(2, R_MAC_MDIO)) &
(M_MAC_MDIO_DIR|M_MAC_MDIO_OUT);
/* Check syscfg for synchronous serial on port 1 */
cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG);
if (!(cfg & M_SYS_SER1_ENABLE)) {
__raw_writeq(cfg | M_SYS_SER1_ENABLE, KSEG1+A_SCD_SYSTEM_CFG);
cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG);
if (!(cfg & M_SYS_SER1_ENABLE)) {
printk(KERN_INFO "cs4297a: serial port 1 not configured for synchronous operation\n");
return -1;
}
printk(KERN_INFO "cs4297a: serial port 1 switching to synchronous operation\n");
/* Force the codec (on SWARM) to reset by clearing
GENO, preserving MDIO (no effect on CSWARM) */
__raw_writeq(mdio_val, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO));
udelay(10);
}
/* Now set GENO */
__raw_writeq(mdio_val | M_MAC_GENC, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO));
/* Give the codec some time to finish resetting (start the bit clock) */
udelay(100);
#endif
if (!(s = kzalloc(sizeof(struct cs4297a_state), GFP_KERNEL))) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
"cs4297a: probe() no memory for state struct.\n"));
return -1;
}
s->magic = CS4297a_MAGIC;
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->dma_adc.reg_wait);
init_waitqueue_head(&s->dma_dac.reg_wait);
init_waitqueue_head(&s->open_wait);
init_waitqueue_head(&s->open_wait_adc);
init_waitqueue_head(&s->open_wait_dac);
mutex_init(&s->open_sem_adc);
mutex_init(&s->open_sem_dac);
spin_lock_init(&s->lock);
s->irq = K_INT_SER_1;
if (request_irq
(s->irq, cs4297a_interrupt, 0, "Crystal CS4297a", s)) {
CS_DBGOUT(CS_INIT | CS_ERROR, 1,
printk(KERN_ERR "cs4297a: irq %u in use\n", s->irq));
goto err_irq;
}
if ((s->dev_audio = register_sound_dsp(&cs4297a_audio_fops, -1)) <
0) {
CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
"cs4297a: probe() register_sound_dsp() failed.\n"));
goto err_dev1;
}
if ((s->dev_mixer = register_sound_mixer(&cs4297a_mixer_fops, -1)) <
0) {
CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
"cs4297a: probe() register_sound_mixer() failed.\n"));
goto err_dev2;
}
if (ser_init(s) || dma_init(s)) {
CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
"cs4297a: ser_init failed.\n"));
goto err_dev3;
}
do {
udelay(4000);
rval = cs4297a_read_ac97(s, AC97_POWER_CONTROL, &pwr);
} while (!rval && (pwr != 0xf));
if (!rval) {
char *sb1250_duart_present;
fs = get_fs();
set_fs(KERNEL_DS);
#if 0
val = SOUND_MASK_LINE;
mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val);
for (i = 0; i < ARRAY_SIZE(initvol); i++) {
val = initvol[i].vol;
mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val);
}
// cs4297a_write_ac97(s, 0x18, 0x0808);
#else
// cs4297a_write_ac97(s, 0x5e, 0x180);
cs4297a_write_ac97(s, 0x02, 0x0808);
cs4297a_write_ac97(s, 0x18, 0x0808);
#endif
set_fs(fs);
list_add(&s->list, &cs4297a_devs);
cs4297a_read_ac97(s, AC97_VENDOR_ID1, &id);
sb1250_duart_present = symbol_get(sb1250_duart_present);
if (sb1250_duart_present)
sb1250_duart_present[1] = 0;
printk(KERN_INFO "cs4297a: initialized (vendor id = %x)\n", id);
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
printk(KERN_INFO "cs4297a: cs4297a_init_module()-\n"));
return 0;
}
err_dev3:
unregister_sound_mixer(s->dev_mixer);
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
free_irq(s->irq, s);
err_irq:
kfree(s);
printk(KERN_INFO "cs4297a: initialization failed\n");
return -1;
}
static void __exit cs4297a_cleanup(void)
{
/*
XXXKW
disable_irq, free_irq
drain DMA queue
disable DMA
disable TX/RX
free memory
*/
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
printk(KERN_INFO "cs4297a: cleanup_cs4297a() finished\n"));
}
// ---------------------------------------------------------------------
MODULE_AUTHOR("Kip Walker, Broadcom Corp.");
MODULE_DESCRIPTION("Cirrus Logic CS4297a Driver for Broadcom SWARM board");
// ---------------------------------------------------------------------
module_init(cs4297a_init);
module_exit(cs4297a_cleanup);