WSL2-Linux-Kernel/fs/ntfs3/frecord.c

3373 строки
73 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
*/
#include <linux/fiemap.h>
#include <linux/fs.h>
#include <linux/minmax.h>
#include <linux/vmalloc.h>
#include "debug.h"
#include "ntfs.h"
#include "ntfs_fs.h"
#ifdef CONFIG_NTFS3_LZX_XPRESS
#include "lib/lib.h"
#endif
static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
CLST ino, struct rb_node *ins)
{
struct rb_node **p = &tree->rb_node;
struct rb_node *pr = NULL;
while (*p) {
struct mft_inode *mi;
pr = *p;
mi = rb_entry(pr, struct mft_inode, node);
if (mi->rno > ino)
p = &pr->rb_left;
else if (mi->rno < ino)
p = &pr->rb_right;
else
return mi;
}
if (!ins)
return NULL;
rb_link_node(ins, pr, p);
rb_insert_color(ins, tree);
return rb_entry(ins, struct mft_inode, node);
}
/*
* ni_find_mi - Find mft_inode by record number.
*/
static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
{
return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
}
/*
* ni_add_mi - Add new mft_inode into ntfs_inode.
*/
static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
{
ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
}
/*
* ni_remove_mi - Remove mft_inode from ntfs_inode.
*/
void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
{
rb_erase(&mi->node, &ni->mi_tree);
}
/*
* ni_std - Return: Pointer into std_info from primary record.
*/
struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
{
const struct ATTRIB *attr;
attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
: NULL;
}
/*
* ni_std5
*
* Return: Pointer into std_info from primary record.
*/
struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
{
const struct ATTRIB *attr;
attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
: NULL;
}
/*
* ni_clear - Clear resources allocated by ntfs_inode.
*/
void ni_clear(struct ntfs_inode *ni)
{
struct rb_node *node;
if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
ni_delete_all(ni);
al_destroy(ni);
for (node = rb_first(&ni->mi_tree); node;) {
struct rb_node *next = rb_next(node);
struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
rb_erase(node, &ni->mi_tree);
mi_put(mi);
node = next;
}
/* Bad inode always has mode == S_IFREG. */
if (ni->ni_flags & NI_FLAG_DIR)
indx_clear(&ni->dir);
else {
run_close(&ni->file.run);
#ifdef CONFIG_NTFS3_LZX_XPRESS
if (ni->file.offs_page) {
/* On-demand allocated page for offsets. */
put_page(ni->file.offs_page);
ni->file.offs_page = NULL;
}
#endif
}
mi_clear(&ni->mi);
}
/*
* ni_load_mi_ex - Find mft_inode by record number.
*/
int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
{
int err;
struct mft_inode *r;
r = ni_find_mi(ni, rno);
if (r)
goto out;
err = mi_get(ni->mi.sbi, rno, &r);
if (err)
return err;
ni_add_mi(ni, r);
out:
if (mi)
*mi = r;
return 0;
}
/*
* ni_load_mi - Load mft_inode corresponded list_entry.
*/
int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
struct mft_inode **mi)
{
CLST rno;
if (!le) {
*mi = &ni->mi;
return 0;
}
rno = ino_get(&le->ref);
if (rno == ni->mi.rno) {
*mi = &ni->mi;
return 0;
}
return ni_load_mi_ex(ni, rno, mi);
}
/*
* ni_find_attr
*
* Return: Attribute and record this attribute belongs to.
*/
struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, const CLST *vcn,
struct mft_inode **mi)
{
struct ATTR_LIST_ENTRY *le;
struct mft_inode *m;
if (!ni->attr_list.size ||
(!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
if (le_o)
*le_o = NULL;
if (mi)
*mi = &ni->mi;
/* Look for required attribute in primary record. */
return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
}
/* First look for list entry of required type. */
le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
if (!le)
return NULL;
if (le_o)
*le_o = le;
/* Load record that contains this attribute. */
if (ni_load_mi(ni, le, &m))
return NULL;
/* Look for required attribute. */
attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
if (!attr)
goto out;
if (!attr->non_res) {
if (vcn && *vcn)
goto out;
} else if (!vcn) {
if (attr->nres.svcn)
goto out;
} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
*vcn > le64_to_cpu(attr->nres.evcn)) {
goto out;
}
if (mi)
*mi = m;
return attr;
out:
ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
return NULL;
}
/*
* ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
*/
struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
struct ATTR_LIST_ENTRY **le,
struct mft_inode **mi)
{
struct mft_inode *mi2;
struct ATTR_LIST_ENTRY *le2;
/* Do we have an attribute list? */
if (!ni->attr_list.size) {
*le = NULL;
if (mi)
*mi = &ni->mi;
/* Enum attributes in primary record. */
return mi_enum_attr(&ni->mi, attr);
}
/* Get next list entry. */
le2 = *le = al_enumerate(ni, attr ? *le : NULL);
if (!le2)
return NULL;
/* Load record that contains the required attribute. */
if (ni_load_mi(ni, le2, &mi2))
return NULL;
if (mi)
*mi = mi2;
/* Find attribute in loaded record. */
return rec_find_attr_le(mi2, le2);
}
/*
* ni_load_attr - Load attribute that contains given VCN.
*/
struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, CLST vcn,
struct mft_inode **pmi)
{
struct ATTR_LIST_ENTRY *le;
struct ATTRIB *attr;
struct mft_inode *mi;
struct ATTR_LIST_ENTRY *next;
if (!ni->attr_list.size) {
if (pmi)
*pmi = &ni->mi;
return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
}
le = al_find_ex(ni, NULL, type, name, name_len, NULL);
if (!le)
return NULL;
/*
* Unfortunately ATTR_LIST_ENTRY contains only start VCN.
* So to find the ATTRIB segment that contains 'vcn' we should
* enumerate some entries.
*/
if (vcn) {
for (;; le = next) {
next = al_find_ex(ni, le, type, name, name_len, NULL);
if (!next || le64_to_cpu(next->vcn) > vcn)
break;
}
}
if (ni_load_mi(ni, le, &mi))
return NULL;
if (pmi)
*pmi = mi;
attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
if (!attr)
return NULL;
if (!attr->non_res)
return attr;
if (le64_to_cpu(attr->nres.svcn) <= vcn &&
vcn <= le64_to_cpu(attr->nres.evcn))
return attr;
return NULL;
}
/*
* ni_load_all_mi - Load all subrecords.
*/
int ni_load_all_mi(struct ntfs_inode *ni)
{
int err;
struct ATTR_LIST_ENTRY *le;
if (!ni->attr_list.size)
return 0;
le = NULL;
while ((le = al_enumerate(ni, le))) {
CLST rno = ino_get(&le->ref);
if (rno == ni->mi.rno)
continue;
err = ni_load_mi_ex(ni, rno, NULL);
if (err)
return err;
}
return 0;
}
/*
* ni_add_subrecord - Allocate + format + attach a new subrecord.
*/
bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
{
struct mft_inode *m;
m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
if (!m)
return false;
if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
mi_put(m);
return false;
}
mi_get_ref(&ni->mi, &m->mrec->parent_ref);
ni_add_mi(ni, m);
*mi = m;
return true;
}
/*
* ni_remove_attr - Remove all attributes for the given type/name/id.
*/
int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, size_t name_len, bool base_only,
const __le16 *id)
{
int err;
struct ATTRIB *attr;
struct ATTR_LIST_ENTRY *le;
struct mft_inode *mi;
u32 type_in;
int diff;
if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
if (!attr)
return -ENOENT;
mi_remove_attr(ni, &ni->mi, attr);
return 0;
}
type_in = le32_to_cpu(type);
le = NULL;
for (;;) {
le = al_enumerate(ni, le);
if (!le)
return 0;
next_le2:
diff = le32_to_cpu(le->type) - type_in;
if (diff < 0)
continue;
if (diff > 0)
return 0;
if (le->name_len != name_len)
continue;
if (name_len &&
memcmp(le_name(le), name, name_len * sizeof(short)))
continue;
if (id && le->id != *id)
continue;
err = ni_load_mi(ni, le, &mi);
if (err)
return err;
al_remove_le(ni, le);
attr = mi_find_attr(mi, NULL, type, name, name_len, id);
if (!attr)
return -ENOENT;
mi_remove_attr(ni, mi, attr);
if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
return 0;
goto next_le2;
}
}
/*
* ni_ins_new_attr - Insert the attribute into record.
*
* Return: Not full constructed attribute or NULL if not possible to create.
*/
static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, u32 asize, u16 name_off,
CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
{
int err;
struct ATTRIB *attr;
bool le_added = false;
struct MFT_REF ref;
mi_get_ref(mi, &ref);
if (type != ATTR_LIST && !le && ni->attr_list.size) {
err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
&ref, &le);
if (err) {
/* No memory or no space. */
return ERR_PTR(err);
}
le_added = true;
/*
* al_add_le -> attr_set_size (list) -> ni_expand_list
* which moves some attributes out of primary record
* this means that name may point into moved memory
* reinit 'name' from le.
*/
name = le->name;
}
attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
if (!attr) {
if (le_added)
al_remove_le(ni, le);
return NULL;
}
if (type == ATTR_LIST) {
/* Attr list is not in list entry array. */
goto out;
}
if (!le)
goto out;
/* Update ATTRIB Id and record reference. */
le->id = attr->id;
ni->attr_list.dirty = true;
le->ref = ref;
out:
if (ins_le)
*ins_le = le;
return attr;
}
/*
* ni_repack
*
* Random write access to sparsed or compressed file may result to
* not optimized packed runs.
* Here is the place to optimize it.
*/
static int ni_repack(struct ntfs_inode *ni)
{
int err = 0;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct mft_inode *mi, *mi_p = NULL;
struct ATTRIB *attr = NULL, *attr_p;
struct ATTR_LIST_ENTRY *le = NULL, *le_p;
CLST alloc = 0;
u8 cluster_bits = sbi->cluster_bits;
CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
u32 roff, rs = sbi->record_size;
struct runs_tree run;
run_init(&run);
while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
if (!attr->non_res)
continue;
svcn = le64_to_cpu(attr->nres.svcn);
if (svcn != le64_to_cpu(le->vcn)) {
err = -EINVAL;
break;
}
if (!svcn) {
alloc = le64_to_cpu(attr->nres.alloc_size) >>
cluster_bits;
mi_p = NULL;
} else if (svcn != evcn + 1) {
err = -EINVAL;
break;
}
evcn = le64_to_cpu(attr->nres.evcn);
if (svcn > evcn + 1) {
err = -EINVAL;
break;
}
if (!mi_p) {
/* Do not try if not enough free space. */
if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
continue;
/* Do not try if last attribute segment. */
if (evcn + 1 == alloc)
continue;
run_close(&run);
}
roff = le16_to_cpu(attr->nres.run_off);
if (roff > le32_to_cpu(attr->size)) {
err = -EINVAL;
break;
}
err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
Add2Ptr(attr, roff),
le32_to_cpu(attr->size) - roff);
if (err < 0)
break;
if (!mi_p) {
mi_p = mi;
attr_p = attr;
svcn_p = svcn;
evcn_p = evcn;
le_p = le;
err = 0;
continue;
}
/*
* Run contains data from two records: mi_p and mi
* Try to pack in one.
*/
err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
if (err)
break;
next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
if (next_svcn >= evcn + 1) {
/* We can remove this attribute segment. */
al_remove_le(ni, le);
mi_remove_attr(NULL, mi, attr);
le = le_p;
continue;
}
attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
mi->dirty = true;
ni->attr_list.dirty = true;
if (evcn + 1 == alloc) {
err = mi_pack_runs(mi, attr, &run,
evcn + 1 - next_svcn);
if (err)
break;
mi_p = NULL;
} else {
mi_p = mi;
attr_p = attr;
svcn_p = next_svcn;
evcn_p = evcn;
le_p = le;
run_truncate_head(&run, next_svcn);
}
}
if (err) {
ntfs_inode_warn(&ni->vfs_inode, "repack problem");
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
/* Pack loaded but not packed runs. */
if (mi_p)
mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
}
run_close(&run);
return err;
}
/*
* ni_try_remove_attr_list
*
* Can we remove attribute list?
* Check the case when primary record contains enough space for all attributes.
*/
static int ni_try_remove_attr_list(struct ntfs_inode *ni)
{
int err = 0;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr, *attr_list, *attr_ins;
struct ATTR_LIST_ENTRY *le;
struct mft_inode *mi;
u32 asize, free;
struct MFT_REF ref;
struct MFT_REC *mrec;
__le16 id;
if (!ni->attr_list.dirty)
return 0;
err = ni_repack(ni);
if (err)
return err;
attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
if (!attr_list)
return 0;
asize = le32_to_cpu(attr_list->size);
/* Free space in primary record without attribute list. */
free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
mi_get_ref(&ni->mi, &ref);
le = NULL;
while ((le = al_enumerate(ni, le))) {
if (!memcmp(&le->ref, &ref, sizeof(ref)))
continue;
if (le->vcn)
return 0;
mi = ni_find_mi(ni, ino_get(&le->ref));
if (!mi)
return 0;
attr = mi_find_attr(mi, NULL, le->type, le_name(le),
le->name_len, &le->id);
if (!attr)
return 0;
asize = le32_to_cpu(attr->size);
if (asize > free)
return 0;
free -= asize;
}
/* Make a copy of primary record to restore if error. */
mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
if (!mrec)
return 0; /* Not critical. */
/* It seems that attribute list can be removed from primary record. */
mi_remove_attr(NULL, &ni->mi, attr_list);
/*
* Repeat the cycle above and copy all attributes to primary record.
* Do not remove original attributes from subrecords!
* It should be success!
*/
le = NULL;
while ((le = al_enumerate(ni, le))) {
if (!memcmp(&le->ref, &ref, sizeof(ref)))
continue;
mi = ni_find_mi(ni, ino_get(&le->ref));
if (!mi) {
/* Should never happened, 'cause already checked. */
goto out;
}
attr = mi_find_attr(mi, NULL, le->type, le_name(le),
le->name_len, &le->id);
if (!attr) {
/* Should never happened, 'cause already checked. */
goto out;
}
asize = le32_to_cpu(attr->size);
/* Insert into primary record. */
attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
le->name_len, asize,
le16_to_cpu(attr->name_off));
if (!attr_ins) {
/*
* No space in primary record (already checked).
*/
goto out;
}
/* Copy all except id. */
id = attr_ins->id;
memcpy(attr_ins, attr, asize);
attr_ins->id = id;
}
/*
* Repeat the cycle above and remove all attributes from subrecords.
*/
le = NULL;
while ((le = al_enumerate(ni, le))) {
if (!memcmp(&le->ref, &ref, sizeof(ref)))
continue;
mi = ni_find_mi(ni, ino_get(&le->ref));
if (!mi)
continue;
attr = mi_find_attr(mi, NULL, le->type, le_name(le),
le->name_len, &le->id);
if (!attr)
continue;
/* Remove from original record. */
mi_remove_attr(NULL, mi, attr);
}
run_deallocate(sbi, &ni->attr_list.run, true);
run_close(&ni->attr_list.run);
ni->attr_list.size = 0;
kfree(ni->attr_list.le);
ni->attr_list.le = NULL;
ni->attr_list.dirty = false;
kfree(mrec);
return 0;
out:
/* Restore primary record. */
swap(mrec, ni->mi.mrec);
kfree(mrec);
return 0;
}
/*
* ni_create_attr_list - Generates an attribute list for this primary record.
*/
int ni_create_attr_list(struct ntfs_inode *ni)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
int err;
u32 lsize;
struct ATTRIB *attr;
struct ATTRIB *arr_move[7];
struct ATTR_LIST_ENTRY *le, *le_b[7];
struct MFT_REC *rec;
bool is_mft;
CLST rno = 0;
struct mft_inode *mi;
u32 free_b, nb, to_free, rs;
u16 sz;
is_mft = ni->mi.rno == MFT_REC_MFT;
rec = ni->mi.mrec;
rs = sbi->record_size;
/*
* Skip estimating exact memory requirement.
* Looks like one record_size is always enough.
*/
le = kmalloc(al_aligned(rs), GFP_NOFS);
if (!le) {
err = -ENOMEM;
goto out;
}
mi_get_ref(&ni->mi, &le->ref);
ni->attr_list.le = le;
attr = NULL;
nb = 0;
free_b = 0;
attr = NULL;
for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
sz = le_size(attr->name_len);
le->type = attr->type;
le->size = cpu_to_le16(sz);
le->name_len = attr->name_len;
le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
le->vcn = 0;
if (le != ni->attr_list.le)
le->ref = ni->attr_list.le->ref;
le->id = attr->id;
if (attr->name_len)
memcpy(le->name, attr_name(attr),
sizeof(short) * attr->name_len);
else if (attr->type == ATTR_STD)
continue;
else if (attr->type == ATTR_LIST)
continue;
else if (is_mft && attr->type == ATTR_DATA)
continue;
if (!nb || nb < ARRAY_SIZE(arr_move)) {
le_b[nb] = le;
arr_move[nb++] = attr;
free_b += le32_to_cpu(attr->size);
}
}
lsize = PtrOffset(ni->attr_list.le, le);
ni->attr_list.size = lsize;
to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
if (to_free <= rs) {
to_free = 0;
} else {
to_free -= rs;
if (to_free > free_b) {
err = -EINVAL;
goto out1;
}
}
/* Allocate child MFT. */
err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
if (err)
goto out1;
/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
while (to_free > 0) {
struct ATTRIB *b = arr_move[--nb];
u32 asize = le32_to_cpu(b->size);
u16 name_off = le16_to_cpu(b->name_off);
attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
b->name_len, asize, name_off);
WARN_ON(!attr);
mi_get_ref(mi, &le_b[nb]->ref);
le_b[nb]->id = attr->id;
/* Copy all except id. */
memcpy(attr, b, asize);
attr->id = le_b[nb]->id;
/* Remove from primary record. */
WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
if (to_free <= asize)
break;
to_free -= asize;
WARN_ON(!nb);
}
attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
WARN_ON(!attr);
attr->non_res = 0;
attr->flags = 0;
attr->res.data_size = cpu_to_le32(lsize);
attr->res.data_off = SIZEOF_RESIDENT_LE;
attr->res.flags = 0;
attr->res.res = 0;
memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
ni->attr_list.dirty = false;
mark_inode_dirty(&ni->vfs_inode);
goto out;
out1:
kfree(ni->attr_list.le);
ni->attr_list.le = NULL;
ni->attr_list.size = 0;
out:
return err;
}
/*
* ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
*/
static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
enum ATTR_TYPE type, const __le16 *name, u8 name_len,
u32 asize, CLST svcn, u16 name_off, bool force_ext,
struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
struct ATTR_LIST_ENTRY **ins_le)
{
struct ATTRIB *attr;
struct mft_inode *mi;
CLST rno;
u64 vbo;
struct rb_node *node;
int err;
bool is_mft, is_mft_data;
struct ntfs_sb_info *sbi = ni->mi.sbi;
is_mft = ni->mi.rno == MFT_REC_MFT;
is_mft_data = is_mft && type == ATTR_DATA && !name_len;
if (asize > sbi->max_bytes_per_attr) {
err = -EINVAL;
goto out;
}
/*
* Standard information and attr_list cannot be made external.
* The Log File cannot have any external attributes.
*/
if (type == ATTR_STD || type == ATTR_LIST ||
ni->mi.rno == MFT_REC_LOG) {
err = -EINVAL;
goto out;
}
/* Create attribute list if it is not already existed. */
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
}
vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
if (force_ext)
goto insert_ext;
/* Load all subrecords into memory. */
err = ni_load_all_mi(ni);
if (err)
goto out;
/* Check each of loaded subrecord. */
for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
mi = rb_entry(node, struct mft_inode, node);
if (is_mft_data &&
(mi_enum_attr(mi, NULL) ||
vbo <= ((u64)mi->rno << sbi->record_bits))) {
/* We can't accept this record 'cause MFT's bootstrapping. */
continue;
}
if (is_mft &&
mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
/*
* This child record already has a ATTR_DATA.
* So it can't accept any other records.
*/
continue;
}
if ((type != ATTR_NAME || name_len) &&
mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
/* Only indexed attributes can share same record. */
continue;
}
/*
* Do not try to insert this attribute
* if there is no room in record.
*/
if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
continue;
/* Try to insert attribute into this subrecord. */
attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
name_off, svcn, ins_le);
if (!attr)
continue;
if (IS_ERR(attr))
return PTR_ERR(attr);
if (ins_attr)
*ins_attr = attr;
if (ins_mi)
*ins_mi = mi;
return 0;
}
insert_ext:
/* We have to allocate a new child subrecord. */
err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
if (err)
goto out;
if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
err = -EINVAL;
goto out1;
}
attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
name_off, svcn, ins_le);
if (!attr) {
err = -EINVAL;
goto out2;
}
if (IS_ERR(attr)) {
err = PTR_ERR(attr);
goto out2;
}
if (ins_attr)
*ins_attr = attr;
if (ins_mi)
*ins_mi = mi;
return 0;
out2:
ni_remove_mi(ni, mi);
mi_put(mi);
out1:
ntfs_mark_rec_free(sbi, rno, is_mft);
out:
return err;
}
/*
* ni_insert_attr - Insert an attribute into the file.
*
* If the primary record has room, it will just insert the attribute.
* If not, it may make the attribute external.
* For $MFT::Data it may make room for the attribute by
* making other attributes external.
*
* NOTE:
* The ATTR_LIST and ATTR_STD cannot be made external.
* This function does not fill new attribute full.
* It only fills 'size'/'type'/'id'/'name_len' fields.
*/
static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, u32 asize,
u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
struct mft_inode **ins_mi,
struct ATTR_LIST_ENTRY **ins_le)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
int err;
struct ATTRIB *attr, *eattr;
struct MFT_REC *rec;
bool is_mft;
struct ATTR_LIST_ENTRY *le;
u32 list_reserve, max_free, free, used, t32;
__le16 id;
u16 t16;
is_mft = ni->mi.rno == MFT_REC_MFT;
rec = ni->mi.mrec;
list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
used = le32_to_cpu(rec->used);
free = sbi->record_size - used;
if (is_mft && type != ATTR_LIST) {
/* Reserve space for the ATTRIB list. */
if (free < list_reserve)
free = 0;
else
free -= list_reserve;
}
if (asize <= free) {
attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
asize, name_off, svcn, ins_le);
if (IS_ERR(attr)) {
err = PTR_ERR(attr);
goto out;
}
if (attr) {
if (ins_attr)
*ins_attr = attr;
if (ins_mi)
*ins_mi = &ni->mi;
err = 0;
goto out;
}
}
if (!is_mft || type != ATTR_DATA || svcn) {
/* This ATTRIB will be external. */
err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
svcn, name_off, false, ins_attr, ins_mi,
ins_le);
goto out;
}
/*
* Here we have: "is_mft && type == ATTR_DATA && !svcn"
*
* The first chunk of the $MFT::Data ATTRIB must be the base record.
* Evict as many other attributes as possible.
*/
max_free = free;
/* Estimate the result of moving all possible attributes away. */
attr = NULL;
while ((attr = mi_enum_attr(&ni->mi, attr))) {
if (attr->type == ATTR_STD)
continue;
if (attr->type == ATTR_LIST)
continue;
max_free += le32_to_cpu(attr->size);
}
if (max_free < asize + list_reserve) {
/* Impossible to insert this attribute into primary record. */
err = -EINVAL;
goto out;
}
/* Start real attribute moving. */
attr = NULL;
for (;;) {
attr = mi_enum_attr(&ni->mi, attr);
if (!attr) {
/* We should never be here 'cause we have already check this case. */
err = -EINVAL;
goto out;
}
/* Skip attributes that MUST be primary record. */
if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
continue;
le = NULL;
if (ni->attr_list.size) {
le = al_find_le(ni, NULL, attr);
if (!le) {
/* Really this is a serious bug. */
err = -EINVAL;
goto out;
}
}
t32 = le32_to_cpu(attr->size);
t16 = le16_to_cpu(attr->name_off);
err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
attr->name_len, t32, attr_svcn(attr), t16,
false, &eattr, NULL, NULL);
if (err)
return err;
id = eattr->id;
memcpy(eattr, attr, t32);
eattr->id = id;
/* Remove from primary record. */
mi_remove_attr(NULL, &ni->mi, attr);
/* attr now points to next attribute. */
if (attr->type == ATTR_END)
goto out;
}
while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
;
attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
name_off, svcn, ins_le);
if (!attr) {
err = -EINVAL;
goto out;
}
if (IS_ERR(attr)) {
err = PTR_ERR(attr);
goto out;
}
if (ins_attr)
*ins_attr = attr;
if (ins_mi)
*ins_mi = &ni->mi;
out:
return err;
}
/* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
static int ni_expand_mft_list(struct ntfs_inode *ni)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
u32 asize, run_size, done = 0;
struct ATTRIB *attr;
struct rb_node *node;
CLST mft_min, mft_new, svcn, evcn, plen;
struct mft_inode *mi, *mi_min, *mi_new;
struct ntfs_sb_info *sbi = ni->mi.sbi;
/* Find the nearest MFT. */
mft_min = 0;
mft_new = 0;
mi_min = NULL;
for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
mi = rb_entry(node, struct mft_inode, node);
attr = mi_enum_attr(mi, NULL);
if (!attr) {
mft_min = mi->rno;
mi_min = mi;
break;
}
}
if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
mft_new = 0;
/* Really this is not critical. */
} else if (mft_min > mft_new) {
mft_min = mft_new;
mi_min = mi_new;
} else {
ntfs_mark_rec_free(sbi, mft_new, true);
mft_new = 0;
ni_remove_mi(ni, mi_new);
}
attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
asize = le32_to_cpu(attr->size);
evcn = le64_to_cpu(attr->nres.evcn);
svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
if (evcn + 1 >= svcn) {
err = -EINVAL;
goto out;
}
/*
* Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
*
* Update first part of ATTR_DATA in 'primary MFT.
*/
err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
asize - SIZEOF_NONRESIDENT, &plen);
if (err < 0)
goto out;
run_size = ALIGN(err, 8);
err = 0;
if (plen < svcn) {
err = -EINVAL;
goto out;
}
attr->nres.evcn = cpu_to_le64(svcn - 1);
attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
/* 'done' - How many bytes of primary MFT becomes free. */
done = asize - run_size - SIZEOF_NONRESIDENT;
le32_sub_cpu(&ni->mi.mrec->used, done);
/* Estimate packed size (run_buf=NULL). */
err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
&plen);
if (err < 0)
goto out;
run_size = ALIGN(err, 8);
err = 0;
if (plen < evcn + 1 - svcn) {
err = -EINVAL;
goto out;
}
/*
* This function may implicitly call expand attr_list.
* Insert second part of ATTR_DATA in 'mi_min'.
*/
attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
SIZEOF_NONRESIDENT + run_size,
SIZEOF_NONRESIDENT, svcn, NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
if (IS_ERR(attr)) {
err = PTR_ERR(attr);
goto out;
}
attr->non_res = 1;
attr->name_off = SIZEOF_NONRESIDENT_LE;
attr->flags = 0;
/* This function can't fail - cause already checked above. */
run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
run_size, &plen);
attr->nres.svcn = cpu_to_le64(svcn);
attr->nres.evcn = cpu_to_le64(evcn);
attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
out:
if (mft_new) {
ntfs_mark_rec_free(sbi, mft_new, true);
ni_remove_mi(ni, mi_new);
}
return !err && !done ? -EOPNOTSUPP : err;
}
/*
* ni_expand_list - Move all possible attributes out of primary record.
*/
int ni_expand_list(struct ntfs_inode *ni)
{
int err = 0;
u32 asize, done = 0;
struct ATTRIB *attr, *ins_attr;
struct ATTR_LIST_ENTRY *le;
bool is_mft = ni->mi.rno == MFT_REC_MFT;
struct MFT_REF ref;
mi_get_ref(&ni->mi, &ref);
le = NULL;
while ((le = al_enumerate(ni, le))) {
if (le->type == ATTR_STD)
continue;
if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
continue;
if (is_mft && le->type == ATTR_DATA)
continue;
/* Find attribute in primary record. */
attr = rec_find_attr_le(&ni->mi, le);
if (!attr) {
err = -EINVAL;
goto out;
}
asize = le32_to_cpu(attr->size);
/* Always insert into new record to avoid collisions (deep recursive). */
err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
attr->name_len, asize, attr_svcn(attr),
le16_to_cpu(attr->name_off), true,
&ins_attr, NULL, NULL);
if (err)
goto out;
memcpy(ins_attr, attr, asize);
ins_attr->id = le->id;
/* Remove from primary record. */
mi_remove_attr(NULL, &ni->mi, attr);
done += asize;
goto out;
}
if (!is_mft) {
err = -EFBIG; /* Attr list is too big(?) */
goto out;
}
/* Split MFT data as much as possible. */
err = ni_expand_mft_list(ni);
out:
return !err && !done ? -EOPNOTSUPP : err;
}
/*
* ni_insert_nonresident - Insert new nonresident attribute.
*/
int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len,
const struct runs_tree *run, CLST svcn, CLST len,
__le16 flags, struct ATTRIB **new_attr,
struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
{
int err;
CLST plen;
struct ATTRIB *attr;
bool is_ext =
(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
u32 name_size = ALIGN(name_len * sizeof(short), 8);
u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
u32 run_off = name_off + name_size;
u32 run_size, asize;
struct ntfs_sb_info *sbi = ni->mi.sbi;
/* Estimate packed size (run_buf=NULL). */
err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
&plen);
if (err < 0)
goto out;
run_size = ALIGN(err, 8);
if (plen < len) {
err = -EINVAL;
goto out;
}
asize = run_off + run_size;
if (asize > sbi->max_bytes_per_attr) {
err = -EINVAL;
goto out;
}
err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
&attr, mi, le);
if (err)
goto out;
attr->non_res = 1;
attr->name_off = cpu_to_le16(name_off);
attr->flags = flags;
/* This function can't fail - cause already checked above. */
run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
attr->nres.svcn = cpu_to_le64(svcn);
attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
if (new_attr)
*new_attr = attr;
*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
attr->nres.alloc_size =
svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
attr->nres.data_size = attr->nres.alloc_size;
attr->nres.valid_size = attr->nres.alloc_size;
if (is_ext) {
if (flags & ATTR_FLAG_COMPRESSED)
attr->nres.c_unit = COMPRESSION_UNIT;
attr->nres.total_size = attr->nres.alloc_size;
}
out:
return err;
}
/*
* ni_insert_resident - Inserts new resident attribute.
*/
int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
enum ATTR_TYPE type, const __le16 *name, u8 name_len,
struct ATTRIB **new_attr, struct mft_inode **mi,
struct ATTR_LIST_ENTRY **le)
{
int err;
u32 name_size = ALIGN(name_len * sizeof(short), 8);
u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
struct ATTRIB *attr;
err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
0, &attr, mi, le);
if (err)
return err;
attr->non_res = 0;
attr->flags = 0;
attr->res.data_size = cpu_to_le32(data_size);
attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
if (type == ATTR_NAME) {
attr->res.flags = RESIDENT_FLAG_INDEXED;
/* is_attr_indexed(attr)) == true */
le16_add_cpu(&ni->mi.mrec->hard_links, 1);
ni->mi.dirty = true;
}
attr->res.res = 0;
if (new_attr)
*new_attr = attr;
return 0;
}
/*
* ni_remove_attr_le - Remove attribute from record.
*/
void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
{
mi_remove_attr(ni, mi, attr);
if (le)
al_remove_le(ni, le);
}
/*
* ni_delete_all - Remove all attributes and frees allocates space.
*
* ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
*/
int ni_delete_all(struct ntfs_inode *ni)
{
int err;
struct ATTR_LIST_ENTRY *le = NULL;
struct ATTRIB *attr = NULL;
struct rb_node *node;
u16 roff;
u32 asize;
CLST svcn, evcn;
struct ntfs_sb_info *sbi = ni->mi.sbi;
bool nt3 = is_ntfs3(sbi);
struct MFT_REF ref;
while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
if (!nt3 || attr->name_len) {
;
} else if (attr->type == ATTR_REPARSE) {
mi_get_ref(&ni->mi, &ref);
ntfs_remove_reparse(sbi, 0, &ref);
} else if (attr->type == ATTR_ID && !attr->non_res &&
le32_to_cpu(attr->res.data_size) >=
sizeof(struct GUID)) {
ntfs_objid_remove(sbi, resident_data(attr));
}
if (!attr->non_res)
continue;
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
if (evcn + 1 <= svcn)
continue;
asize = le32_to_cpu(attr->size);
roff = le16_to_cpu(attr->nres.run_off);
if (roff > asize)
return -EINVAL;
/* run==1 means unpack and deallocate. */
run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
Add2Ptr(attr, roff), asize - roff);
}
if (ni->attr_list.size) {
run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
al_destroy(ni);
}
/* Free all subrecords. */
for (node = rb_first(&ni->mi_tree); node;) {
struct rb_node *next = rb_next(node);
struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
clear_rec_inuse(mi->mrec);
mi->dirty = true;
mi_write(mi, 0);
ntfs_mark_rec_free(sbi, mi->rno, false);
ni_remove_mi(ni, mi);
mi_put(mi);
node = next;
}
/* Free base record. */
clear_rec_inuse(ni->mi.mrec);
ni->mi.dirty = true;
err = mi_write(&ni->mi, 0);
ntfs_mark_rec_free(sbi, ni->mi.rno, false);
return err;
}
/* ni_fname_name
*
* Return: File name attribute by its value.
*/
struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
const struct cpu_str *uni,
const struct MFT_REF *home_dir,
struct mft_inode **mi,
struct ATTR_LIST_ENTRY **le)
{
struct ATTRIB *attr = NULL;
struct ATTR_FILE_NAME *fname;
struct le_str *fns;
if (le)
*le = NULL;
/* Enumerate all names. */
next:
attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
if (!attr)
return NULL;
fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
if (!fname)
goto next;
if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
goto next;
if (!uni)
return fname;
if (uni->len != fname->name_len)
goto next;
fns = (struct le_str *)&fname->name_len;
if (ntfs_cmp_names_cpu(uni, fns, NULL, false))
goto next;
return fname;
}
/*
* ni_fname_type
*
* Return: File name attribute with given type.
*/
struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
struct mft_inode **mi,
struct ATTR_LIST_ENTRY **le)
{
struct ATTRIB *attr = NULL;
struct ATTR_FILE_NAME *fname;
*le = NULL;
if (name_type == FILE_NAME_POSIX)
return NULL;
/* Enumerate all names. */
for (;;) {
attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
if (!attr)
return NULL;
fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
if (fname && name_type == fname->type)
return fname;
}
}
/*
* ni_new_attr_flags
*
* Process compressed/sparsed in special way.
* NOTE: You need to set ni->std_fa = new_fa
* after this function to keep internal structures in consistency.
*/
int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
{
struct ATTRIB *attr;
struct mft_inode *mi;
__le16 new_aflags;
u32 new_asize;
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
if (!attr)
return -EINVAL;
new_aflags = attr->flags;
if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
new_aflags |= ATTR_FLAG_SPARSED;
else
new_aflags &= ~ATTR_FLAG_SPARSED;
if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
new_aflags |= ATTR_FLAG_COMPRESSED;
else
new_aflags &= ~ATTR_FLAG_COMPRESSED;
if (new_aflags == attr->flags)
return 0;
if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
(ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
ntfs_inode_warn(&ni->vfs_inode,
"file can't be sparsed and compressed");
return -EOPNOTSUPP;
}
if (!attr->non_res)
goto out;
if (attr->nres.data_size) {
ntfs_inode_warn(
&ni->vfs_inode,
"one can change sparsed/compressed only for empty files");
return -EOPNOTSUPP;
}
/* Resize nonresident empty attribute in-place only. */
new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
? (SIZEOF_NONRESIDENT_EX + 8)
: (SIZEOF_NONRESIDENT + 8);
if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
return -EOPNOTSUPP;
if (new_aflags & ATTR_FLAG_SPARSED) {
attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
attr->nres.c_unit = 0;
ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
/* The only allowed: 16 clusters per frame. */
attr->nres.c_unit = NTFS_LZNT_CUNIT;
ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
} else {
attr->name_off = SIZEOF_NONRESIDENT_LE;
/* Normal files. */
attr->nres.c_unit = 0;
ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
}
attr->nres.run_off = attr->name_off;
out:
attr->flags = new_aflags;
mi->dirty = true;
return 0;
}
/*
* ni_parse_reparse
*
* buffer - memory for reparse buffer header
*/
enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
struct REPARSE_DATA_BUFFER *buffer)
{
const struct REPARSE_DATA_BUFFER *rp = NULL;
u8 bits;
u16 len;
typeof(rp->CompressReparseBuffer) *cmpr;
/* Try to estimate reparse point. */
if (!attr->non_res) {
rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
} else if (le64_to_cpu(attr->nres.data_size) >=
sizeof(struct REPARSE_DATA_BUFFER)) {
struct runs_tree run;
run_init(&run);
if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
!ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
sizeof(struct REPARSE_DATA_BUFFER),
NULL)) {
rp = buffer;
}
run_close(&run);
}
if (!rp)
return REPARSE_NONE;
len = le16_to_cpu(rp->ReparseDataLength);
switch (rp->ReparseTag) {
case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
break; /* Symbolic link. */
case IO_REPARSE_TAG_MOUNT_POINT:
break; /* Mount points and junctions. */
case IO_REPARSE_TAG_SYMLINK:
break;
case IO_REPARSE_TAG_COMPRESS:
/*
* WOF - Windows Overlay Filter - Used to compress files with
* LZX/Xpress.
*
* Unlike native NTFS file compression, the Windows
* Overlay Filter supports only read operations. This means
* that it doesn't need to sector-align each compressed chunk,
* so the compressed data can be packed more tightly together.
* If you open the file for writing, the WOF just decompresses
* the entire file, turning it back into a plain file.
*
* Ntfs3 driver decompresses the entire file only on write or
* change size requests.
*/
cmpr = &rp->CompressReparseBuffer;
if (len < sizeof(*cmpr) ||
cmpr->WofVersion != WOF_CURRENT_VERSION ||
cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
return REPARSE_NONE;
}
switch (cmpr->CompressionFormat) {
case WOF_COMPRESSION_XPRESS4K:
bits = 0xc; // 4k
break;
case WOF_COMPRESSION_XPRESS8K:
bits = 0xd; // 8k
break;
case WOF_COMPRESSION_XPRESS16K:
bits = 0xe; // 16k
break;
case WOF_COMPRESSION_LZX32K:
bits = 0xf; // 32k
break;
default:
bits = 0x10; // 64k
break;
}
ni_set_ext_compress_bits(ni, bits);
return REPARSE_COMPRESSED;
case IO_REPARSE_TAG_DEDUP:
ni->ni_flags |= NI_FLAG_DEDUPLICATED;
return REPARSE_DEDUPLICATED;
default:
if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
break;
return REPARSE_NONE;
}
if (buffer != rp)
memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
/* Looks like normal symlink. */
return REPARSE_LINK;
}
/*
* ni_fiemap - Helper for file_fiemap().
*
* Assumed ni_lock.
* TODO: Less aggressive locks.
*/
int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
__u64 vbo, __u64 len)
{
int err = 0;
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 cluster_bits = sbi->cluster_bits;
struct runs_tree *run;
struct rw_semaphore *run_lock;
struct ATTRIB *attr;
CLST vcn = vbo >> cluster_bits;
CLST lcn, clen;
u64 valid = ni->i_valid;
u64 lbo, bytes;
u64 end, alloc_size;
size_t idx = -1;
u32 flags;
bool ok;
if (S_ISDIR(ni->vfs_inode.i_mode)) {
run = &ni->dir.alloc_run;
attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
ARRAY_SIZE(I30_NAME), NULL, NULL);
run_lock = &ni->dir.run_lock;
} else {
run = &ni->file.run;
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
if (is_attr_compressed(attr)) {
/* Unfortunately cp -r incorrectly treats compressed clusters. */
err = -EOPNOTSUPP;
ntfs_inode_warn(
&ni->vfs_inode,
"fiemap is not supported for compressed file (cp -r)");
goto out;
}
run_lock = &ni->file.run_lock;
}
if (!attr || !attr->non_res) {
err = fiemap_fill_next_extent(
fieinfo, 0, 0,
attr ? le32_to_cpu(attr->res.data_size) : 0,
FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
FIEMAP_EXTENT_MERGED);
goto out;
}
end = vbo + len;
alloc_size = le64_to_cpu(attr->nres.alloc_size);
if (end > alloc_size)
end = alloc_size;
down_read(run_lock);
while (vbo < end) {
if (idx == -1) {
ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
} else {
CLST vcn_next = vcn;
ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
vcn == vcn_next;
if (!ok)
vcn = vcn_next;
}
if (!ok) {
up_read(run_lock);
down_write(run_lock);
err = attr_load_runs_vcn(ni, attr->type,
attr_name(attr),
attr->name_len, run, vcn);
up_write(run_lock);
down_read(run_lock);
if (err)
break;
ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
if (!ok) {
err = -EINVAL;
break;
}
}
if (!clen) {
err = -EINVAL; // ?
break;
}
if (lcn == SPARSE_LCN) {
vcn += clen;
vbo = (u64)vcn << cluster_bits;
continue;
}
flags = FIEMAP_EXTENT_MERGED;
if (S_ISDIR(ni->vfs_inode.i_mode)) {
;
} else if (is_attr_compressed(attr)) {
CLST clst_data;
err = attr_is_frame_compressed(
ni, attr, vcn >> attr->nres.c_unit, &clst_data);
if (err)
break;
if (clst_data < NTFS_LZNT_CLUSTERS)
flags |= FIEMAP_EXTENT_ENCODED;
} else if (is_attr_encrypted(attr)) {
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
}
vbo = (u64)vcn << cluster_bits;
bytes = (u64)clen << cluster_bits;
lbo = (u64)lcn << cluster_bits;
vcn += clen;
if (vbo + bytes >= end)
bytes = end - vbo;
if (vbo + bytes <= valid) {
;
} else if (vbo >= valid) {
flags |= FIEMAP_EXTENT_UNWRITTEN;
} else {
/* vbo < valid && valid < vbo + bytes */
u64 dlen = valid - vbo;
if (vbo + dlen >= end)
flags |= FIEMAP_EXTENT_LAST;
err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
flags);
if (err < 0)
break;
if (err == 1) {
err = 0;
break;
}
vbo = valid;
bytes -= dlen;
if (!bytes)
continue;
lbo += dlen;
flags |= FIEMAP_EXTENT_UNWRITTEN;
}
if (vbo + bytes >= end)
flags |= FIEMAP_EXTENT_LAST;
err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
if (err < 0)
break;
if (err == 1) {
err = 0;
break;
}
vbo += bytes;
}
up_read(run_lock);
out:
return err;
}
/*
* ni_readpage_cmpr
*
* When decompressing, we typically obtain more than one page per reference.
* We inject the additional pages into the page cache.
*/
int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
{
int err;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct address_space *mapping = page->mapping;
pgoff_t index = page->index;
u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
struct page **pages = NULL; /* Array of at most 16 pages. stack? */
u8 frame_bits;
CLST frame;
u32 i, idx, frame_size, pages_per_frame;
gfp_t gfp_mask;
struct page *pg;
if (vbo >= ni->vfs_inode.i_size) {
SetPageUptodate(page);
err = 0;
goto out;
}
if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
/* Xpress or LZX. */
frame_bits = ni_ext_compress_bits(ni);
} else {
/* LZNT compression. */
frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
}
frame_size = 1u << frame_bits;
frame = vbo >> frame_bits;
frame_vbo = (u64)frame << frame_bits;
idx = (vbo - frame_vbo) >> PAGE_SHIFT;
pages_per_frame = frame_size >> PAGE_SHIFT;
pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
if (!pages) {
err = -ENOMEM;
goto out;
}
pages[idx] = page;
index = frame_vbo >> PAGE_SHIFT;
gfp_mask = mapping_gfp_mask(mapping);
for (i = 0; i < pages_per_frame; i++, index++) {
if (i == idx)
continue;
pg = find_or_create_page(mapping, index, gfp_mask);
if (!pg) {
err = -ENOMEM;
goto out1;
}
pages[i] = pg;
}
err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
out1:
if (err)
SetPageError(page);
for (i = 0; i < pages_per_frame; i++) {
pg = pages[i];
if (i == idx)
continue;
unlock_page(pg);
put_page(pg);
}
out:
/* At this point, err contains 0 or -EIO depending on the "critical" page. */
kfree(pages);
unlock_page(page);
return err;
}
#ifdef CONFIG_NTFS3_LZX_XPRESS
/*
* ni_decompress_file - Decompress LZX/Xpress compressed file.
*
* Remove ATTR_DATA::WofCompressedData.
* Remove ATTR_REPARSE.
*/
int ni_decompress_file(struct ntfs_inode *ni)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct inode *inode = &ni->vfs_inode;
loff_t i_size = inode->i_size;
struct address_space *mapping = inode->i_mapping;
gfp_t gfp_mask = mapping_gfp_mask(mapping);
struct page **pages = NULL;
struct ATTR_LIST_ENTRY *le;
struct ATTRIB *attr;
CLST vcn, cend, lcn, clen, end;
pgoff_t index;
u64 vbo;
u8 frame_bits;
u32 i, frame_size, pages_per_frame, bytes;
struct mft_inode *mi;
int err;
/* Clusters for decompressed data. */
cend = bytes_to_cluster(sbi, i_size);
if (!i_size)
goto remove_wof;
/* Check in advance. */
if (cend > wnd_zeroes(&sbi->used.bitmap)) {
err = -ENOSPC;
goto out;
}
frame_bits = ni_ext_compress_bits(ni);
frame_size = 1u << frame_bits;
pages_per_frame = frame_size >> PAGE_SHIFT;
pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
if (!pages) {
err = -ENOMEM;
goto out;
}
/*
* Step 1: Decompress data and copy to new allocated clusters.
*/
index = 0;
for (vbo = 0; vbo < i_size; vbo += bytes) {
u32 nr_pages;
bool new;
if (vbo + frame_size > i_size) {
bytes = i_size - vbo;
nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
} else {
nr_pages = pages_per_frame;
bytes = frame_size;
}
end = bytes_to_cluster(sbi, vbo + bytes);
for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
&clen, &new, false);
if (err)
goto out;
}
for (i = 0; i < pages_per_frame; i++, index++) {
struct page *pg;
pg = find_or_create_page(mapping, index, gfp_mask);
if (!pg) {
while (i--) {
unlock_page(pages[i]);
put_page(pages[i]);
}
err = -ENOMEM;
goto out;
}
pages[i] = pg;
}
err = ni_read_frame(ni, vbo, pages, pages_per_frame);
if (!err) {
down_read(&ni->file.run_lock);
err = ntfs_bio_pages(sbi, &ni->file.run, pages,
nr_pages, vbo, bytes,
REQ_OP_WRITE);
up_read(&ni->file.run_lock);
}
for (i = 0; i < pages_per_frame; i++) {
unlock_page(pages[i]);
put_page(pages[i]);
}
if (err)
goto out;
cond_resched();
}
remove_wof:
/*
* Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
* and ATTR_REPARSE.
*/
attr = NULL;
le = NULL;
while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
CLST svcn, evcn;
u32 asize, roff;
if (attr->type == ATTR_REPARSE) {
struct MFT_REF ref;
mi_get_ref(&ni->mi, &ref);
ntfs_remove_reparse(sbi, 0, &ref);
}
if (!attr->non_res)
continue;
if (attr->type != ATTR_REPARSE &&
(attr->type != ATTR_DATA ||
attr->name_len != ARRAY_SIZE(WOF_NAME) ||
memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
continue;
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
if (evcn + 1 <= svcn)
continue;
asize = le32_to_cpu(attr->size);
roff = le16_to_cpu(attr->nres.run_off);
if (roff > asize) {
err = -EINVAL;
goto out;
}
/*run==1 Means unpack and deallocate. */
run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
Add2Ptr(attr, roff), asize - roff);
}
/*
* Step 3: Remove attribute ATTR_DATA::WofCompressedData.
*/
err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
false, NULL);
if (err)
goto out;
/*
* Step 4: Remove ATTR_REPARSE.
*/
err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
if (err)
goto out;
/*
* Step 5: Remove sparse flag from data attribute.
*/
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
if (!attr) {
err = -EINVAL;
goto out;
}
if (attr->non_res && is_attr_sparsed(attr)) {
/* Sparsed attribute header is 8 bytes bigger than normal. */
struct MFT_REC *rec = mi->mrec;
u32 used = le32_to_cpu(rec->used);
u32 asize = le32_to_cpu(attr->size);
u16 roff = le16_to_cpu(attr->nres.run_off);
char *rbuf = Add2Ptr(attr, roff);
memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
attr->size = cpu_to_le32(asize - 8);
attr->flags &= ~ATTR_FLAG_SPARSED;
attr->nres.run_off = cpu_to_le16(roff - 8);
attr->nres.c_unit = 0;
rec->used = cpu_to_le32(used - 8);
mi->dirty = true;
ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
FILE_ATTRIBUTE_REPARSE_POINT);
mark_inode_dirty(inode);
}
/* Clear cached flag. */
ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
if (ni->file.offs_page) {
put_page(ni->file.offs_page);
ni->file.offs_page = NULL;
}
mapping->a_ops = &ntfs_aops;
out:
kfree(pages);
if (err)
_ntfs_bad_inode(inode);
return err;
}
/*
* decompress_lzx_xpress - External compression LZX/Xpress.
*/
static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
size_t cmpr_size, void *unc, size_t unc_size,
u32 frame_size)
{
int err;
void *ctx;
if (cmpr_size == unc_size) {
/* Frame not compressed. */
memcpy(unc, cmpr, unc_size);
return 0;
}
err = 0;
if (frame_size == 0x8000) {
mutex_lock(&sbi->compress.mtx_lzx);
/* LZX: Frame compressed. */
ctx = sbi->compress.lzx;
if (!ctx) {
/* Lazy initialize LZX decompress context. */
ctx = lzx_allocate_decompressor();
if (!ctx) {
err = -ENOMEM;
goto out1;
}
sbi->compress.lzx = ctx;
}
if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
/* Treat all errors as "invalid argument". */
err = -EINVAL;
}
out1:
mutex_unlock(&sbi->compress.mtx_lzx);
} else {
/* XPRESS: Frame compressed. */
mutex_lock(&sbi->compress.mtx_xpress);
ctx = sbi->compress.xpress;
if (!ctx) {
/* Lazy initialize Xpress decompress context. */
ctx = xpress_allocate_decompressor();
if (!ctx) {
err = -ENOMEM;
goto out2;
}
sbi->compress.xpress = ctx;
}
if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
/* Treat all errors as "invalid argument". */
err = -EINVAL;
}
out2:
mutex_unlock(&sbi->compress.mtx_xpress);
}
return err;
}
#endif
/*
* ni_read_frame
*
* Pages - Array of locked pages.
*/
int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
u32 pages_per_frame)
{
int err;
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 cluster_bits = sbi->cluster_bits;
char *frame_ondisk = NULL;
char *frame_mem = NULL;
struct page **pages_disk = NULL;
struct ATTR_LIST_ENTRY *le = NULL;
struct runs_tree *run = &ni->file.run;
u64 valid_size = ni->i_valid;
u64 vbo_disk;
size_t unc_size;
u32 frame_size, i, npages_disk, ondisk_size;
struct page *pg;
struct ATTRIB *attr;
CLST frame, clst_data;
/*
* To simplify decompress algorithm do vmap for source
* and target pages.
*/
for (i = 0; i < pages_per_frame; i++)
kmap(pages[i]);
frame_size = pages_per_frame << PAGE_SHIFT;
frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
if (!frame_mem) {
err = -ENOMEM;
goto out;
}
attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
if (!attr) {
err = -ENOENT;
goto out1;
}
if (!attr->non_res) {
u32 data_size = le32_to_cpu(attr->res.data_size);
memset(frame_mem, 0, frame_size);
if (frame_vbo < data_size) {
ondisk_size = data_size - frame_vbo;
memcpy(frame_mem, resident_data(attr) + frame_vbo,
min(ondisk_size, frame_size));
}
err = 0;
goto out1;
}
if (frame_vbo >= valid_size) {
memset(frame_mem, 0, frame_size);
err = 0;
goto out1;
}
if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
#ifndef CONFIG_NTFS3_LZX_XPRESS
err = -EOPNOTSUPP;
goto out1;
#else
u32 frame_bits = ni_ext_compress_bits(ni);
u64 frame64 = frame_vbo >> frame_bits;
u64 frames, vbo_data;
if (frame_size != (1u << frame_bits)) {
err = -EINVAL;
goto out1;
}
switch (frame_size) {
case 0x1000:
case 0x2000:
case 0x4000:
case 0x8000:
break;
default:
/* Unknown compression. */
err = -EOPNOTSUPP;
goto out1;
}
attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
ARRAY_SIZE(WOF_NAME), NULL, NULL);
if (!attr) {
ntfs_inode_err(
&ni->vfs_inode,
"external compressed file should contains data attribute \"WofCompressedData\"");
err = -EINVAL;
goto out1;
}
if (!attr->non_res) {
run = NULL;
} else {
run = run_alloc();
if (!run) {
err = -ENOMEM;
goto out1;
}
}
frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
err = attr_wof_frame_info(ni, attr, run, frame64, frames,
frame_bits, &ondisk_size, &vbo_data);
if (err)
goto out2;
if (frame64 == frames) {
unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
(frame_size - 1));
ondisk_size = attr_size(attr) - vbo_data;
} else {
unc_size = frame_size;
}
if (ondisk_size > frame_size) {
err = -EINVAL;
goto out2;
}
if (!attr->non_res) {
if (vbo_data + ondisk_size >
le32_to_cpu(attr->res.data_size)) {
err = -EINVAL;
goto out1;
}
err = decompress_lzx_xpress(
sbi, Add2Ptr(resident_data(attr), vbo_data),
ondisk_size, frame_mem, unc_size, frame_size);
goto out1;
}
vbo_disk = vbo_data;
/* Load all runs to read [vbo_disk-vbo_to). */
err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
ARRAY_SIZE(WOF_NAME), run, vbo_disk,
vbo_data + ondisk_size);
if (err)
goto out2;
npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
PAGE_SIZE - 1) >>
PAGE_SHIFT;
#endif
} else if (is_attr_compressed(attr)) {
/* LZNT compression. */
if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
err = -EOPNOTSUPP;
goto out1;
}
if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
err = -EOPNOTSUPP;
goto out1;
}
down_write(&ni->file.run_lock);
run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
up_write(&ni->file.run_lock);
if (err)
goto out1;
if (!clst_data) {
memset(frame_mem, 0, frame_size);
goto out1;
}
frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
ondisk_size = clst_data << cluster_bits;
if (clst_data >= NTFS_LZNT_CLUSTERS) {
/* Frame is not compressed. */
down_read(&ni->file.run_lock);
err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
frame_vbo, ondisk_size,
REQ_OP_READ);
up_read(&ni->file.run_lock);
goto out1;
}
vbo_disk = frame_vbo;
npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
} else {
__builtin_unreachable();
err = -EINVAL;
goto out1;
}
pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
if (!pages_disk) {
err = -ENOMEM;
goto out2;
}
for (i = 0; i < npages_disk; i++) {
pg = alloc_page(GFP_KERNEL);
if (!pg) {
err = -ENOMEM;
goto out3;
}
pages_disk[i] = pg;
lock_page(pg);
kmap(pg);
}
/* Read 'ondisk_size' bytes from disk. */
down_read(&ni->file.run_lock);
err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
ondisk_size, REQ_OP_READ);
up_read(&ni->file.run_lock);
if (err)
goto out3;
/*
* To simplify decompress algorithm do vmap for source and target pages.
*/
frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
if (!frame_ondisk) {
err = -ENOMEM;
goto out3;
}
/* Decompress: Frame_ondisk -> frame_mem. */
#ifdef CONFIG_NTFS3_LZX_XPRESS
if (run != &ni->file.run) {
/* LZX or XPRESS */
err = decompress_lzx_xpress(
sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
ondisk_size, frame_mem, unc_size, frame_size);
} else
#endif
{
/* LZNT - Native NTFS compression. */
unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
frame_size);
if ((ssize_t)unc_size < 0)
err = unc_size;
else if (!unc_size || unc_size > frame_size)
err = -EINVAL;
}
if (!err && valid_size < frame_vbo + frame_size) {
size_t ok = valid_size - frame_vbo;
memset(frame_mem + ok, 0, frame_size - ok);
}
vunmap(frame_ondisk);
out3:
for (i = 0; i < npages_disk; i++) {
pg = pages_disk[i];
if (pg) {
kunmap(pg);
unlock_page(pg);
put_page(pg);
}
}
kfree(pages_disk);
out2:
#ifdef CONFIG_NTFS3_LZX_XPRESS
if (run != &ni->file.run)
run_free(run);
#endif
out1:
vunmap(frame_mem);
out:
for (i = 0; i < pages_per_frame; i++) {
pg = pages[i];
kunmap(pg);
ClearPageError(pg);
SetPageUptodate(pg);
}
return err;
}
/*
* ni_write_frame
*
* Pages - Array of locked pages.
*/
int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
u32 pages_per_frame)
{
int err;
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
CLST frame = frame_vbo >> frame_bits;
char *frame_ondisk = NULL;
struct page **pages_disk = NULL;
struct ATTR_LIST_ENTRY *le = NULL;
char *frame_mem;
struct ATTRIB *attr;
struct mft_inode *mi;
u32 i;
struct page *pg;
size_t compr_size, ondisk_size;
struct lznt *lznt;
attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
if (!attr) {
err = -ENOENT;
goto out;
}
if (WARN_ON(!is_attr_compressed(attr))) {
err = -EINVAL;
goto out;
}
if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
err = -EOPNOTSUPP;
goto out;
}
if (!attr->non_res) {
down_write(&ni->file.run_lock);
err = attr_make_nonresident(ni, attr, le, mi,
le32_to_cpu(attr->res.data_size),
&ni->file.run, &attr, pages[0]);
up_write(&ni->file.run_lock);
if (err)
goto out;
}
if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
err = -EOPNOTSUPP;
goto out;
}
pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
if (!pages_disk) {
err = -ENOMEM;
goto out;
}
for (i = 0; i < pages_per_frame; i++) {
pg = alloc_page(GFP_KERNEL);
if (!pg) {
err = -ENOMEM;
goto out1;
}
pages_disk[i] = pg;
lock_page(pg);
kmap(pg);
}
/* To simplify compress algorithm do vmap for source and target pages. */
frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
if (!frame_ondisk) {
err = -ENOMEM;
goto out1;
}
for (i = 0; i < pages_per_frame; i++)
kmap(pages[i]);
/* Map in-memory frame for read-only. */
frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
if (!frame_mem) {
err = -ENOMEM;
goto out2;
}
mutex_lock(&sbi->compress.mtx_lznt);
lznt = NULL;
if (!sbi->compress.lznt) {
/*
* LZNT implements two levels of compression:
* 0 - Standard compression
* 1 - Best compression, requires a lot of cpu
* use mount option?
*/
lznt = get_lznt_ctx(0);
if (!lznt) {
mutex_unlock(&sbi->compress.mtx_lznt);
err = -ENOMEM;
goto out3;
}
sbi->compress.lznt = lznt;
lznt = NULL;
}
/* Compress: frame_mem -> frame_ondisk */
compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
frame_size, sbi->compress.lznt);
mutex_unlock(&sbi->compress.mtx_lznt);
kfree(lznt);
if (compr_size + sbi->cluster_size > frame_size) {
/* Frame is not compressed. */
compr_size = frame_size;
ondisk_size = frame_size;
} else if (compr_size) {
/* Frame is compressed. */
ondisk_size = ntfs_up_cluster(sbi, compr_size);
memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
} else {
/* Frame is sparsed. */
ondisk_size = 0;
}
down_write(&ni->file.run_lock);
run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
up_write(&ni->file.run_lock);
if (err)
goto out2;
if (!ondisk_size)
goto out2;
down_read(&ni->file.run_lock);
err = ntfs_bio_pages(sbi, &ni->file.run,
ondisk_size < frame_size ? pages_disk : pages,
pages_per_frame, frame_vbo, ondisk_size,
REQ_OP_WRITE);
up_read(&ni->file.run_lock);
out3:
vunmap(frame_mem);
out2:
for (i = 0; i < pages_per_frame; i++)
kunmap(pages[i]);
vunmap(frame_ondisk);
out1:
for (i = 0; i < pages_per_frame; i++) {
pg = pages_disk[i];
if (pg) {
kunmap(pg);
unlock_page(pg);
put_page(pg);
}
}
kfree(pages_disk);
out:
return err;
}
/*
* ni_remove_name - Removes name 'de' from MFT and from directory.
* 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
*/
int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
{
int err;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
struct ATTR_FILE_NAME *fname;
struct ATTR_LIST_ENTRY *le;
struct mft_inode *mi;
u16 de_key_size = le16_to_cpu(de->key_size);
u8 name_type;
*undo_step = 0;
/* Find name in record. */
mi_get_ref(&dir_ni->mi, &de_name->home);
fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
&de_name->home, &mi, &le);
if (!fname)
return -ENOENT;
memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
name_type = paired_name(fname->type);
/* Mark ntfs as dirty. It will be cleared at umount. */
ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
/* Step 1: Remove name from directory. */
err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
if (err)
return err;
/* Step 2: Remove name from MFT. */
ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
*undo_step = 2;
/* Get paired name. */
fname = ni_fname_type(ni, name_type, &mi, &le);
if (fname) {
u16 de2_key_size = fname_full_size(fname);
*de2 = Add2Ptr(de, 1024);
(*de2)->key_size = cpu_to_le16(de2_key_size);
memcpy(*de2 + 1, fname, de2_key_size);
/* Step 3: Remove paired name from directory. */
err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
de2_key_size, sbi);
if (err)
return err;
/* Step 4: Remove paired name from MFT. */
ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
*undo_step = 4;
}
return 0;
}
/*
* ni_remove_name_undo - Paired function for ni_remove_name.
*
* Return: True if ok
*/
bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr;
u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
switch (undo_step) {
case 4:
if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
&attr, NULL, NULL)) {
return false;
}
memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
mi_get_ref(&ni->mi, &de2->ref);
de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
sizeof(struct NTFS_DE));
de2->flags = 0;
de2->res = 0;
if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
1)) {
return false;
}
fallthrough;
case 2:
de_key_size = le16_to_cpu(de->key_size);
if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
&attr, NULL, NULL)) {
return false;
}
memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
mi_get_ref(&ni->mi, &de->ref);
if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
return false;
}
return true;
}
/*
* ni_add_name - Add new name into MFT and into directory.
*/
int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
struct NTFS_DE *de)
{
int err;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr;
struct ATTR_LIST_ENTRY *le;
struct mft_inode *mi;
struct ATTR_FILE_NAME *fname;
struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
u16 de_key_size = le16_to_cpu(de->key_size);
if (sbi->options->windows_names &&
!valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
return -EINVAL;
/* If option "hide_dot_files" then set hidden attribute for dot files. */
if (ni->mi.sbi->options->hide_dot_files) {
if (de_name->name_len > 0 &&
le16_to_cpu(de_name->name[0]) == '.')
ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
else
ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
}
mi_get_ref(&ni->mi, &de->ref);
mi_get_ref(&dir_ni->mi, &de_name->home);
/* Fill duplicate from any ATTR_NAME. */
fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
if (fname)
memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
de_name->dup.fa = ni->std_fa;
/* Insert new name into MFT. */
err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
&mi, &le);
if (err)
return err;
memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
/* Insert new name into directory. */
err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
if (err)
ni_remove_attr_le(ni, attr, mi, le);
return err;
}
/*
* ni_rename - Remove one name and insert new name.
*/
int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
bool *is_bad)
{
int err;
struct NTFS_DE *de2 = NULL;
int undo = 0;
/*
* There are two possible ways to rename:
* 1) Add new name and remove old name.
* 2) Remove old name and add new name.
*
* In most cases (not all!) adding new name into MFT and into directory can
* allocate additional cluster(s).
* Second way may result to bad inode if we can't add new name
* and then can't restore (add) old name.
*/
/*
* Way 1 - Add new + remove old.
*/
err = ni_add_name(new_dir_ni, ni, new_de);
if (!err) {
err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
*is_bad = true;
}
/*
* Way 2 - Remove old + add new.
*/
/*
* err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
* if (!err) {
* err = ni_add_name(new_dir_ni, ni, new_de);
* if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
* *is_bad = true;
* }
*/
return err;
}
/*
* ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
*/
bool ni_is_dirty(struct inode *inode)
{
struct ntfs_inode *ni = ntfs_i(inode);
struct rb_node *node;
if (ni->mi.dirty || ni->attr_list.dirty ||
(ni->ni_flags & NI_FLAG_UPDATE_PARENT))
return true;
for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
if (rb_entry(node, struct mft_inode, node)->dirty)
return true;
}
return false;
}
/*
* ni_update_parent
*
* Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
*/
static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
int sync)
{
struct ATTRIB *attr;
struct mft_inode *mi;
struct ATTR_LIST_ENTRY *le = NULL;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct super_block *sb = sbi->sb;
bool re_dirty = false;
if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
attr = NULL;
dup->alloc_size = 0;
dup->data_size = 0;
} else {
dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
&mi);
if (!attr) {
dup->alloc_size = dup->data_size = 0;
} else if (!attr->non_res) {
u32 data_size = le32_to_cpu(attr->res.data_size);
dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
dup->data_size = cpu_to_le64(data_size);
} else {
u64 new_valid = ni->i_valid;
u64 data_size = le64_to_cpu(attr->nres.data_size);
__le64 valid_le;
dup->alloc_size = is_attr_ext(attr)
? attr->nres.total_size
: attr->nres.alloc_size;
dup->data_size = attr->nres.data_size;
if (new_valid > data_size)
new_valid = data_size;
valid_le = cpu_to_le64(new_valid);
if (valid_le != attr->nres.valid_size) {
attr->nres.valid_size = valid_le;
mi->dirty = true;
}
}
}
/* TODO: Fill reparse info. */
dup->reparse = 0;
dup->ea_size = 0;
if (ni->ni_flags & NI_FLAG_EA) {
attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
NULL);
if (attr) {
const struct EA_INFO *info;
info = resident_data_ex(attr, sizeof(struct EA_INFO));
/* If ATTR_EA_INFO exists 'info' can't be NULL. */
if (info)
dup->ea_size = info->size_pack;
}
}
attr = NULL;
le = NULL;
while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
&mi))) {
struct inode *dir;
struct ATTR_FILE_NAME *fname;
fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
continue;
/* ntfs_iget5 may sleep. */
dir = ntfs_iget5(sb, &fname->home, NULL);
if (IS_ERR(dir)) {
ntfs_inode_warn(
&ni->vfs_inode,
"failed to open parent directory r=%lx to update",
(long)ino_get(&fname->home));
continue;
}
if (!is_bad_inode(dir)) {
struct ntfs_inode *dir_ni = ntfs_i(dir);
if (!ni_trylock(dir_ni)) {
re_dirty = true;
} else {
indx_update_dup(dir_ni, sbi, fname, dup, sync);
ni_unlock(dir_ni);
memcpy(&fname->dup, dup, sizeof(fname->dup));
mi->dirty = true;
}
}
iput(dir);
}
return re_dirty;
}
/*
* ni_write_inode - Write MFT base record and all subrecords to disk.
*/
int ni_write_inode(struct inode *inode, int sync, const char *hint)
{
int err = 0, err2;
struct ntfs_inode *ni = ntfs_i(inode);
struct super_block *sb = inode->i_sb;
struct ntfs_sb_info *sbi = sb->s_fs_info;
bool re_dirty = false;
struct ATTR_STD_INFO *std;
struct rb_node *node, *next;
struct NTFS_DUP_INFO dup;
if (is_bad_inode(inode) || sb_rdonly(sb))
return 0;
if (!ni_trylock(ni)) {
/* 'ni' is under modification, skip for now. */
mark_inode_dirty_sync(inode);
return 0;
}
if (is_rec_inuse(ni->mi.mrec) &&
!(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
bool modified = false;
/* Update times in standard attribute. */
std = ni_std(ni);
if (!std) {
err = -EINVAL;
goto out;
}
/* Update the access times if they have changed. */
dup.m_time = kernel2nt(&inode->i_mtime);
if (std->m_time != dup.m_time) {
std->m_time = dup.m_time;
modified = true;
}
dup.c_time = kernel2nt(&inode->i_ctime);
if (std->c_time != dup.c_time) {
std->c_time = dup.c_time;
modified = true;
}
dup.a_time = kernel2nt(&inode->i_atime);
if (std->a_time != dup.a_time) {
std->a_time = dup.a_time;
modified = true;
}
dup.fa = ni->std_fa;
if (std->fa != dup.fa) {
std->fa = dup.fa;
modified = true;
}
/* std attribute is always in primary MFT record. */
if (modified)
ni->mi.dirty = true;
if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
(modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
/* Avoid __wait_on_freeing_inode(inode). */
&& (sb->s_flags & SB_ACTIVE)) {
dup.cr_time = std->cr_time;
/* Not critical if this function fail. */
re_dirty = ni_update_parent(ni, &dup, sync);
if (re_dirty)
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
else
ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
}
/* Update attribute list. */
if (ni->attr_list.size && ni->attr_list.dirty) {
if (inode->i_ino != MFT_REC_MFT || sync) {
err = ni_try_remove_attr_list(ni);
if (err)
goto out;
}
err = al_update(ni, sync);
if (err)
goto out;
}
}
for (node = rb_first(&ni->mi_tree); node; node = next) {
struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
bool is_empty;
next = rb_next(node);
if (!mi->dirty)
continue;
is_empty = !mi_enum_attr(mi, NULL);
if (is_empty)
clear_rec_inuse(mi->mrec);
err2 = mi_write(mi, sync);
if (!err && err2)
err = err2;
if (is_empty) {
ntfs_mark_rec_free(sbi, mi->rno, false);
rb_erase(node, &ni->mi_tree);
mi_put(mi);
}
}
if (ni->mi.dirty) {
err2 = mi_write(&ni->mi, sync);
if (!err && err2)
err = err2;
}
out:
ni_unlock(ni);
if (err) {
ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
return err;
}
if (re_dirty)
mark_inode_dirty_sync(inode);
return 0;
}