WSL2-Linux-Kernel/arch/unicore32/include/asm/pgtable.h

311 строки
9.9 KiB
C

/*
* linux/arch/unicore32/include/asm/pgtable.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __UNICORE_PGTABLE_H__
#define __UNICORE_PGTABLE_H__
#include <asm-generic/pgtable-nopmd.h>
#include <asm/cpu-single.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* Note that platforms may override VMALLOC_START, but they must provide
* VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
* which may not overlap IO space.
*/
#ifndef VMALLOC_START
#define VMALLOC_OFFSET SZ_8M
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) \
& ~(VMALLOC_OFFSET-1))
#define VMALLOC_END (0xff000000UL)
#endif
#define PTRS_PER_PTE 1024
#define PTRS_PER_PGD 1024
/*
* PGDIR_SHIFT determines what a third-level page table entry can map
*/
#define PGDIR_SHIFT 22
#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#endif /* !__ASSEMBLY__ */
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* This is the lowest virtual address we can permit any user space
* mapping to be mapped at. This is particularly important for
* non-high vector CPUs.
*/
#define FIRST_USER_ADDRESS PAGE_SIZE
#define FIRST_USER_PGD_NR 1
#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
/*
* section address mask and size definitions.
*/
#define SECTION_SHIFT 22
#define SECTION_SIZE (1UL << SECTION_SHIFT)
#define SECTION_MASK (~(SECTION_SIZE-1))
#ifndef __ASSEMBLY__
/*
* The pgprot_* and protection_map entries will be fixed up in runtime
* to include the cachable bits based on memory policy, as well as any
* architecture dependent bits.
*/
#define _PTE_DEFAULT (PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE)
extern pgprot_t pgprot_user;
extern pgprot_t pgprot_kernel;
#define PAGE_NONE pgprot_user
#define PAGE_SHARED __pgprot(pgprot_val(pgprot_user | PTE_READ \
| PTE_WRITE)
#define PAGE_SHARED_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
| PTE_WRITE \
| PTE_EXEC)
#define PAGE_COPY __pgprot(pgprot_val(pgprot_user | PTE_READ)
#define PAGE_COPY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
| PTE_EXEC)
#define PAGE_READONLY __pgprot(pgprot_val(pgprot_user | PTE_READ)
#define PAGE_READONLY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
| PTE_EXEC)
#define PAGE_KERNEL pgprot_kernel
#define PAGE_KERNEL_EXEC __pgprot(pgprot_val(pgprot_kernel | PTE_EXEC))
#define __PAGE_NONE __pgprot(_PTE_DEFAULT)
#define __PAGE_SHARED __pgprot(_PTE_DEFAULT | PTE_READ \
| PTE_WRITE)
#define __PAGE_SHARED_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
| PTE_WRITE \
| PTE_EXEC)
#define __PAGE_COPY __pgprot(_PTE_DEFAULT | PTE_READ)
#define __PAGE_COPY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
| PTE_EXEC)
#define __PAGE_READONLY __pgprot(_PTE_DEFAULT | PTE_READ)
#define __PAGE_READONLY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
| PTE_EXEC)
#endif /* __ASSEMBLY__ */
/*
* The table below defines the page protection levels that we insert into our
* Linux page table version. These get translated into the best that the
* architecture can perform. Note that on UniCore hardware:
* 1) We cannot do execute protection
* 2) If we could do execute protection, then read is implied
* 3) write implies read permissions
*/
#define __P000 __PAGE_NONE
#define __P001 __PAGE_READONLY
#define __P010 __PAGE_COPY
#define __P011 __PAGE_COPY
#define __P100 __PAGE_READONLY_EXEC
#define __P101 __PAGE_READONLY_EXEC
#define __P110 __PAGE_COPY_EXEC
#define __P111 __PAGE_COPY_EXEC
#define __S000 __PAGE_NONE
#define __S001 __PAGE_READONLY
#define __S010 __PAGE_SHARED
#define __S011 __PAGE_SHARED
#define __S100 __PAGE_READONLY_EXEC
#define __S101 __PAGE_READONLY_EXEC
#define __S110 __PAGE_SHARED_EXEC
#define __S111 __PAGE_SHARED_EXEC
#ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr) (empty_zero_page)
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn, prot) (__pte(((pfn) << PAGE_SHIFT) \
| pgprot_val(prot)))
#define pte_none(pte) (!pte_val(pte))
#define pte_clear(mm, addr, ptep) set_pte(ptep, __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
#define pte_offset_kernel(dir, addr) (pmd_page_vaddr(*(dir)) \
+ __pte_index(addr))
#define pte_offset_map(dir, addr) (pmd_page_vaddr(*(dir)) \
+ __pte_index(addr))
#define pte_unmap(pte) do { } while (0)
#define set_pte(ptep, pte) cpu_set_pte(ptep, pte)
#define set_pte_at(mm, addr, ptep, pteval) \
do { \
set_pte(ptep, pteval); \
} while (0)
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#define pte_present(pte) (pte_val(pte) & PTE_PRESENT)
#define pte_write(pte) (pte_val(pte) & PTE_WRITE)
#define pte_dirty(pte) (pte_val(pte) & PTE_DIRTY)
#define pte_young(pte) (pte_val(pte) & PTE_YOUNG)
#define pte_exec(pte) (pte_val(pte) & PTE_EXEC)
#define pte_special(pte) (0)
#define PTE_BIT_FUNC(fn, op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE);
PTE_BIT_FUNC(mkwrite, |= PTE_WRITE);
PTE_BIT_FUNC(mkclean, &= ~PTE_DIRTY);
PTE_BIT_FUNC(mkdirty, |= PTE_DIRTY);
PTE_BIT_FUNC(mkold, &= ~PTE_YOUNG);
PTE_BIT_FUNC(mkyoung, |= PTE_YOUNG);
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
/*
* Mark the prot value as uncacheable.
*/
#define pgprot_noncached(prot) \
__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
#define pgprot_writecombine(prot) \
__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
#define pgprot_dmacoherent(prot) \
__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_present(pmd) (pmd_val(pmd) & PMD_PRESENT)
#define pmd_bad(pmd) (((pmd_val(pmd) & \
(PMD_PRESENT | PMD_TYPE_MASK)) \
!= (PMD_PRESENT | PMD_TYPE_TABLE)))
#define set_pmd(pmdpd, pmdval) \
do { \
*(pmdpd) = pmdval; \
} while (0)
#define pmd_clear(pmdp) \
do { \
set_pmd(pmdp, __pmd(0));\
clean_pmd_entry(pmdp); \
} while (0)
#define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
/* to find an entry in a page-table-directory */
#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
/* Find an entry in the third-level page table.. */
#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ;
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/*
* Encode and decode a swap entry. Swap entries are stored in the Linux
* page tables as follows:
*
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* <--------------- offset --------------> <--- type --> 0 0 0 0 0
*
* This gives us up to 127 swap files and 32GB per swap file. Note that
* the offset field is always non-zero.
*/
#define __SWP_TYPE_SHIFT 5
#define __SWP_TYPE_BITS 7
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) \
& __SWP_TYPE_MASK)
#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) { \
((type) << __SWP_TYPE_SHIFT) | \
((offset) << __SWP_OFFSET_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
/*
* It is an error for the kernel to have more swap files than we can
* encode in the PTEs. This ensures that we know when MAX_SWAPFILES
* is increased beyond what we presently support.
*/
#define MAX_SWAPFILES_CHECK() \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
/*
* Encode and decode a file entry. File entries are stored in the Linux
* page tables as follows:
*
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* <----------------------- offset ----------------------> 1 0 0 0
*/
#define pte_file(pte) (pte_val(pte) & PTE_FILE)
#define pte_to_pgoff(x) (pte_val(x) >> 4)
#define pgoff_to_pte(x) __pte(((x) << 4) | PTE_FILE)
#define PTE_FILE_MAX_BITS 28
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
#define kern_addr_valid(addr) (1)
#include <asm-generic/pgtable.h>
#define pgtable_cache_init() do { } while (0)
#endif /* !__ASSEMBLY__ */
#endif /* __UNICORE_PGTABLE_H__ */