1096 строки
34 KiB
C
1096 строки
34 KiB
C
/******************************************************************************
|
|
*
|
|
* Copyright(c) 2003 - 2009 Intel Corporation. All rights reserved.
|
|
*
|
|
* Portions of this file are derived from the ipw3945 project, as well
|
|
* as portions of the ieee80211 subsystem header files.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution in the
|
|
* file called LICENSE.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <ilw@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include <linux/etherdevice.h>
|
|
#include <net/mac80211.h>
|
|
#include <asm/unaligned.h>
|
|
#include "iwl-eeprom.h"
|
|
#include "iwl-dev.h"
|
|
#include "iwl-core.h"
|
|
#include "iwl-sta.h"
|
|
#include "iwl-io.h"
|
|
#include "iwl-calib.h"
|
|
#include "iwl-helpers.h"
|
|
/************************** RX-FUNCTIONS ****************************/
|
|
/*
|
|
* Rx theory of operation
|
|
*
|
|
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
|
|
* each of which point to Receive Buffers to be filled by the NIC. These get
|
|
* used not only for Rx frames, but for any command response or notification
|
|
* from the NIC. The driver and NIC manage the Rx buffers by means
|
|
* of indexes into the circular buffer.
|
|
*
|
|
* Rx Queue Indexes
|
|
* The host/firmware share two index registers for managing the Rx buffers.
|
|
*
|
|
* The READ index maps to the first position that the firmware may be writing
|
|
* to -- the driver can read up to (but not including) this position and get
|
|
* good data.
|
|
* The READ index is managed by the firmware once the card is enabled.
|
|
*
|
|
* The WRITE index maps to the last position the driver has read from -- the
|
|
* position preceding WRITE is the last slot the firmware can place a packet.
|
|
*
|
|
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
|
|
* WRITE = READ.
|
|
*
|
|
* During initialization, the host sets up the READ queue position to the first
|
|
* INDEX position, and WRITE to the last (READ - 1 wrapped)
|
|
*
|
|
* When the firmware places a packet in a buffer, it will advance the READ index
|
|
* and fire the RX interrupt. The driver can then query the READ index and
|
|
* process as many packets as possible, moving the WRITE index forward as it
|
|
* resets the Rx queue buffers with new memory.
|
|
*
|
|
* The management in the driver is as follows:
|
|
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
|
|
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
|
|
* to replenish the iwl->rxq->rx_free.
|
|
* + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the
|
|
* iwl->rxq is replenished and the READ INDEX is updated (updating the
|
|
* 'processed' and 'read' driver indexes as well)
|
|
* + A received packet is processed and handed to the kernel network stack,
|
|
* detached from the iwl->rxq. The driver 'processed' index is updated.
|
|
* + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
|
|
* list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
|
|
* INDEX is not incremented and iwl->status(RX_STALLED) is set. If there
|
|
* were enough free buffers and RX_STALLED is set it is cleared.
|
|
*
|
|
*
|
|
* Driver sequence:
|
|
*
|
|
* iwl_rx_queue_alloc() Allocates rx_free
|
|
* iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls
|
|
* iwl_rx_queue_restock
|
|
* iwl_rx_queue_restock() Moves available buffers from rx_free into Rx
|
|
* queue, updates firmware pointers, and updates
|
|
* the WRITE index. If insufficient rx_free buffers
|
|
* are available, schedules iwl_rx_replenish
|
|
*
|
|
* -- enable interrupts --
|
|
* ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
|
|
* READ INDEX, detaching the SKB from the pool.
|
|
* Moves the packet buffer from queue to rx_used.
|
|
* Calls iwl_rx_queue_restock to refill any empty
|
|
* slots.
|
|
* ...
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* iwl_rx_queue_space - Return number of free slots available in queue.
|
|
*/
|
|
int iwl_rx_queue_space(const struct iwl_rx_queue *q)
|
|
{
|
|
int s = q->read - q->write;
|
|
if (s <= 0)
|
|
s += RX_QUEUE_SIZE;
|
|
/* keep some buffer to not confuse full and empty queue */
|
|
s -= 2;
|
|
if (s < 0)
|
|
s = 0;
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_queue_space);
|
|
|
|
/**
|
|
* iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue
|
|
*/
|
|
int iwl_rx_queue_update_write_ptr(struct iwl_priv *priv, struct iwl_rx_queue *q)
|
|
{
|
|
unsigned long flags;
|
|
u32 rx_wrt_ptr_reg = priv->hw_params.rx_wrt_ptr_reg;
|
|
u32 reg;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
|
|
if (q->need_update == 0)
|
|
goto exit_unlock;
|
|
|
|
/* If power-saving is in use, make sure device is awake */
|
|
if (test_bit(STATUS_POWER_PMI, &priv->status)) {
|
|
reg = iwl_read32(priv, CSR_UCODE_DRV_GP1);
|
|
|
|
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
|
|
iwl_set_bit(priv, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
goto exit_unlock;
|
|
}
|
|
|
|
q->write_actual = (q->write & ~0x7);
|
|
iwl_write_direct32(priv, rx_wrt_ptr_reg, q->write_actual);
|
|
|
|
/* Else device is assumed to be awake */
|
|
} else {
|
|
/* Device expects a multiple of 8 */
|
|
q->write_actual = (q->write & ~0x7);
|
|
iwl_write_direct32(priv, rx_wrt_ptr_reg, q->write_actual);
|
|
}
|
|
|
|
q->need_update = 0;
|
|
|
|
exit_unlock:
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_queue_update_write_ptr);
|
|
/**
|
|
* iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
|
|
*/
|
|
static inline __le32 iwl_dma_addr2rbd_ptr(struct iwl_priv *priv,
|
|
dma_addr_t dma_addr)
|
|
{
|
|
return cpu_to_le32((u32)(dma_addr >> 8));
|
|
}
|
|
|
|
/**
|
|
* iwl_rx_queue_restock - refill RX queue from pre-allocated pool
|
|
*
|
|
* If there are slots in the RX queue that need to be restocked,
|
|
* and we have free pre-allocated buffers, fill the ranks as much
|
|
* as we can, pulling from rx_free.
|
|
*
|
|
* This moves the 'write' index forward to catch up with 'processed', and
|
|
* also updates the memory address in the firmware to reference the new
|
|
* target buffer.
|
|
*/
|
|
int iwl_rx_queue_restock(struct iwl_priv *priv)
|
|
{
|
|
struct iwl_rx_queue *rxq = &priv->rxq;
|
|
struct list_head *element;
|
|
struct iwl_rx_mem_buffer *rxb;
|
|
unsigned long flags;
|
|
int write;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&rxq->lock, flags);
|
|
write = rxq->write & ~0x7;
|
|
while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
|
|
/* Get next free Rx buffer, remove from free list */
|
|
element = rxq->rx_free.next;
|
|
rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
|
|
list_del(element);
|
|
|
|
/* Point to Rx buffer via next RBD in circular buffer */
|
|
rxq->bd[rxq->write] = iwl_dma_addr2rbd_ptr(priv, rxb->aligned_dma_addr);
|
|
rxq->queue[rxq->write] = rxb;
|
|
rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
|
|
rxq->free_count--;
|
|
}
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
/* If the pre-allocated buffer pool is dropping low, schedule to
|
|
* refill it */
|
|
if (rxq->free_count <= RX_LOW_WATERMARK)
|
|
queue_work(priv->workqueue, &priv->rx_replenish);
|
|
|
|
|
|
/* If we've added more space for the firmware to place data, tell it.
|
|
* Increment device's write pointer in multiples of 8. */
|
|
if (rxq->write_actual != (rxq->write & ~0x7)) {
|
|
spin_lock_irqsave(&rxq->lock, flags);
|
|
rxq->need_update = 1;
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
ret = iwl_rx_queue_update_write_ptr(priv, rxq);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_queue_restock);
|
|
|
|
|
|
/**
|
|
* iwl_rx_replenish - Move all used packet from rx_used to rx_free
|
|
*
|
|
* When moving to rx_free an SKB is allocated for the slot.
|
|
*
|
|
* Also restock the Rx queue via iwl_rx_queue_restock.
|
|
* This is called as a scheduled work item (except for during initialization)
|
|
*/
|
|
void iwl_rx_allocate(struct iwl_priv *priv, gfp_t priority)
|
|
{
|
|
struct iwl_rx_queue *rxq = &priv->rxq;
|
|
struct list_head *element;
|
|
struct iwl_rx_mem_buffer *rxb;
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
|
|
while (1) {
|
|
spin_lock_irqsave(&rxq->lock, flags);
|
|
if (list_empty(&rxq->rx_used)) {
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
return;
|
|
}
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
|
|
if (rxq->free_count > RX_LOW_WATERMARK)
|
|
priority |= __GFP_NOWARN;
|
|
/* Alloc a new receive buffer */
|
|
skb = alloc_skb(priv->hw_params.rx_buf_size + 256,
|
|
priority);
|
|
|
|
if (!skb) {
|
|
if (net_ratelimit())
|
|
IWL_DEBUG_INFO(priv, "Failed to allocate SKB buffer.\n");
|
|
if ((rxq->free_count <= RX_LOW_WATERMARK) &&
|
|
net_ratelimit())
|
|
IWL_CRIT(priv, "Failed to allocate SKB buffer with %s. Only %u free buffers remaining.\n",
|
|
priority == GFP_ATOMIC ? "GFP_ATOMIC" : "GFP_KERNEL",
|
|
rxq->free_count);
|
|
/* We don't reschedule replenish work here -- we will
|
|
* call the restock method and if it still needs
|
|
* more buffers it will schedule replenish */
|
|
break;
|
|
}
|
|
|
|
spin_lock_irqsave(&rxq->lock, flags);
|
|
|
|
if (list_empty(&rxq->rx_used)) {
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
dev_kfree_skb_any(skb);
|
|
return;
|
|
}
|
|
element = rxq->rx_used.next;
|
|
rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
|
|
list_del(element);
|
|
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
|
|
rxb->skb = skb;
|
|
/* Get physical address of RB/SKB */
|
|
rxb->real_dma_addr = pci_map_single(
|
|
priv->pci_dev,
|
|
rxb->skb->data,
|
|
priv->hw_params.rx_buf_size + 256,
|
|
PCI_DMA_FROMDEVICE);
|
|
/* dma address must be no more than 36 bits */
|
|
BUG_ON(rxb->real_dma_addr & ~DMA_BIT_MASK(36));
|
|
/* and also 256 byte aligned! */
|
|
rxb->aligned_dma_addr = ALIGN(rxb->real_dma_addr, 256);
|
|
skb_reserve(rxb->skb, rxb->aligned_dma_addr - rxb->real_dma_addr);
|
|
|
|
spin_lock_irqsave(&rxq->lock, flags);
|
|
|
|
list_add_tail(&rxb->list, &rxq->rx_free);
|
|
rxq->free_count++;
|
|
priv->alloc_rxb_skb++;
|
|
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
}
|
|
}
|
|
|
|
void iwl_rx_replenish(struct iwl_priv *priv)
|
|
{
|
|
unsigned long flags;
|
|
|
|
iwl_rx_allocate(priv, GFP_KERNEL);
|
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
iwl_rx_queue_restock(priv);
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_replenish);
|
|
|
|
void iwl_rx_replenish_now(struct iwl_priv *priv)
|
|
{
|
|
iwl_rx_allocate(priv, GFP_ATOMIC);
|
|
|
|
iwl_rx_queue_restock(priv);
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_replenish_now);
|
|
|
|
|
|
/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
|
|
* If an SKB has been detached, the POOL needs to have its SKB set to NULL
|
|
* This free routine walks the list of POOL entries and if SKB is set to
|
|
* non NULL it is unmapped and freed
|
|
*/
|
|
void iwl_rx_queue_free(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
|
|
{
|
|
int i;
|
|
for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
|
|
if (rxq->pool[i].skb != NULL) {
|
|
pci_unmap_single(priv->pci_dev,
|
|
rxq->pool[i].real_dma_addr,
|
|
priv->hw_params.rx_buf_size + 256,
|
|
PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(rxq->pool[i].skb);
|
|
}
|
|
}
|
|
|
|
pci_free_consistent(priv->pci_dev, 4 * RX_QUEUE_SIZE, rxq->bd,
|
|
rxq->dma_addr);
|
|
pci_free_consistent(priv->pci_dev, sizeof(struct iwl_rb_status),
|
|
rxq->rb_stts, rxq->rb_stts_dma);
|
|
rxq->bd = NULL;
|
|
rxq->rb_stts = NULL;
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_queue_free);
|
|
|
|
int iwl_rx_queue_alloc(struct iwl_priv *priv)
|
|
{
|
|
struct iwl_rx_queue *rxq = &priv->rxq;
|
|
struct pci_dev *dev = priv->pci_dev;
|
|
int i;
|
|
|
|
spin_lock_init(&rxq->lock);
|
|
INIT_LIST_HEAD(&rxq->rx_free);
|
|
INIT_LIST_HEAD(&rxq->rx_used);
|
|
|
|
/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
|
|
rxq->bd = pci_alloc_consistent(dev, 4 * RX_QUEUE_SIZE, &rxq->dma_addr);
|
|
if (!rxq->bd)
|
|
goto err_bd;
|
|
|
|
rxq->rb_stts = pci_alloc_consistent(dev, sizeof(struct iwl_rb_status),
|
|
&rxq->rb_stts_dma);
|
|
if (!rxq->rb_stts)
|
|
goto err_rb;
|
|
|
|
/* Fill the rx_used queue with _all_ of the Rx buffers */
|
|
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
|
|
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
|
|
|
|
/* Set us so that we have processed and used all buffers, but have
|
|
* not restocked the Rx queue with fresh buffers */
|
|
rxq->read = rxq->write = 0;
|
|
rxq->write_actual = 0;
|
|
rxq->free_count = 0;
|
|
rxq->need_update = 0;
|
|
return 0;
|
|
|
|
err_rb:
|
|
pci_free_consistent(priv->pci_dev, 4 * RX_QUEUE_SIZE, rxq->bd,
|
|
rxq->dma_addr);
|
|
err_bd:
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_queue_alloc);
|
|
|
|
void iwl_rx_queue_reset(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
spin_lock_irqsave(&rxq->lock, flags);
|
|
INIT_LIST_HEAD(&rxq->rx_free);
|
|
INIT_LIST_HEAD(&rxq->rx_used);
|
|
/* Fill the rx_used queue with _all_ of the Rx buffers */
|
|
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
|
|
/* In the reset function, these buffers may have been allocated
|
|
* to an SKB, so we need to unmap and free potential storage */
|
|
if (rxq->pool[i].skb != NULL) {
|
|
pci_unmap_single(priv->pci_dev,
|
|
rxq->pool[i].real_dma_addr,
|
|
priv->hw_params.rx_buf_size + 256,
|
|
PCI_DMA_FROMDEVICE);
|
|
priv->alloc_rxb_skb--;
|
|
dev_kfree_skb(rxq->pool[i].skb);
|
|
rxq->pool[i].skb = NULL;
|
|
}
|
|
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
|
|
}
|
|
|
|
/* Set us so that we have processed and used all buffers, but have
|
|
* not restocked the Rx queue with fresh buffers */
|
|
rxq->read = rxq->write = 0;
|
|
rxq->write_actual = 0;
|
|
rxq->free_count = 0;
|
|
spin_unlock_irqrestore(&rxq->lock, flags);
|
|
}
|
|
|
|
int iwl_rx_init(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
|
|
{
|
|
u32 rb_size;
|
|
const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
|
|
u32 rb_timeout = 0; /* FIXME: RX_RB_TIMEOUT for all devices? */
|
|
|
|
if (!priv->cfg->use_isr_legacy)
|
|
rb_timeout = RX_RB_TIMEOUT;
|
|
|
|
if (priv->cfg->mod_params->amsdu_size_8K)
|
|
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
|
|
else
|
|
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
|
|
|
|
/* Stop Rx DMA */
|
|
iwl_write_direct32(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
|
|
|
|
/* Reset driver's Rx queue write index */
|
|
iwl_write_direct32(priv, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
|
|
|
|
/* Tell device where to find RBD circular buffer in DRAM */
|
|
iwl_write_direct32(priv, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
|
|
(u32)(rxq->dma_addr >> 8));
|
|
|
|
/* Tell device where in DRAM to update its Rx status */
|
|
iwl_write_direct32(priv, FH_RSCSR_CHNL0_STTS_WPTR_REG,
|
|
rxq->rb_stts_dma >> 4);
|
|
|
|
/* Enable Rx DMA
|
|
* FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
|
|
* the credit mechanism in 5000 HW RX FIFO
|
|
* Direct rx interrupts to hosts
|
|
* Rx buffer size 4 or 8k
|
|
* RB timeout 0x10
|
|
* 256 RBDs
|
|
*/
|
|
iwl_write_direct32(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG,
|
|
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
|
|
FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
|
|
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
|
|
FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK |
|
|
rb_size|
|
|
(rb_timeout << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
|
|
(rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
|
|
|
|
iwl_write32(priv, CSR_INT_COALESCING, 0x40);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwl_rxq_stop(struct iwl_priv *priv)
|
|
{
|
|
|
|
/* stop Rx DMA */
|
|
iwl_write_direct32(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
|
|
iwl_poll_direct_bit(priv, FH_MEM_RSSR_RX_STATUS_REG,
|
|
FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iwl_rxq_stop);
|
|
|
|
void iwl_rx_missed_beacon_notif(struct iwl_priv *priv,
|
|
struct iwl_rx_mem_buffer *rxb)
|
|
|
|
{
|
|
struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
|
|
struct iwl_missed_beacon_notif *missed_beacon;
|
|
|
|
missed_beacon = &pkt->u.missed_beacon;
|
|
if (le32_to_cpu(missed_beacon->consequtive_missed_beacons) > 5) {
|
|
IWL_DEBUG_CALIB(priv, "missed bcn cnsq %d totl %d rcd %d expctd %d\n",
|
|
le32_to_cpu(missed_beacon->consequtive_missed_beacons),
|
|
le32_to_cpu(missed_beacon->total_missed_becons),
|
|
le32_to_cpu(missed_beacon->num_recvd_beacons),
|
|
le32_to_cpu(missed_beacon->num_expected_beacons));
|
|
if (!test_bit(STATUS_SCANNING, &priv->status))
|
|
iwl_init_sensitivity(priv);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_missed_beacon_notif);
|
|
|
|
|
|
/* Calculate noise level, based on measurements during network silence just
|
|
* before arriving beacon. This measurement can be done only if we know
|
|
* exactly when to expect beacons, therefore only when we're associated. */
|
|
static void iwl_rx_calc_noise(struct iwl_priv *priv)
|
|
{
|
|
struct statistics_rx_non_phy *rx_info
|
|
= &(priv->statistics.rx.general);
|
|
int num_active_rx = 0;
|
|
int total_silence = 0;
|
|
int bcn_silence_a =
|
|
le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
|
|
int bcn_silence_b =
|
|
le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
|
|
int bcn_silence_c =
|
|
le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
|
|
|
|
if (bcn_silence_a) {
|
|
total_silence += bcn_silence_a;
|
|
num_active_rx++;
|
|
}
|
|
if (bcn_silence_b) {
|
|
total_silence += bcn_silence_b;
|
|
num_active_rx++;
|
|
}
|
|
if (bcn_silence_c) {
|
|
total_silence += bcn_silence_c;
|
|
num_active_rx++;
|
|
}
|
|
|
|
/* Average among active antennas */
|
|
if (num_active_rx)
|
|
priv->last_rx_noise = (total_silence / num_active_rx) - 107;
|
|
else
|
|
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
|
|
|
|
IWL_DEBUG_CALIB(priv, "inband silence a %u, b %u, c %u, dBm %d\n",
|
|
bcn_silence_a, bcn_silence_b, bcn_silence_c,
|
|
priv->last_rx_noise);
|
|
}
|
|
|
|
#define REG_RECALIB_PERIOD (60)
|
|
|
|
void iwl_rx_statistics(struct iwl_priv *priv,
|
|
struct iwl_rx_mem_buffer *rxb)
|
|
{
|
|
int change;
|
|
struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
|
|
|
|
IWL_DEBUG_RX(priv, "Statistics notification received (%d vs %d).\n",
|
|
(int)sizeof(priv->statistics),
|
|
le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK);
|
|
|
|
change = ((priv->statistics.general.temperature !=
|
|
pkt->u.stats.general.temperature) ||
|
|
((priv->statistics.flag &
|
|
STATISTICS_REPLY_FLG_HT40_MODE_MSK) !=
|
|
(pkt->u.stats.flag & STATISTICS_REPLY_FLG_HT40_MODE_MSK)));
|
|
|
|
memcpy(&priv->statistics, &pkt->u.stats, sizeof(priv->statistics));
|
|
|
|
set_bit(STATUS_STATISTICS, &priv->status);
|
|
|
|
/* Reschedule the statistics timer to occur in
|
|
* REG_RECALIB_PERIOD seconds to ensure we get a
|
|
* thermal update even if the uCode doesn't give
|
|
* us one */
|
|
mod_timer(&priv->statistics_periodic, jiffies +
|
|
msecs_to_jiffies(REG_RECALIB_PERIOD * 1000));
|
|
|
|
if (unlikely(!test_bit(STATUS_SCANNING, &priv->status)) &&
|
|
(pkt->hdr.cmd == STATISTICS_NOTIFICATION)) {
|
|
iwl_rx_calc_noise(priv);
|
|
queue_work(priv->workqueue, &priv->run_time_calib_work);
|
|
}
|
|
|
|
iwl_leds_background(priv);
|
|
|
|
if (priv->cfg->ops->lib->temp_ops.temperature && change)
|
|
priv->cfg->ops->lib->temp_ops.temperature(priv);
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_statistics);
|
|
|
|
#define PERFECT_RSSI (-20) /* dBm */
|
|
#define WORST_RSSI (-95) /* dBm */
|
|
#define RSSI_RANGE (PERFECT_RSSI - WORST_RSSI)
|
|
|
|
/* Calculate an indication of rx signal quality (a percentage, not dBm!).
|
|
* See http://www.ces.clemson.edu/linux/signal_quality.shtml for info
|
|
* about formulas used below. */
|
|
static int iwl_calc_sig_qual(int rssi_dbm, int noise_dbm)
|
|
{
|
|
int sig_qual;
|
|
int degradation = PERFECT_RSSI - rssi_dbm;
|
|
|
|
/* If we get a noise measurement, use signal-to-noise ratio (SNR)
|
|
* as indicator; formula is (signal dbm - noise dbm).
|
|
* SNR at or above 40 is a great signal (100%).
|
|
* Below that, scale to fit SNR of 0 - 40 dB within 0 - 100% indicator.
|
|
* Weakest usable signal is usually 10 - 15 dB SNR. */
|
|
if (noise_dbm) {
|
|
if (rssi_dbm - noise_dbm >= 40)
|
|
return 100;
|
|
else if (rssi_dbm < noise_dbm)
|
|
return 0;
|
|
sig_qual = ((rssi_dbm - noise_dbm) * 5) / 2;
|
|
|
|
/* Else use just the signal level.
|
|
* This formula is a least squares fit of data points collected and
|
|
* compared with a reference system that had a percentage (%) display
|
|
* for signal quality. */
|
|
} else
|
|
sig_qual = (100 * (RSSI_RANGE * RSSI_RANGE) - degradation *
|
|
(15 * RSSI_RANGE + 62 * degradation)) /
|
|
(RSSI_RANGE * RSSI_RANGE);
|
|
|
|
if (sig_qual > 100)
|
|
sig_qual = 100;
|
|
else if (sig_qual < 1)
|
|
sig_qual = 0;
|
|
|
|
return sig_qual;
|
|
}
|
|
|
|
/* Calc max signal level (dBm) among 3 possible receivers */
|
|
static inline int iwl_calc_rssi(struct iwl_priv *priv,
|
|
struct iwl_rx_phy_res *rx_resp)
|
|
{
|
|
return priv->cfg->ops->utils->calc_rssi(priv, rx_resp);
|
|
}
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUG
|
|
/**
|
|
* iwl_dbg_report_frame - dump frame to syslog during debug sessions
|
|
*
|
|
* You may hack this function to show different aspects of received frames,
|
|
* including selective frame dumps.
|
|
* group100 parameter selects whether to show 1 out of 100 good data frames.
|
|
* All beacon and probe response frames are printed.
|
|
*/
|
|
static void iwl_dbg_report_frame(struct iwl_priv *priv,
|
|
struct iwl_rx_phy_res *phy_res, u16 length,
|
|
struct ieee80211_hdr *header, int group100)
|
|
{
|
|
u32 to_us;
|
|
u32 print_summary = 0;
|
|
u32 print_dump = 0; /* set to 1 to dump all frames' contents */
|
|
u32 hundred = 0;
|
|
u32 dataframe = 0;
|
|
__le16 fc;
|
|
u16 seq_ctl;
|
|
u16 channel;
|
|
u16 phy_flags;
|
|
u32 rate_n_flags;
|
|
u32 tsf_low;
|
|
int rssi;
|
|
|
|
if (likely(!(iwl_get_debug_level(priv) & IWL_DL_RX)))
|
|
return;
|
|
|
|
/* MAC header */
|
|
fc = header->frame_control;
|
|
seq_ctl = le16_to_cpu(header->seq_ctrl);
|
|
|
|
/* metadata */
|
|
channel = le16_to_cpu(phy_res->channel);
|
|
phy_flags = le16_to_cpu(phy_res->phy_flags);
|
|
rate_n_flags = le32_to_cpu(phy_res->rate_n_flags);
|
|
|
|
/* signal statistics */
|
|
rssi = iwl_calc_rssi(priv, phy_res);
|
|
tsf_low = le64_to_cpu(phy_res->timestamp) & 0x0ffffffff;
|
|
|
|
to_us = !compare_ether_addr(header->addr1, priv->mac_addr);
|
|
|
|
/* if data frame is to us and all is good,
|
|
* (optionally) print summary for only 1 out of every 100 */
|
|
if (to_us && (fc & ~cpu_to_le16(IEEE80211_FCTL_PROTECTED)) ==
|
|
cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FTYPE_DATA)) {
|
|
dataframe = 1;
|
|
if (!group100)
|
|
print_summary = 1; /* print each frame */
|
|
else if (priv->framecnt_to_us < 100) {
|
|
priv->framecnt_to_us++;
|
|
print_summary = 0;
|
|
} else {
|
|
priv->framecnt_to_us = 0;
|
|
print_summary = 1;
|
|
hundred = 1;
|
|
}
|
|
} else {
|
|
/* print summary for all other frames */
|
|
print_summary = 1;
|
|
}
|
|
|
|
if (print_summary) {
|
|
char *title;
|
|
int rate_idx;
|
|
u32 bitrate;
|
|
|
|
if (hundred)
|
|
title = "100Frames";
|
|
else if (ieee80211_has_retry(fc))
|
|
title = "Retry";
|
|
else if (ieee80211_is_assoc_resp(fc))
|
|
title = "AscRsp";
|
|
else if (ieee80211_is_reassoc_resp(fc))
|
|
title = "RasRsp";
|
|
else if (ieee80211_is_probe_resp(fc)) {
|
|
title = "PrbRsp";
|
|
print_dump = 1; /* dump frame contents */
|
|
} else if (ieee80211_is_beacon(fc)) {
|
|
title = "Beacon";
|
|
print_dump = 1; /* dump frame contents */
|
|
} else if (ieee80211_is_atim(fc))
|
|
title = "ATIM";
|
|
else if (ieee80211_is_auth(fc))
|
|
title = "Auth";
|
|
else if (ieee80211_is_deauth(fc))
|
|
title = "DeAuth";
|
|
else if (ieee80211_is_disassoc(fc))
|
|
title = "DisAssoc";
|
|
else
|
|
title = "Frame";
|
|
|
|
rate_idx = iwl_hwrate_to_plcp_idx(rate_n_flags);
|
|
if (unlikely((rate_idx < 0) || (rate_idx >= IWL_RATE_COUNT))) {
|
|
bitrate = 0;
|
|
WARN_ON_ONCE(1);
|
|
} else {
|
|
bitrate = iwl_rates[rate_idx].ieee / 2;
|
|
}
|
|
|
|
/* print frame summary.
|
|
* MAC addresses show just the last byte (for brevity),
|
|
* but you can hack it to show more, if you'd like to. */
|
|
if (dataframe)
|
|
IWL_DEBUG_RX(priv, "%s: mhd=0x%04x, dst=0x%02x, "
|
|
"len=%u, rssi=%d, chnl=%d, rate=%u, \n",
|
|
title, le16_to_cpu(fc), header->addr1[5],
|
|
length, rssi, channel, bitrate);
|
|
else {
|
|
/* src/dst addresses assume managed mode */
|
|
IWL_DEBUG_RX(priv, "%s: 0x%04x, dst=0x%02x, src=0x%02x, "
|
|
"len=%u, rssi=%d, tim=%lu usec, "
|
|
"phy=0x%02x, chnl=%d\n",
|
|
title, le16_to_cpu(fc), header->addr1[5],
|
|
header->addr3[5], length, rssi,
|
|
tsf_low - priv->scan_start_tsf,
|
|
phy_flags, channel);
|
|
}
|
|
}
|
|
if (print_dump)
|
|
iwl_print_hex_dump(priv, IWL_DL_RX, header, length);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* returns non-zero if packet should be dropped
|
|
*/
|
|
int iwl_set_decrypted_flag(struct iwl_priv *priv,
|
|
struct ieee80211_hdr *hdr,
|
|
u32 decrypt_res,
|
|
struct ieee80211_rx_status *stats)
|
|
{
|
|
u16 fc = le16_to_cpu(hdr->frame_control);
|
|
|
|
if (priv->active_rxon.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
|
|
return 0;
|
|
|
|
if (!(fc & IEEE80211_FCTL_PROTECTED))
|
|
return 0;
|
|
|
|
IWL_DEBUG_RX(priv, "decrypt_res:0x%x\n", decrypt_res);
|
|
switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
|
|
case RX_RES_STATUS_SEC_TYPE_TKIP:
|
|
/* The uCode has got a bad phase 1 Key, pushes the packet.
|
|
* Decryption will be done in SW. */
|
|
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
|
|
RX_RES_STATUS_BAD_KEY_TTAK)
|
|
break;
|
|
|
|
case RX_RES_STATUS_SEC_TYPE_WEP:
|
|
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
|
|
RX_RES_STATUS_BAD_ICV_MIC) {
|
|
/* bad ICV, the packet is destroyed since the
|
|
* decryption is inplace, drop it */
|
|
IWL_DEBUG_RX(priv, "Packet destroyed\n");
|
|
return -1;
|
|
}
|
|
case RX_RES_STATUS_SEC_TYPE_CCMP:
|
|
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
|
|
RX_RES_STATUS_DECRYPT_OK) {
|
|
IWL_DEBUG_RX(priv, "hw decrypt successfully!!!\n");
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iwl_set_decrypted_flag);
|
|
|
|
static u32 iwl_translate_rx_status(struct iwl_priv *priv, u32 decrypt_in)
|
|
{
|
|
u32 decrypt_out = 0;
|
|
|
|
if ((decrypt_in & RX_RES_STATUS_STATION_FOUND) ==
|
|
RX_RES_STATUS_STATION_FOUND)
|
|
decrypt_out |= (RX_RES_STATUS_STATION_FOUND |
|
|
RX_RES_STATUS_NO_STATION_INFO_MISMATCH);
|
|
|
|
decrypt_out |= (decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK);
|
|
|
|
/* packet was not encrypted */
|
|
if ((decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK) ==
|
|
RX_RES_STATUS_SEC_TYPE_NONE)
|
|
return decrypt_out;
|
|
|
|
/* packet was encrypted with unknown alg */
|
|
if ((decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK) ==
|
|
RX_RES_STATUS_SEC_TYPE_ERR)
|
|
return decrypt_out;
|
|
|
|
/* decryption was not done in HW */
|
|
if ((decrypt_in & RX_MPDU_RES_STATUS_DEC_DONE_MSK) !=
|
|
RX_MPDU_RES_STATUS_DEC_DONE_MSK)
|
|
return decrypt_out;
|
|
|
|
switch (decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK) {
|
|
|
|
case RX_RES_STATUS_SEC_TYPE_CCMP:
|
|
/* alg is CCM: check MIC only */
|
|
if (!(decrypt_in & RX_MPDU_RES_STATUS_MIC_OK))
|
|
/* Bad MIC */
|
|
decrypt_out |= RX_RES_STATUS_BAD_ICV_MIC;
|
|
else
|
|
decrypt_out |= RX_RES_STATUS_DECRYPT_OK;
|
|
|
|
break;
|
|
|
|
case RX_RES_STATUS_SEC_TYPE_TKIP:
|
|
if (!(decrypt_in & RX_MPDU_RES_STATUS_TTAK_OK)) {
|
|
/* Bad TTAK */
|
|
decrypt_out |= RX_RES_STATUS_BAD_KEY_TTAK;
|
|
break;
|
|
}
|
|
/* fall through if TTAK OK */
|
|
default:
|
|
if (!(decrypt_in & RX_MPDU_RES_STATUS_ICV_OK))
|
|
decrypt_out |= RX_RES_STATUS_BAD_ICV_MIC;
|
|
else
|
|
decrypt_out |= RX_RES_STATUS_DECRYPT_OK;
|
|
break;
|
|
};
|
|
|
|
IWL_DEBUG_RX(priv, "decrypt_in:0x%x decrypt_out = 0x%x\n",
|
|
decrypt_in, decrypt_out);
|
|
|
|
return decrypt_out;
|
|
}
|
|
|
|
static void iwl_pass_packet_to_mac80211(struct iwl_priv *priv,
|
|
struct ieee80211_hdr *hdr,
|
|
u16 len,
|
|
u32 ampdu_status,
|
|
struct iwl_rx_mem_buffer *rxb,
|
|
struct ieee80211_rx_status *stats)
|
|
{
|
|
/* We only process data packets if the interface is open */
|
|
if (unlikely(!priv->is_open)) {
|
|
IWL_DEBUG_DROP_LIMIT(priv,
|
|
"Dropping packet while interface is not open.\n");
|
|
return;
|
|
}
|
|
|
|
/* In case of HW accelerated crypto and bad decryption, drop */
|
|
if (!priv->cfg->mod_params->sw_crypto &&
|
|
iwl_set_decrypted_flag(priv, hdr, ampdu_status, stats))
|
|
return;
|
|
|
|
/* Resize SKB from mac header to end of packet */
|
|
skb_reserve(rxb->skb, (void *)hdr - (void *)rxb->skb->data);
|
|
skb_put(rxb->skb, len);
|
|
|
|
iwl_update_stats(priv, false, hdr->frame_control, len);
|
|
memcpy(IEEE80211_SKB_RXCB(rxb->skb), stats, sizeof(*stats));
|
|
ieee80211_rx_irqsafe(priv->hw, rxb->skb);
|
|
priv->alloc_rxb_skb--;
|
|
rxb->skb = NULL;
|
|
}
|
|
|
|
/* This is necessary only for a number of statistics, see the caller. */
|
|
static int iwl_is_network_packet(struct iwl_priv *priv,
|
|
struct ieee80211_hdr *header)
|
|
{
|
|
/* Filter incoming packets to determine if they are targeted toward
|
|
* this network, discarding packets coming from ourselves */
|
|
switch (priv->iw_mode) {
|
|
case NL80211_IFTYPE_ADHOC: /* Header: Dest. | Source | BSSID */
|
|
/* packets to our IBSS update information */
|
|
return !compare_ether_addr(header->addr3, priv->bssid);
|
|
case NL80211_IFTYPE_STATION: /* Header: Dest. | AP{BSSID} | Source */
|
|
/* packets to our IBSS update information */
|
|
return !compare_ether_addr(header->addr2, priv->bssid);
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Called for REPLY_RX (legacy ABG frames), or
|
|
* REPLY_RX_MPDU_CMD (HT high-throughput N frames). */
|
|
void iwl_rx_reply_rx(struct iwl_priv *priv,
|
|
struct iwl_rx_mem_buffer *rxb)
|
|
{
|
|
struct ieee80211_hdr *header;
|
|
struct ieee80211_rx_status rx_status;
|
|
struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
|
|
struct iwl_rx_phy_res *phy_res;
|
|
__le32 rx_pkt_status;
|
|
struct iwl4965_rx_mpdu_res_start *amsdu;
|
|
u32 len;
|
|
u32 ampdu_status;
|
|
u16 fc;
|
|
u32 rate_n_flags;
|
|
|
|
/**
|
|
* REPLY_RX and REPLY_RX_MPDU_CMD are handled differently.
|
|
* REPLY_RX: physical layer info is in this buffer
|
|
* REPLY_RX_MPDU_CMD: physical layer info was sent in separate
|
|
* command and cached in priv->last_phy_res
|
|
*
|
|
* Here we set up local variables depending on which command is
|
|
* received.
|
|
*/
|
|
if (pkt->hdr.cmd == REPLY_RX) {
|
|
phy_res = (struct iwl_rx_phy_res *)pkt->u.raw;
|
|
header = (struct ieee80211_hdr *)(pkt->u.raw + sizeof(*phy_res)
|
|
+ phy_res->cfg_phy_cnt);
|
|
|
|
len = le16_to_cpu(phy_res->byte_count);
|
|
rx_pkt_status = *(__le32 *)(pkt->u.raw + sizeof(*phy_res) +
|
|
phy_res->cfg_phy_cnt + len);
|
|
ampdu_status = le32_to_cpu(rx_pkt_status);
|
|
} else {
|
|
if (!priv->last_phy_res[0]) {
|
|
IWL_ERR(priv, "MPDU frame without cached PHY data\n");
|
|
return;
|
|
}
|
|
phy_res = (struct iwl_rx_phy_res *)&priv->last_phy_res[1];
|
|
amsdu = (struct iwl4965_rx_mpdu_res_start *)pkt->u.raw;
|
|
header = (struct ieee80211_hdr *)(pkt->u.raw + sizeof(*amsdu));
|
|
len = le16_to_cpu(amsdu->byte_count);
|
|
rx_pkt_status = *(__le32 *)(pkt->u.raw + sizeof(*amsdu) + len);
|
|
ampdu_status = iwl_translate_rx_status(priv,
|
|
le32_to_cpu(rx_pkt_status));
|
|
}
|
|
|
|
if ((unlikely(phy_res->cfg_phy_cnt > 20))) {
|
|
IWL_DEBUG_DROP(priv, "dsp size out of range [0,20]: %d/n",
|
|
phy_res->cfg_phy_cnt);
|
|
return;
|
|
}
|
|
|
|
if (!(rx_pkt_status & RX_RES_STATUS_NO_CRC32_ERROR) ||
|
|
!(rx_pkt_status & RX_RES_STATUS_NO_RXE_OVERFLOW)) {
|
|
IWL_DEBUG_RX(priv, "Bad CRC or FIFO: 0x%08X.\n",
|
|
le32_to_cpu(rx_pkt_status));
|
|
return;
|
|
}
|
|
|
|
/* This will be used in several places later */
|
|
rate_n_flags = le32_to_cpu(phy_res->rate_n_flags);
|
|
|
|
/* rx_status carries information about the packet to mac80211 */
|
|
rx_status.mactime = le64_to_cpu(phy_res->timestamp);
|
|
rx_status.freq =
|
|
ieee80211_channel_to_frequency(le16_to_cpu(phy_res->channel));
|
|
rx_status.band = (phy_res->phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ?
|
|
IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
|
|
rx_status.rate_idx =
|
|
iwl_hwrate_to_mac80211_idx(rate_n_flags, rx_status.band);
|
|
rx_status.flag = 0;
|
|
|
|
/* TSF isn't reliable. In order to allow smooth user experience,
|
|
* this W/A doesn't propagate it to the mac80211 */
|
|
/*rx_status.flag |= RX_FLAG_TSFT;*/
|
|
|
|
priv->ucode_beacon_time = le32_to_cpu(phy_res->beacon_time_stamp);
|
|
|
|
/* Find max signal strength (dBm) among 3 antenna/receiver chains */
|
|
rx_status.signal = iwl_calc_rssi(priv, phy_res);
|
|
|
|
/* Meaningful noise values are available only from beacon statistics,
|
|
* which are gathered only when associated, and indicate noise
|
|
* only for the associated network channel ...
|
|
* Ignore these noise values while scanning (other channels) */
|
|
if (iwl_is_associated(priv) &&
|
|
!test_bit(STATUS_SCANNING, &priv->status)) {
|
|
rx_status.noise = priv->last_rx_noise;
|
|
rx_status.qual = iwl_calc_sig_qual(rx_status.signal,
|
|
rx_status.noise);
|
|
} else {
|
|
rx_status.noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
|
|
rx_status.qual = iwl_calc_sig_qual(rx_status.signal, 0);
|
|
}
|
|
|
|
/* Reset beacon noise level if not associated. */
|
|
if (!iwl_is_associated(priv))
|
|
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUG
|
|
/* Set "1" to report good data frames in groups of 100 */
|
|
if (unlikely(iwl_get_debug_level(priv) & IWL_DL_RX))
|
|
iwl_dbg_report_frame(priv, phy_res, len, header, 1);
|
|
#endif
|
|
iwl_dbg_log_rx_data_frame(priv, len, header);
|
|
IWL_DEBUG_STATS_LIMIT(priv, "Rssi %d, noise %d, qual %d, TSF %llu\n",
|
|
rx_status.signal, rx_status.noise, rx_status.qual,
|
|
(unsigned long long)rx_status.mactime);
|
|
|
|
/*
|
|
* "antenna number"
|
|
*
|
|
* It seems that the antenna field in the phy flags value
|
|
* is actually a bit field. This is undefined by radiotap,
|
|
* it wants an actual antenna number but I always get "7"
|
|
* for most legacy frames I receive indicating that the
|
|
* same frame was received on all three RX chains.
|
|
*
|
|
* I think this field should be removed in favor of a
|
|
* new 802.11n radiotap field "RX chains" that is defined
|
|
* as a bitmask.
|
|
*/
|
|
rx_status.antenna =
|
|
le16_to_cpu(phy_res->phy_flags & RX_RES_PHY_FLAGS_ANTENNA_MSK)
|
|
>> RX_RES_PHY_FLAGS_ANTENNA_POS;
|
|
|
|
/* set the preamble flag if appropriate */
|
|
if (phy_res->phy_flags & RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK)
|
|
rx_status.flag |= RX_FLAG_SHORTPRE;
|
|
|
|
/* Set up the HT phy flags */
|
|
if (rate_n_flags & RATE_MCS_HT_MSK)
|
|
rx_status.flag |= RX_FLAG_HT;
|
|
if (rate_n_flags & RATE_MCS_HT40_MSK)
|
|
rx_status.flag |= RX_FLAG_40MHZ;
|
|
if (rate_n_flags & RATE_MCS_SGI_MSK)
|
|
rx_status.flag |= RX_FLAG_SHORT_GI;
|
|
|
|
if (iwl_is_network_packet(priv, header)) {
|
|
priv->last_rx_rssi = rx_status.signal;
|
|
priv->last_beacon_time = priv->ucode_beacon_time;
|
|
priv->last_tsf = le64_to_cpu(phy_res->timestamp);
|
|
}
|
|
|
|
fc = le16_to_cpu(header->frame_control);
|
|
switch (fc & IEEE80211_FCTL_FTYPE) {
|
|
case IEEE80211_FTYPE_MGMT:
|
|
case IEEE80211_FTYPE_DATA:
|
|
if (priv->iw_mode == NL80211_IFTYPE_AP)
|
|
iwl_update_ps_mode(priv, fc & IEEE80211_FCTL_PM,
|
|
header->addr2);
|
|
/* fall through */
|
|
default:
|
|
iwl_pass_packet_to_mac80211(priv, header, len, ampdu_status,
|
|
rxb, &rx_status);
|
|
break;
|
|
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_reply_rx);
|
|
|
|
/* Cache phy data (Rx signal strength, etc) for HT frame (REPLY_RX_PHY_CMD).
|
|
* This will be used later in iwl_rx_reply_rx() for REPLY_RX_MPDU_CMD. */
|
|
void iwl_rx_reply_rx_phy(struct iwl_priv *priv,
|
|
struct iwl_rx_mem_buffer *rxb)
|
|
{
|
|
struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
|
|
priv->last_phy_res[0] = 1;
|
|
memcpy(&priv->last_phy_res[1], &(pkt->u.raw[0]),
|
|
sizeof(struct iwl_rx_phy_res));
|
|
}
|
|
EXPORT_SYMBOL(iwl_rx_reply_rx_phy);
|