WSL2-Linux-Kernel/kernel/bpf/cpumap.c

673 строки
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* bpf/cpumap.c
*
* Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
*/
/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
* call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
*
* Unlike devmap which redirects XDP frames out another NIC device,
* this map type redirects raw XDP frames to another CPU. The remote
* CPU will do SKB-allocation and call the normal network stack.
*
* This is a scalability and isolation mechanism, that allow
* separating the early driver network XDP layer, from the rest of the
* netstack, and assigning dedicated CPUs for this stage. This
* basically allows for 10G wirespeed pre-filtering via bpf.
*/
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/ptr_ring.h>
#include <net/xdp.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/capability.h>
#include <trace/events/xdp.h>
#include <linux/netdevice.h> /* netif_receive_skb_core */
#include <linux/etherdevice.h> /* eth_type_trans */
/* General idea: XDP packets getting XDP redirected to another CPU,
* will maximum be stored/queued for one driver ->poll() call. It is
* guaranteed that queueing the frame and the flush operation happen on
* same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
* which queue in bpf_cpu_map_entry contains packets.
*/
#define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
struct bpf_cpu_map_entry;
struct bpf_cpu_map;
struct xdp_bulk_queue {
void *q[CPU_MAP_BULK_SIZE];
struct list_head flush_node;
struct bpf_cpu_map_entry *obj;
unsigned int count;
};
/* Struct for every remote "destination" CPU in map */
struct bpf_cpu_map_entry {
u32 cpu; /* kthread CPU and map index */
int map_id; /* Back reference to map */
u32 qsize; /* Queue size placeholder for map lookup */
/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
struct xdp_bulk_queue __percpu *bulkq;
struct bpf_cpu_map *cmap;
/* Queue with potential multi-producers, and single-consumer kthread */
struct ptr_ring *queue;
struct task_struct *kthread;
struct work_struct kthread_stop_wq;
atomic_t refcnt; /* Control when this struct can be free'ed */
struct rcu_head rcu;
};
struct bpf_cpu_map {
struct bpf_map map;
/* Below members specific for map type */
struct bpf_cpu_map_entry **cpu_map;
};
static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
{
struct bpf_cpu_map *cmap;
int err = -ENOMEM;
u64 cost;
int ret;
if (!capable(CAP_SYS_ADMIN))
return ERR_PTR(-EPERM);
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
return ERR_PTR(-EINVAL);
cmap = kzalloc(sizeof(*cmap), GFP_USER);
if (!cmap)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&cmap->map, attr);
/* Pre-limit array size based on NR_CPUS, not final CPU check */
if (cmap->map.max_entries > NR_CPUS) {
err = -E2BIG;
goto free_cmap;
}
/* make sure page count doesn't overflow */
cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
/* Notice returns -EPERM on if map size is larger than memlock limit */
ret = bpf_map_charge_init(&cmap->map.memory, cost);
if (ret) {
err = ret;
goto free_cmap;
}
/* Alloc array for possible remote "destination" CPUs */
cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
sizeof(struct bpf_cpu_map_entry *),
cmap->map.numa_node);
if (!cmap->cpu_map)
goto free_charge;
return &cmap->map;
free_charge:
bpf_map_charge_finish(&cmap->map.memory);
free_cmap:
kfree(cmap);
return ERR_PTR(err);
}
static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
{
atomic_inc(&rcpu->refcnt);
}
/* called from workqueue, to workaround syscall using preempt_disable */
static void cpu_map_kthread_stop(struct work_struct *work)
{
struct bpf_cpu_map_entry *rcpu;
rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
* as it waits until all in-flight call_rcu() callbacks complete.
*/
rcu_barrier();
/* kthread_stop will wake_up_process and wait for it to complete */
kthread_stop(rcpu->kthread);
}
static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
struct xdp_frame *xdpf,
struct sk_buff *skb)
{
unsigned int hard_start_headroom;
unsigned int frame_size;
void *pkt_data_start;
/* Part of headroom was reserved to xdpf */
hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
/* build_skb need to place skb_shared_info after SKB end, and
* also want to know the memory "truesize". Thus, need to
* know the memory frame size backing xdp_buff.
*
* XDP was designed to have PAGE_SIZE frames, but this
* assumption is not longer true with ixgbe and i40e. It
* would be preferred to set frame_size to 2048 or 4096
* depending on the driver.
* frame_size = 2048;
* frame_len = frame_size - sizeof(*xdp_frame);
*
* Instead, with info avail, skb_shared_info in placed after
* packet len. This, unfortunately fakes the truesize.
* Another disadvantage of this approach, the skb_shared_info
* is not at a fixed memory location, with mixed length
* packets, which is bad for cache-line hotness.
*/
frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
pkt_data_start = xdpf->data - hard_start_headroom;
skb = build_skb_around(skb, pkt_data_start, frame_size);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, hard_start_headroom);
__skb_put(skb, xdpf->len);
if (xdpf->metasize)
skb_metadata_set(skb, xdpf->metasize);
/* Essential SKB info: protocol and skb->dev */
skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
/* Optional SKB info, currently missing:
* - HW checksum info (skb->ip_summed)
* - HW RX hash (skb_set_hash)
* - RX ring dev queue index (skb_record_rx_queue)
*/
/* Until page_pool get SKB return path, release DMA here */
xdp_release_frame(xdpf);
/* Allow SKB to reuse area used by xdp_frame */
xdp_scrub_frame(xdpf);
return skb;
}
static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
{
/* The tear-down procedure should have made sure that queue is
* empty. See __cpu_map_entry_replace() and work-queue
* invoked cpu_map_kthread_stop(). Catch any broken behaviour
* gracefully and warn once.
*/
struct xdp_frame *xdpf;
while ((xdpf = ptr_ring_consume(ring)))
if (WARN_ON_ONCE(xdpf))
xdp_return_frame(xdpf);
}
static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
{
if (atomic_dec_and_test(&rcpu->refcnt)) {
/* The queue should be empty at this point */
__cpu_map_ring_cleanup(rcpu->queue);
ptr_ring_cleanup(rcpu->queue, NULL);
kfree(rcpu->queue);
kfree(rcpu);
}
}
#define CPUMAP_BATCH 8
static int cpu_map_kthread_run(void *data)
{
struct bpf_cpu_map_entry *rcpu = data;
set_current_state(TASK_INTERRUPTIBLE);
/* When kthread gives stop order, then rcpu have been disconnected
* from map, thus no new packets can enter. Remaining in-flight
* per CPU stored packets are flushed to this queue. Wait honoring
* kthread_stop signal until queue is empty.
*/
while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
unsigned int drops = 0, sched = 0;
void *frames[CPUMAP_BATCH];
void *skbs[CPUMAP_BATCH];
gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
int i, n, m;
/* Release CPU reschedule checks */
if (__ptr_ring_empty(rcpu->queue)) {
set_current_state(TASK_INTERRUPTIBLE);
/* Recheck to avoid lost wake-up */
if (__ptr_ring_empty(rcpu->queue)) {
schedule();
sched = 1;
} else {
__set_current_state(TASK_RUNNING);
}
} else {
sched = cond_resched();
}
/*
* The bpf_cpu_map_entry is single consumer, with this
* kthread CPU pinned. Lockless access to ptr_ring
* consume side valid as no-resize allowed of queue.
*/
n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
for (i = 0; i < n; i++) {
void *f = frames[i];
struct page *page = virt_to_page(f);
/* Bring struct page memory area to curr CPU. Read by
* build_skb_around via page_is_pfmemalloc(), and when
* freed written by page_frag_free call.
*/
prefetchw(page);
}
m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
if (unlikely(m == 0)) {
for (i = 0; i < n; i++)
skbs[i] = NULL; /* effect: xdp_return_frame */
drops = n;
}
local_bh_disable();
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
struct sk_buff *skb = skbs[i];
int ret;
skb = cpu_map_build_skb(rcpu, xdpf, skb);
if (!skb) {
xdp_return_frame(xdpf);
continue;
}
/* Inject into network stack */
ret = netif_receive_skb_core(skb);
if (ret == NET_RX_DROP)
drops++;
}
/* Feedback loop via tracepoint */
trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
local_bh_enable(); /* resched point, may call do_softirq() */
}
__set_current_state(TASK_RUNNING);
put_cpu_map_entry(rcpu);
return 0;
}
static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
int map_id)
{
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
struct bpf_cpu_map_entry *rcpu;
struct xdp_bulk_queue *bq;
int numa, err, i;
/* Have map->numa_node, but choose node of redirect target CPU */
numa = cpu_to_node(cpu);
rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
if (!rcpu)
return NULL;
/* Alloc percpu bulkq */
rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
sizeof(void *), gfp);
if (!rcpu->bulkq)
goto free_rcu;
for_each_possible_cpu(i) {
bq = per_cpu_ptr(rcpu->bulkq, i);
bq->obj = rcpu;
}
/* Alloc queue */
rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
if (!rcpu->queue)
goto free_bulkq;
err = ptr_ring_init(rcpu->queue, qsize, gfp);
if (err)
goto free_queue;
rcpu->cpu = cpu;
rcpu->map_id = map_id;
rcpu->qsize = qsize;
/* Setup kthread */
rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
"cpumap/%d/map:%d", cpu, map_id);
if (IS_ERR(rcpu->kthread))
goto free_ptr_ring;
get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
/* Make sure kthread runs on a single CPU */
kthread_bind(rcpu->kthread, cpu);
wake_up_process(rcpu->kthread);
return rcpu;
free_ptr_ring:
ptr_ring_cleanup(rcpu->queue, NULL);
free_queue:
kfree(rcpu->queue);
free_bulkq:
free_percpu(rcpu->bulkq);
free_rcu:
kfree(rcpu);
return NULL;
}
static void __cpu_map_entry_free(struct rcu_head *rcu)
{
struct bpf_cpu_map_entry *rcpu;
/* This cpu_map_entry have been disconnected from map and one
* RCU grace-period have elapsed. Thus, XDP cannot queue any
* new packets and cannot change/set flush_needed that can
* find this entry.
*/
rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
free_percpu(rcpu->bulkq);
/* Cannot kthread_stop() here, last put free rcpu resources */
put_cpu_map_entry(rcpu);
}
/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
* ensure any driver rcu critical sections have completed, but this
* does not guarantee a flush has happened yet. Because driver side
* rcu_read_lock/unlock only protects the running XDP program. The
* atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
* pending flush op doesn't fail.
*
* The bpf_cpu_map_entry is still used by the kthread, and there can
* still be pending packets (in queue and percpu bulkq). A refcnt
* makes sure to last user (kthread_stop vs. call_rcu) free memory
* resources.
*
* The rcu callback __cpu_map_entry_free flush remaining packets in
* percpu bulkq to queue. Due to caller map_delete_elem() disable
* preemption, cannot call kthread_stop() to make sure queue is empty.
* Instead a work_queue is started for stopping kthread,
* cpu_map_kthread_stop, which waits for an RCU grace period before
* stopping kthread, emptying the queue.
*/
static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
{
struct bpf_cpu_map_entry *old_rcpu;
old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
if (old_rcpu) {
call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
schedule_work(&old_rcpu->kthread_stop_wq);
}
}
static int cpu_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
u32 key_cpu = *(u32 *)key;
if (key_cpu >= map->max_entries)
return -EINVAL;
/* notice caller map_delete_elem() use preempt_disable() */
__cpu_map_entry_replace(cmap, key_cpu, NULL);
return 0;
}
static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
struct bpf_cpu_map_entry *rcpu;
/* Array index key correspond to CPU number */
u32 key_cpu = *(u32 *)key;
/* Value is the queue size */
u32 qsize = *(u32 *)value;
if (unlikely(map_flags > BPF_EXIST))
return -EINVAL;
if (unlikely(key_cpu >= cmap->map.max_entries))
return -E2BIG;
if (unlikely(map_flags == BPF_NOEXIST))
return -EEXIST;
if (unlikely(qsize > 16384)) /* sanity limit on qsize */
return -EOVERFLOW;
/* Make sure CPU is a valid possible cpu */
if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
return -ENODEV;
if (qsize == 0) {
rcpu = NULL; /* Same as deleting */
} else {
/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
if (!rcpu)
return -ENOMEM;
rcpu->cmap = cmap;
}
rcu_read_lock();
__cpu_map_entry_replace(cmap, key_cpu, rcpu);
rcu_read_unlock();
return 0;
}
static void cpu_map_free(struct bpf_map *map)
{
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
u32 i;
/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
* so the bpf programs (can be more than one that used this map) were
* disconnected from events. Wait for outstanding critical sections in
* these programs to complete. The rcu critical section only guarantees
* no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
* It does __not__ ensure pending flush operations (if any) are
* complete.
*/
bpf_clear_redirect_map(map);
synchronize_rcu();
/* For cpu_map the remote CPUs can still be using the entries
* (struct bpf_cpu_map_entry).
*/
for (i = 0; i < cmap->map.max_entries; i++) {
struct bpf_cpu_map_entry *rcpu;
rcpu = READ_ONCE(cmap->cpu_map[i]);
if (!rcpu)
continue;
/* bq flush and cleanup happens after RCU grace-period */
__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
}
bpf_map_area_free(cmap->cpu_map);
kfree(cmap);
}
struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
struct bpf_cpu_map_entry *rcpu;
if (key >= map->max_entries)
return NULL;
rcpu = READ_ONCE(cmap->cpu_map[key]);
return rcpu;
}
static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_cpu_map_entry *rcpu =
__cpu_map_lookup_elem(map, *(u32 *)key);
return rcpu ? &rcpu->qsize : NULL;
}
static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = next_key;
if (index >= cmap->map.max_entries) {
*next = 0;
return 0;
}
if (index == cmap->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
const struct bpf_map_ops cpu_map_ops = {
.map_alloc = cpu_map_alloc,
.map_free = cpu_map_free,
.map_delete_elem = cpu_map_delete_elem,
.map_update_elem = cpu_map_update_elem,
.map_lookup_elem = cpu_map_lookup_elem,
.map_get_next_key = cpu_map_get_next_key,
.map_check_btf = map_check_no_btf,
};
static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
{
struct bpf_cpu_map_entry *rcpu = bq->obj;
unsigned int processed = 0, drops = 0;
const int to_cpu = rcpu->cpu;
struct ptr_ring *q;
int i;
if (unlikely(!bq->count))
return 0;
q = rcpu->queue;
spin_lock(&q->producer_lock);
for (i = 0; i < bq->count; i++) {
struct xdp_frame *xdpf = bq->q[i];
int err;
err = __ptr_ring_produce(q, xdpf);
if (err) {
drops++;
xdp_return_frame_rx_napi(xdpf);
}
processed++;
}
bq->count = 0;
spin_unlock(&q->producer_lock);
__list_del_clearprev(&bq->flush_node);
/* Feedback loop via tracepoints */
trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
return 0;
}
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
* Thus, safe percpu variable access.
*/
static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
{
struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
bq_flush_to_queue(bq);
/* Notice, xdp_buff/page MUST be queued here, long enough for
* driver to code invoking us to finished, due to driver
* (e.g. ixgbe) recycle tricks based on page-refcnt.
*
* Thus, incoming xdp_frame is always queued here (else we race
* with another CPU on page-refcnt and remaining driver code).
* Queue time is very short, as driver will invoke flush
* operation, when completing napi->poll call.
*/
bq->q[bq->count++] = xdpf;
if (!bq->flush_node.prev)
list_add(&bq->flush_node, flush_list);
return 0;
}
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
struct net_device *dev_rx)
{
struct xdp_frame *xdpf;
xdpf = convert_to_xdp_frame(xdp);
if (unlikely(!xdpf))
return -EOVERFLOW;
/* Info needed when constructing SKB on remote CPU */
xdpf->dev_rx = dev_rx;
bq_enqueue(rcpu, xdpf);
return 0;
}
void __cpu_map_flush(void)
{
struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
struct xdp_bulk_queue *bq, *tmp;
list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
bq_flush_to_queue(bq);
/* If already running, costs spin_lock_irqsave + smb_mb */
wake_up_process(bq->obj->kthread);
}
}
static int __init cpu_map_init(void)
{
int cpu;
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
return 0;
}
subsys_initcall(cpu_map_init);