WSL2-Linux-Kernel/drivers/ata/sata_dwc_460ex.c

1823 строки
51 KiB
C

/*
* drivers/ata/sata_dwc_460ex.c
*
* Synopsys DesignWare Cores (DWC) SATA host driver
*
* Author: Mark Miesfeld <mmiesfeld@amcc.com>
*
* Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
* Copyright 2008 DENX Software Engineering
*
* Based on versions provided by AMCC and Synopsys which are:
* Copyright 2006 Applied Micro Circuits Corporation
* COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifdef CONFIG_SATA_DWC_DEBUG
#define DEBUG
#endif
#ifdef CONFIG_SATA_DWC_VDEBUG
#define VERBOSE_DEBUG
#define DEBUG_NCQ
#endif
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/libata.h>
#include <linux/slab.h>
#include "libata.h"
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
/* These two are defined in "libata.h" */
#undef DRV_NAME
#undef DRV_VERSION
#define DRV_NAME "sata-dwc"
#define DRV_VERSION "1.3"
/* SATA DMA driver Globals */
#define DMA_NUM_CHANS 1
#define DMA_NUM_CHAN_REGS 8
/* SATA DMA Register definitions */
#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
struct dmareg {
u32 low; /* Low bits 0-31 */
u32 high; /* High bits 32-63 */
};
/* DMA Per Channel registers */
struct dma_chan_regs {
struct dmareg sar; /* Source Address */
struct dmareg dar; /* Destination address */
struct dmareg llp; /* Linked List Pointer */
struct dmareg ctl; /* Control */
struct dmareg sstat; /* Source Status not implemented in core */
struct dmareg dstat; /* Destination Status not implemented in core*/
struct dmareg sstatar; /* Source Status Address not impl in core */
struct dmareg dstatar; /* Destination Status Address not implemente */
struct dmareg cfg; /* Config */
struct dmareg sgr; /* Source Gather */
struct dmareg dsr; /* Destination Scatter */
};
/* Generic Interrupt Registers */
struct dma_interrupt_regs {
struct dmareg tfr; /* Transfer Interrupt */
struct dmareg block; /* Block Interrupt */
struct dmareg srctran; /* Source Transfer Interrupt */
struct dmareg dsttran; /* Dest Transfer Interrupt */
struct dmareg error; /* Error */
};
struct ahb_dma_regs {
struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
struct dmareg statusInt; /* Interrupt combined*/
struct dmareg rq_srcreg; /* Src Trans Req */
struct dmareg rq_dstreg; /* Dst Trans Req */
struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
struct dmareg dma_cfg; /* DMA Config */
struct dmareg dma_chan_en; /* DMA Channel Enable*/
struct dmareg dma_id; /* DMA ID */
struct dmareg dma_test; /* DMA Test */
struct dmareg res1; /* reserved */
struct dmareg res2; /* reserved */
/*
* DMA Comp Params
* Param 6 = dma_param[0], Param 5 = dma_param[1],
* Param 4 = dma_param[2] ...
*/
struct dmareg dma_params[6];
};
/* Data structure for linked list item */
struct lli {
u32 sar; /* Source Address */
u32 dar; /* Destination address */
u32 llp; /* Linked List Pointer */
struct dmareg ctl; /* Control */
struct dmareg dstat; /* Destination Status */
};
enum {
SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
SATA_DWC_DMAC_LLI_NUM = 256,
SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
SATA_DWC_DMAC_LLI_NUM),
SATA_DWC_DMAC_TWIDTH_BYTES = 4,
SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
SATA_DWC_DMAC_TWIDTH_BYTES),
};
/* DMA Register Operation Bits */
enum {
DMA_EN = 0x00000001, /* Enable AHB DMA */
DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
};
#define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
#define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
/* Enable channel */
#define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
((0x000000001 << (ch)) << 8))
/* Disable channel */
#define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
/* Transfer Type & Flow Controller */
#define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
#define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
#define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
/* Src Burst Transaction Length */
#define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
/* Dst Burst Transaction Length */
#define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
/* Source Transfer Width */
#define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
/* Destination Transfer Width */
#define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
/* Assign HW handshaking interface (x) to destination / source peripheral */
#define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
#define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
#define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
#define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
/*
* This define is used to set block chaining disabled in the control low
* register. It is already in little endian format so it can be &'d dirctly.
* It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
*/
enum {
DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
DMA_CTL_SINC_DEC = 0x00000200,
DMA_CTL_SINC_NOCHANGE = 0x00000400,
DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
DMA_CTL_DINC_DEC = 0x00000080,
DMA_CTL_DINC_NOCHANGE = 0x00000100,
DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
/* Channel Configuration Register high bits */
DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
/* Channel Configuration Register low bits */
DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
DMA_CFG_RELD_SRC = 0x40000000,
DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
DMA_CFG_HS_SELDST = 0x00000400,
DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
/* Channel Linked List Pointer Register */
DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
DMA_LLP_AHBMASTER2 = 1,
SATA_DWC_MAX_PORTS = 1,
SATA_DWC_SCR_OFFSET = 0x24,
SATA_DWC_REG_OFFSET = 0x64,
};
/* DWC SATA Registers */
struct sata_dwc_regs {
u32 fptagr; /* 1st party DMA tag */
u32 fpbor; /* 1st party DMA buffer offset */
u32 fptcr; /* 1st party DMA Xfr count */
u32 dmacr; /* DMA Control */
u32 dbtsr; /* DMA Burst Transac size */
u32 intpr; /* Interrupt Pending */
u32 intmr; /* Interrupt Mask */
u32 errmr; /* Error Mask */
u32 llcr; /* Link Layer Control */
u32 phycr; /* PHY Control */
u32 physr; /* PHY Status */
u32 rxbistpd; /* Recvd BIST pattern def register */
u32 rxbistpd1; /* Recvd BIST data dword1 */
u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
u32 txbistpd; /* Trans BIST pattern def register */
u32 txbistpd1; /* Trans BIST data dword1 */
u32 txbistpd2; /* Trans BIST data dword2 */
u32 bistcr; /* BIST Control Register */
u32 bistfctr; /* BIST FIS Count Register */
u32 bistsr; /* BIST Status Register */
u32 bistdecr; /* BIST Dword Error count register */
u32 res[15]; /* Reserved locations */
u32 testr; /* Test Register */
u32 versionr; /* Version Register */
u32 idr; /* ID Register */
u32 unimpl[192]; /* Unimplemented */
u32 dmadr[256]; /* FIFO Locations in DMA Mode */
};
enum {
SCR_SCONTROL_DET_ENABLE = 0x00000001,
SCR_SSTATUS_DET_PRESENT = 0x00000001,
SCR_SERROR_DIAG_X = 0x04000000,
/* DWC SATA Register Operations */
SATA_DWC_TXFIFO_DEPTH = 0x01FF,
SATA_DWC_RXFIFO_DEPTH = 0x01FF,
SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
SATA_DWC_INTPR_DMAT = 0x00000001,
SATA_DWC_INTPR_NEWFP = 0x00000002,
SATA_DWC_INTPR_PMABRT = 0x00000004,
SATA_DWC_INTPR_ERR = 0x00000008,
SATA_DWC_INTPR_NEWBIST = 0x00000010,
SATA_DWC_INTPR_IPF = 0x10000000,
SATA_DWC_INTMR_DMATM = 0x00000001,
SATA_DWC_INTMR_NEWFPM = 0x00000002,
SATA_DWC_INTMR_PMABRTM = 0x00000004,
SATA_DWC_INTMR_ERRM = 0x00000008,
SATA_DWC_INTMR_NEWBISTM = 0x00000010,
SATA_DWC_LLCR_SCRAMEN = 0x00000001,
SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
SATA_DWC_LLCR_RPDEN = 0x00000004,
/* This is all error bits, zero's are reserved fields. */
SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
};
#define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
#define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
<< 16)
struct sata_dwc_device {
struct device *dev; /* generic device struct */
struct ata_probe_ent *pe; /* ptr to probe-ent */
struct ata_host *host;
u8 *reg_base;
struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
int irq_dma;
};
#define SATA_DWC_QCMD_MAX 32
struct sata_dwc_device_port {
struct sata_dwc_device *hsdev;
int cmd_issued[SATA_DWC_QCMD_MAX];
struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
u32 dma_chan[SATA_DWC_QCMD_MAX];
int dma_pending[SATA_DWC_QCMD_MAX];
};
/*
* Commonly used DWC SATA driver Macros
*/
#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
(host)->private_data)
#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
(ap)->host->private_data)
#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
(ap)->private_data)
#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
(qc)->ap->host->private_data)
#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
(hsdevp)->hsdev)
enum {
SATA_DWC_CMD_ISSUED_NOT = 0,
SATA_DWC_CMD_ISSUED_PEND = 1,
SATA_DWC_CMD_ISSUED_EXEC = 2,
SATA_DWC_CMD_ISSUED_NODATA = 3,
SATA_DWC_DMA_PENDING_NONE = 0,
SATA_DWC_DMA_PENDING_TX = 1,
SATA_DWC_DMA_PENDING_RX = 2,
};
struct sata_dwc_host_priv {
void __iomem *scr_addr_sstatus;
u32 sata_dwc_sactive_issued ;
u32 sata_dwc_sactive_queued ;
u32 dma_interrupt_count;
struct ahb_dma_regs *sata_dma_regs;
struct device *dwc_dev;
int dma_channel;
};
struct sata_dwc_host_priv host_pvt;
/*
* Prototypes
*/
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
u32 check_status);
static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
static void sata_dwc_port_stop(struct ata_port *ap);
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
static void dma_dwc_exit(struct sata_dwc_device *hsdev);
static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
struct lli *lli, dma_addr_t dma_lli,
void __iomem *addr, int dir);
static void dma_dwc_xfer_start(int dma_ch);
static const char *get_prot_descript(u8 protocol)
{
switch ((enum ata_tf_protocols)protocol) {
case ATA_PROT_NODATA:
return "ATA no data";
case ATA_PROT_PIO:
return "ATA PIO";
case ATA_PROT_DMA:
return "ATA DMA";
case ATA_PROT_NCQ:
return "ATA NCQ";
case ATAPI_PROT_NODATA:
return "ATAPI no data";
case ATAPI_PROT_PIO:
return "ATAPI PIO";
case ATAPI_PROT_DMA:
return "ATAPI DMA";
default:
return "unknown";
}
}
static const char *get_dma_dir_descript(int dma_dir)
{
switch ((enum dma_data_direction)dma_dir) {
case DMA_BIDIRECTIONAL:
return "bidirectional";
case DMA_TO_DEVICE:
return "to device";
case DMA_FROM_DEVICE:
return "from device";
default:
return "none";
}
}
static void sata_dwc_tf_dump(struct ata_taskfile *tf)
{
dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
"0x%lx device: %x\n", tf->command,
get_prot_descript(tf->protocol), tf->flags, tf->device);
dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
"lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
tf->lbam, tf->lbah);
dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
"hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
tf->hob_lbah);
}
/*
* Function: get_burst_length_encode
* arguments: datalength: length in bytes of data
* returns value to be programmed in register corresponding to data length
* This value is effectively the log(base 2) of the length
*/
static int get_burst_length_encode(int datalength)
{
int items = datalength >> 2; /* div by 4 to get lword count */
if (items >= 64)
return 5;
if (items >= 32)
return 4;
if (items >= 16)
return 3;
if (items >= 8)
return 2;
if (items >= 4)
return 1;
return 0;
}
static void clear_chan_interrupts(int c)
{
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
DMA_CHANNEL(c));
}
/*
* Function: dma_request_channel
* arguments: None
* returns channel number if available else -1
* This function assigns the next available DMA channel from the list to the
* requester
*/
static int dma_request_channel(void)
{
/* Check if the channel is not currently in use */
if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
DMA_CHANNEL(host_pvt.dma_channel)))
return host_pvt.dma_channel;
dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
__func__, host_pvt.dma_channel);
return -1;
}
/*
* Function: dma_dwc_interrupt
* arguments: irq, dev_id, pt_regs
* returns channel number if available else -1
* Interrupt Handler for DW AHB SATA DMA
*/
static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
{
int chan;
u32 tfr_reg, err_reg;
unsigned long flags;
struct sata_dwc_device *hsdev = hsdev_instance;
struct ata_host *host = (struct ata_host *)hsdev->host;
struct ata_port *ap;
struct sata_dwc_device_port *hsdevp;
u8 tag = 0;
unsigned int port = 0;
spin_lock_irqsave(&host->lock, flags);
ap = host->ports[port];
hsdevp = HSDEVP_FROM_AP(ap);
tag = ap->link.active_tag;
tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
.low));
err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
.low));
dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
chan = host_pvt.dma_channel;
if (chan >= 0) {
/* Check for end-of-transfer interrupt. */
if (tfr_reg & DMA_CHANNEL(chan)) {
/*
* Each DMA command produces 2 interrupts. Only
* complete the command after both interrupts have been
* seen. (See sata_dwc_isr())
*/
host_pvt.dma_interrupt_count++;
sata_dwc_clear_dmacr(hsdevp, tag);
if (hsdevp->dma_pending[tag] ==
SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "DMA not pending eot=0x%08x "
"err=0x%08x tag=0x%02x pending=%d\n",
tfr_reg, err_reg, tag,
hsdevp->dma_pending[tag]);
}
if ((host_pvt.dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap, 1);
/* Clear the interrupt */
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
.tfr.low),
DMA_CHANNEL(chan));
}
/* Check for error interrupt. */
if (err_reg & DMA_CHANNEL(chan)) {
/* TODO Need error handler ! */
dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
err_reg);
/* Clear the interrupt. */
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
.error.low),
DMA_CHANNEL(chan));
}
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_HANDLED;
}
/*
* Function: dma_request_interrupts
* arguments: hsdev
* returns status
* This function registers ISR for a particular DMA channel interrupt
*/
static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
{
int retval = 0;
int chan = host_pvt.dma_channel;
if (chan >= 0) {
/* Unmask error interrupt */
out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
DMA_ENABLE_CHAN(chan));
/* Unmask end-of-transfer interrupt */
out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
DMA_ENABLE_CHAN(chan));
}
retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
if (retval) {
dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
__func__, irq);
return -ENODEV;
}
/* Mark this interrupt as requested */
hsdev->irq_dma = irq;
return 0;
}
/*
* Function: map_sg_to_lli
* The Synopsis driver has a comment proposing that better performance
* is possible by only enabling interrupts on the last item in the linked list.
* However, it seems that could be a problem if an error happened on one of the
* first items. The transfer would halt, but no error interrupt would occur.
* Currently this function sets interrupts enabled for each linked list item:
* DMA_CTL_INT_EN.
*/
static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
struct lli *lli, dma_addr_t dma_lli,
void __iomem *dmadr_addr, int dir)
{
int i, idx = 0;
int fis_len = 0;
dma_addr_t next_llp;
int bl;
int sms_val, dms_val;
sms_val = 0;
dms_val = 1 + host_pvt.dma_channel;
dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
" dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
(u32)dmadr_addr);
bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
for (i = 0; i < num_elems; i++, sg++) {
u32 addr, offset;
u32 sg_len, len;
addr = (u32) sg_dma_address(sg);
sg_len = sg_dma_len(sg);
dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
"=%d\n", __func__, i, addr, sg_len);
while (sg_len) {
if (idx >= SATA_DWC_DMAC_LLI_NUM) {
/* The LLI table is not large enough. */
dev_err(host_pvt.dwc_dev, "LLI table overrun "
"(idx=%d)\n", idx);
break;
}
len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
offset = addr & 0xffff;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
/*
* Make sure a LLI block is not created that will span
* 8K max FIS boundary. If the block spans such a FIS
* boundary, there is a chance that a DMA burst will
* cross that boundary -- this results in an error in
* the host controller.
*/
if (fis_len + len > 8192) {
dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
"%d(0x%x) len=%d(0x%x)\n", fis_len,
fis_len, len, len);
len = 8192 - fis_len;
fis_len = 0;
} else {
fis_len += len;
}
if (fis_len == 8192)
fis_len = 0;
/*
* Set DMA addresses and lower half of control register
* based on direction.
*/
if (dir == DMA_FROM_DEVICE) {
lli[idx].dar = cpu_to_le32(addr);
lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
lli[idx].ctl.low = cpu_to_le32(
DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
DMA_CTL_SMS(sms_val) |
DMA_CTL_DMS(dms_val) |
DMA_CTL_SRC_MSIZE(bl) |
DMA_CTL_DST_MSIZE(bl) |
DMA_CTL_SINC_NOCHANGE |
DMA_CTL_SRC_TRWID(2) |
DMA_CTL_DST_TRWID(2) |
DMA_CTL_INT_EN |
DMA_CTL_LLP_SRCEN |
DMA_CTL_LLP_DSTEN);
} else { /* DMA_TO_DEVICE */
lli[idx].sar = cpu_to_le32(addr);
lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
lli[idx].ctl.low = cpu_to_le32(
DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
DMA_CTL_SMS(dms_val) |
DMA_CTL_DMS(sms_val) |
DMA_CTL_SRC_MSIZE(bl) |
DMA_CTL_DST_MSIZE(bl) |
DMA_CTL_DINC_NOCHANGE |
DMA_CTL_SRC_TRWID(2) |
DMA_CTL_DST_TRWID(2) |
DMA_CTL_INT_EN |
DMA_CTL_LLP_SRCEN |
DMA_CTL_LLP_DSTEN);
}
dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
"0x%08x val: 0x%08x\n", __func__,
len, DMA_CTL_BLK_TS(len / 4));
/* Program the LLI CTL high register */
lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
(len / 4));
/* Program the next pointer. The next pointer must be
* the physical address, not the virtual address.
*/
next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
lli)));
/* The last 2 bits encode the list master select. */
next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
lli[idx].llp = cpu_to_le32(next_llp);
idx++;
sg_len -= len;
addr += len;
}
}
/*
* The last next ptr has to be zero and the last control low register
* has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
* and destination enable) set back to 0 (disabled.) This is what tells
* the core that this is the last item in the linked list.
*/
if (idx) {
lli[idx-1].llp = 0x00000000;
lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
/* Flush cache to memory */
dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
DMA_BIDIRECTIONAL);
}
return idx;
}
/*
* Function: dma_dwc_xfer_start
* arguments: Channel number
* Return : None
* Enables the DMA channel
*/
static void dma_dwc_xfer_start(int dma_ch)
{
/* Enable the DMA channel */
out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
DMA_ENABLE_CHAN(dma_ch));
}
static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
struct lli *lli, dma_addr_t dma_lli,
void __iomem *addr, int dir)
{
int dma_ch;
int num_lli;
/* Acquire DMA channel */
dma_ch = dma_request_channel();
if (dma_ch == -1) {
dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
__func__);
return -EAGAIN;
}
/* Convert SG list to linked list of items (LLIs) for AHB DMA */
num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
" 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
lli, (u32)dma_lli, addr, num_lli);
clear_chan_interrupts(dma_ch);
/* Program the CFG register. */
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
DMA_CFG_HW_CH_PRIOR(dma_ch));
/* Program the address of the linked list */
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
/* Program the CTL register with src enable / dst enable */
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
return dma_ch;
}
/*
* Function: dma_dwc_exit
* arguments: None
* returns status
* This function exits the SATA DMA driver
*/
static void dma_dwc_exit(struct sata_dwc_device *hsdev)
{
dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
if (host_pvt.sata_dma_regs) {
iounmap(host_pvt.sata_dma_regs);
host_pvt.sata_dma_regs = NULL;
}
if (hsdev->irq_dma) {
free_irq(hsdev->irq_dma, hsdev);
hsdev->irq_dma = 0;
}
}
/*
* Function: dma_dwc_init
* arguments: hsdev
* returns status
* This function initializes the SATA DMA driver
*/
static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
{
int err;
err = dma_request_interrupts(hsdev, irq);
if (err) {
dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
" %d\n", __func__, err);
goto error_out;
}
/* Enabe DMA */
out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
sata_dma_regs);
return 0;
error_out:
dma_dwc_exit(hsdev);
return err;
}
static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
{
if (scr > SCR_NOTIFICATION) {
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
__func__, scr);
return -EINVAL;
}
*val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
__func__, link->ap->print_id, scr, *val);
return 0;
}
static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
{
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
__func__, link->ap->print_id, scr, val);
if (scr > SCR_NOTIFICATION) {
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
__func__, scr);
return -EINVAL;
}
out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
return 0;
}
static u32 core_scr_read(unsigned int scr)
{
return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
(scr * 4));
}
static void core_scr_write(unsigned int scr, u32 val)
{
out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
val);
}
static void clear_serror(void)
{
u32 val;
val = core_scr_read(SCR_ERROR);
core_scr_write(SCR_ERROR, val);
}
static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
{
out_le32(&hsdev->sata_dwc_regs->intpr,
in_le32(&hsdev->sata_dwc_regs->intpr));
}
static u32 qcmd_tag_to_mask(u8 tag)
{
return 0x00000001 << (tag & 0x1f);
}
/* See ahci.c */
static void sata_dwc_error_intr(struct ata_port *ap,
struct sata_dwc_device *hsdev, uint intpr)
{
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct ata_eh_info *ehi = &ap->link.eh_info;
unsigned int err_mask = 0, action = 0;
struct ata_queued_cmd *qc;
u32 serror;
u8 status, tag;
u32 err_reg;
ata_ehi_clear_desc(ehi);
serror = core_scr_read(SCR_ERROR);
status = ap->ops->sff_check_status(ap);
err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
low));
tag = ap->link.active_tag;
dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
"dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
__func__, serror, intpr, status, host_pvt.dma_interrupt_count,
hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
/* Clear error register and interrupt bit */
clear_serror();
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
/* This is the only error happening now. TODO check for exact error */
err_mask |= AC_ERR_HOST_BUS;
action |= ATA_EH_RESET;
/* Pass this on to EH */
ehi->serror |= serror;
ehi->action |= action;
qc = ata_qc_from_tag(ap, tag);
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
ata_port_abort(ap);
}
/*
* Function : sata_dwc_isr
* arguments : irq, void *dev_instance, struct pt_regs *regs
* Return value : irqreturn_t - status of IRQ
* This Interrupt handler called via port ops registered function.
* .irq_handler = sata_dwc_isr
*/
static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
{
struct ata_host *host = (struct ata_host *)dev_instance;
struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
struct ata_port *ap;
struct ata_queued_cmd *qc;
unsigned long flags;
u8 status, tag;
int handled, num_processed, port = 0;
uint intpr, sactive, sactive2, tag_mask;
struct sata_dwc_device_port *hsdevp;
host_pvt.sata_dwc_sactive_issued = 0;
spin_lock_irqsave(&host->lock, flags);
/* Read the interrupt register */
intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
ap = host->ports[port];
hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
ap->link.active_tag);
/* Check for error interrupt */
if (intpr & SATA_DWC_INTPR_ERR) {
sata_dwc_error_intr(ap, hsdev, intpr);
handled = 1;
goto DONE;
}
/* Check for DMA SETUP FIS (FP DMA) interrupt */
if (intpr & SATA_DWC_INTPR_NEWFP) {
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
qc = ata_qc_from_tag(ap, tag);
/*
* Start FP DMA for NCQ command. At this point the tag is the
* active tag. It is the tag that matches the command about to
* be completed.
*/
qc->ap->link.active_tag = tag;
sata_dwc_bmdma_start_by_tag(qc, tag);
handled = 1;
goto DONE;
}
sactive = core_scr_read(SCR_ACTIVE);
tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
/* If no sactive issued and tag_mask is zero then this is not NCQ */
if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
if (ap->link.active_tag == ATA_TAG_POISON)
tag = 0;
else
tag = ap->link.active_tag;
qc = ata_qc_from_tag(ap, tag);
/* DEV interrupt w/ no active qc? */
if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
dev_err(ap->dev, "%s interrupt with no active qc "
"qc=%p\n", __func__, qc);
ap->ops->sff_check_status(ap);
handled = 1;
goto DONE;
}
status = ap->ops->sff_check_status(ap);
qc->ap->link.active_tag = tag;
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
if (status & ATA_ERR) {
dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
sata_dwc_qc_complete(ap, qc, 1);
handled = 1;
goto DONE;
}
dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
__func__, get_prot_descript(qc->tf.protocol));
DRVSTILLBUSY:
if (ata_is_dma(qc->tf.protocol)) {
/*
* Each DMA transaction produces 2 interrupts. The DMAC
* transfer complete interrupt and the SATA controller
* operation done interrupt. The command should be
* completed only after both interrupts are seen.
*/
host_pvt.dma_interrupt_count++;
if (hsdevp->dma_pending[tag] == \
SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "%s: DMA not pending "
"intpr=0x%08x status=0x%08x pending"
"=%d\n", __func__, intpr, status,
hsdevp->dma_pending[tag]);
}
if ((host_pvt.dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap, 1);
} else if (ata_is_pio(qc->tf.protocol)) {
ata_sff_hsm_move(ap, qc, status, 0);
handled = 1;
goto DONE;
} else {
if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
goto DRVSTILLBUSY;
}
handled = 1;
goto DONE;
}
/*
* This is a NCQ command. At this point we need to figure out for which
* tags we have gotten a completion interrupt. One interrupt may serve
* as completion for more than one operation when commands are queued
* (NCQ). We need to process each completed command.
*/
/* process completed commands */
sactive = core_scr_read(SCR_ACTIVE);
tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
tag_mask > 1) {
dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
"tag_mask=0x%08x\n", __func__, sactive,
host_pvt.sata_dwc_sactive_issued, tag_mask);
}
if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
(host_pvt.sata_dwc_sactive_issued)) {
dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
"(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
"=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
tag_mask);
}
/* read just to clear ... not bad if currently still busy */
status = ap->ops->sff_check_status(ap);
dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
tag = 0;
num_processed = 0;
while (tag_mask) {
num_processed++;
while (!(tag_mask & 0x00000001)) {
tag++;
tag_mask <<= 1;
}
tag_mask &= (~0x00000001);
qc = ata_qc_from_tag(ap, tag);
/* To be picked up by completion functions */
qc->ap->link.active_tag = tag;
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
/* Let libata/scsi layers handle error */
if (status & ATA_ERR) {
dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
status);
sata_dwc_qc_complete(ap, qc, 1);
handled = 1;
goto DONE;
}
/* Process completed command */
dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
get_prot_descript(qc->tf.protocol));
if (ata_is_dma(qc->tf.protocol)) {
host_pvt.dma_interrupt_count++;
if (hsdevp->dma_pending[tag] == \
SATA_DWC_DMA_PENDING_NONE)
dev_warn(ap->dev, "%s: DMA not pending?\n",
__func__);
if ((host_pvt.dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap, 1);
} else {
if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
goto STILLBUSY;
}
continue;
STILLBUSY:
ap->stats.idle_irq++;
dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
ap->print_id);
} /* while tag_mask */
/*
* Check to see if any commands completed while we were processing our
* initial set of completed commands (read status clears interrupts,
* so we might miss a completed command interrupt if one came in while
* we were processing --we read status as part of processing a completed
* command).
*/
sactive2 = core_scr_read(SCR_ACTIVE);
if (sactive2 != sactive) {
dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
"=0x%x\n", sactive, sactive2);
}
handled = 1;
DONE:
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
{
struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
out_le32(&(hsdev->sata_dwc_regs->dmacr),
SATA_DWC_DMACR_RX_CLEAR(
in_le32(&(hsdev->sata_dwc_regs->dmacr))));
} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
out_le32(&(hsdev->sata_dwc_regs->dmacr),
SATA_DWC_DMACR_TX_CLEAR(
in_le32(&(hsdev->sata_dwc_regs->dmacr))));
} else {
/*
* This should not happen, it indicates the driver is out of
* sync. If it does happen, clear dmacr anyway.
*/
dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
"TX DMA not pending tag=0x%02x pending=%d"
" dmacr: 0x%08x\n", __func__, tag,
hsdevp->dma_pending[tag],
in_le32(&(hsdev->sata_dwc_regs->dmacr)));
out_le32(&(hsdev->sata_dwc_regs->dmacr),
SATA_DWC_DMACR_TXRXCH_CLEAR);
}
}
static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
{
struct ata_queued_cmd *qc;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
u8 tag = 0;
tag = ap->link.active_tag;
qc = ata_qc_from_tag(ap, tag);
if (!qc) {
dev_err(ap->dev, "failed to get qc");
return;
}
#ifdef DEBUG_NCQ
if (tag > 0) {
dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
"dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
get_dma_dir_descript(qc->dma_dir),
get_prot_descript(qc->tf.protocol),
in_le32(&(hsdev->sata_dwc_regs->dmacr)));
}
#endif
if (ata_is_dma(qc->tf.protocol)) {
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
"pending dmacr: 0x%08x\n", __func__,
in_le32(&(hsdev->sata_dwc_regs->dmacr)));
}
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
sata_dwc_qc_complete(ap, qc, check_status);
ap->link.active_tag = ATA_TAG_POISON;
} else {
sata_dwc_qc_complete(ap, qc, check_status);
}
}
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
u32 check_status)
{
u8 status = 0;
u32 mask = 0x0;
u8 tag = qc->tag;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
host_pvt.sata_dwc_sactive_queued = 0;
dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
dev_err(ap->dev, "TX DMA PENDING\n");
else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
dev_err(ap->dev, "RX DMA PENDING\n");
dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
" protocol=%d\n", qc->tf.command, status, ap->print_id,
qc->tf.protocol);
/* clear active bit */
mask = (~(qcmd_tag_to_mask(tag)));
host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
& mask;
host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
& mask;
ata_qc_complete(qc);
return 0;
}
static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
{
/* Enable selective interrupts by setting the interrupt maskregister*/
out_le32(&hsdev->sata_dwc_regs->intmr,
SATA_DWC_INTMR_ERRM |
SATA_DWC_INTMR_NEWFPM |
SATA_DWC_INTMR_PMABRTM |
SATA_DWC_INTMR_DMATM);
/*
* Unmask the error bits that should trigger an error interrupt by
* setting the error mask register.
*/
out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
__func__, in_le32(&hsdev->sata_dwc_regs->intmr),
in_le32(&hsdev->sata_dwc_regs->errmr));
}
static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
{
port->cmd_addr = (void *)base + 0x00;
port->data_addr = (void *)base + 0x00;
port->error_addr = (void *)base + 0x04;
port->feature_addr = (void *)base + 0x04;
port->nsect_addr = (void *)base + 0x08;
port->lbal_addr = (void *)base + 0x0c;
port->lbam_addr = (void *)base + 0x10;
port->lbah_addr = (void *)base + 0x14;
port->device_addr = (void *)base + 0x18;
port->command_addr = (void *)base + 0x1c;
port->status_addr = (void *)base + 0x1c;
port->altstatus_addr = (void *)base + 0x20;
port->ctl_addr = (void *)base + 0x20;
}
/*
* Function : sata_dwc_port_start
* arguments : struct ata_ioports *port
* Return value : returns 0 if success, error code otherwise
* This function allocates the scatter gather LLI table for AHB DMA
*/
static int sata_dwc_port_start(struct ata_port *ap)
{
int err = 0;
struct sata_dwc_device *hsdev;
struct sata_dwc_device_port *hsdevp = NULL;
struct device *pdev;
int i;
hsdev = HSDEV_FROM_AP(ap);
dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
hsdev->host = ap->host;
pdev = ap->host->dev;
if (!pdev) {
dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
err = -ENODEV;
goto CLEANUP;
}
/* Allocate Port Struct */
hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
if (!hsdevp) {
dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
err = -ENOMEM;
goto CLEANUP;
}
hsdevp->hsdev = hsdev;
for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
ap->bmdma_prd = 0; /* set these so libata doesn't use them */
ap->bmdma_prd_dma = 0;
/*
* DMA - Assign scatter gather LLI table. We can't use the libata
* version since it's PRD is IDE PCI specific.
*/
for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
hsdevp->llit[i] = dma_alloc_coherent(pdev,
SATA_DWC_DMAC_LLI_TBL_SZ,
&(hsdevp->llit_dma[i]),
GFP_ATOMIC);
if (!hsdevp->llit[i]) {
dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
__func__);
err = -ENOMEM;
goto CLEANUP_ALLOC;
}
}
if (ap->port_no == 0) {
dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
__func__);
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXRXCH_CLEAR);
dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
__func__);
out_le32(&hsdev->sata_dwc_regs->dbtsr,
(SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
}
/* Clear any error bits before libata starts issuing commands */
clear_serror();
ap->private_data = hsdevp;
dev_dbg(ap->dev, "%s: done\n", __func__);
return 0;
CLEANUP_ALLOC:
kfree(hsdevp);
CLEANUP:
dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
return err;
}
static void sata_dwc_port_stop(struct ata_port *ap)
{
int i;
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
if (hsdevp && hsdev) {
/* deallocate LLI table */
for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
dma_free_coherent(ap->host->dev,
SATA_DWC_DMAC_LLI_TBL_SZ,
hsdevp->llit[i], hsdevp->llit_dma[i]);
}
kfree(hsdevp);
}
ap->private_data = NULL;
}
/*
* Function : sata_dwc_exec_command_by_tag
* arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
* Return value : None
* This function keeps track of individual command tag ids and calls
* ata_exec_command in libata
*/
static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
struct ata_taskfile *tf,
u8 tag, u32 cmd_issued)
{
unsigned long flags;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
ata_get_cmd_descript(tf->command), tag);
spin_lock_irqsave(&ap->host->lock, flags);
hsdevp->cmd_issued[tag] = cmd_issued;
spin_unlock_irqrestore(&ap->host->lock, flags);
/*
* Clear SError before executing a new command.
* sata_dwc_scr_write and read can not be used here. Clearing the PM
* managed SError register for the disk needs to be done before the
* task file is loaded.
*/
clear_serror();
ata_sff_exec_command(ap, tf);
}
static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
SATA_DWC_CMD_ISSUED_PEND);
}
static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
{
u8 tag = qc->tag;
if (ata_is_ncq(qc->tf.protocol)) {
dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
__func__, qc->ap->link.sactive, tag);
} else {
tag = 0;
}
sata_dwc_bmdma_setup_by_tag(qc, tag);
}
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
int start_dma;
u32 reg, dma_chan;
struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
struct ata_port *ap = qc->ap;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
int dir = qc->dma_dir;
dma_chan = hsdevp->dma_chan[tag];
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
start_dma = 1;
if (dir == DMA_TO_DEVICE)
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
else
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
} else {
dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
"(tag=%d) DMA NOT started\n", __func__,
hsdevp->cmd_issued[tag], tag);
start_dma = 0;
}
dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
"start_dma? %x\n", __func__, qc, tag, qc->tf.command,
get_dma_dir_descript(qc->dma_dir), start_dma);
sata_dwc_tf_dump(&(qc->tf));
if (start_dma) {
reg = core_scr_read(SCR_ERROR);
if (reg & SATA_DWC_SERROR_ERR_BITS) {
dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
__func__, reg);
}
if (dir == DMA_TO_DEVICE)
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXCHEN);
else
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_RXCHEN);
/* Enable AHB DMA transfer on the specified channel */
dma_dwc_xfer_start(dma_chan);
}
}
static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
{
u8 tag = qc->tag;
if (ata_is_ncq(qc->tf.protocol)) {
dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
__func__, qc->ap->link.sactive, tag);
} else {
tag = 0;
}
dev_dbg(qc->ap->dev, "%s\n", __func__);
sata_dwc_bmdma_start_by_tag(qc, tag);
}
/*
* Function : sata_dwc_qc_prep_by_tag
* arguments : ata_queued_cmd *qc, u8 tag
* Return value : None
* qc_prep for a particular queued command based on tag
*/
static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
struct scatterlist *sg = qc->sg;
struct ata_port *ap = qc->ap;
int dma_chan;
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
__func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
qc->n_elem);
dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
hsdevp->llit_dma[tag],
(void *__iomem)(&hsdev->sata_dwc_regs->\
dmadr), qc->dma_dir);
if (dma_chan < 0) {
dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
__func__, dma_chan);
return;
}
hsdevp->dma_chan[tag] = dma_chan;
}
static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
{
u32 sactive;
u8 tag = qc->tag;
struct ata_port *ap = qc->ap;
#ifdef DEBUG_NCQ
if (qc->tag > 0 || ap->link.sactive > 1)
dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
"prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
__func__, ap->print_id, qc->tf.command,
ata_get_cmd_descript(qc->tf.command),
qc->tag, get_prot_descript(qc->tf.protocol),
ap->link.active_tag, ap->link.sactive);
#endif
if (!ata_is_ncq(qc->tf.protocol))
tag = 0;
sata_dwc_qc_prep_by_tag(qc, tag);
if (ata_is_ncq(qc->tf.protocol)) {
sactive = core_scr_read(SCR_ACTIVE);
sactive |= (0x00000001 << tag);
core_scr_write(SCR_ACTIVE, sactive);
dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
"sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
sactive);
ap->ops->sff_tf_load(ap, &qc->tf);
sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
SATA_DWC_CMD_ISSUED_PEND);
} else {
ata_sff_qc_issue(qc);
}
return 0;
}
/*
* Function : sata_dwc_qc_prep
* arguments : ata_queued_cmd *qc
* Return value : None
* qc_prep for a particular queued command
*/
static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
{
if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
return;
#ifdef DEBUG_NCQ
if (qc->tag > 0)
dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
__func__, qc->tag, qc->ap->link.active_tag);
return ;
#endif
}
static void sata_dwc_error_handler(struct ata_port *ap)
{
ata_sff_error_handler(ap);
}
int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
int ret;
ret = sata_sff_hardreset(link, class, deadline);
sata_dwc_enable_interrupts(hsdev);
/* Reconfigure the DMA control register */
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXRXCH_CLEAR);
/* Reconfigure the DMA Burst Transaction Size register */
out_le32(&hsdev->sata_dwc_regs->dbtsr,
SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
return ret;
}
/*
* scsi mid-layer and libata interface structures
*/
static struct scsi_host_template sata_dwc_sht = {
ATA_NCQ_SHT(DRV_NAME),
/*
* test-only: Currently this driver doesn't handle NCQ
* correctly. We enable NCQ but set the queue depth to a
* max of 1. This will get fixed in in a future release.
*/
.sg_tablesize = LIBATA_MAX_PRD,
.can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */
.dma_boundary = ATA_DMA_BOUNDARY,
};
static struct ata_port_operations sata_dwc_ops = {
.inherits = &ata_sff_port_ops,
.error_handler = sata_dwc_error_handler,
.hardreset = sata_dwc_hardreset,
.qc_prep = sata_dwc_qc_prep,
.qc_issue = sata_dwc_qc_issue,
.scr_read = sata_dwc_scr_read,
.scr_write = sata_dwc_scr_write,
.port_start = sata_dwc_port_start,
.port_stop = sata_dwc_port_stop,
.bmdma_setup = sata_dwc_bmdma_setup,
.bmdma_start = sata_dwc_bmdma_start,
};
static const struct ata_port_info sata_dwc_port_info[] = {
{
.flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &sata_dwc_ops,
},
};
static int sata_dwc_probe(struct platform_device *ofdev)
{
struct sata_dwc_device *hsdev;
u32 idr, versionr;
char *ver = (char *)&versionr;
u8 *base = NULL;
int err = 0;
int irq, rc;
struct ata_host *host;
struct ata_port_info pi = sata_dwc_port_info[0];
const struct ata_port_info *ppi[] = { &pi, NULL };
struct device_node *np = ofdev->dev.of_node;
u32 dma_chan;
/* Allocate DWC SATA device */
hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
if (hsdev == NULL) {
dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
err = -ENOMEM;
goto error;
}
if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
dev_warn(&ofdev->dev, "no dma-channel property set."
" Use channel 0\n");
dma_chan = 0;
}
host_pvt.dma_channel = dma_chan;
/* Ioremap SATA registers */
base = of_iomap(ofdev->dev.of_node, 0);
if (!base) {
dev_err(&ofdev->dev, "ioremap failed for SATA register"
" address\n");
err = -ENODEV;
goto error_kmalloc;
}
hsdev->reg_base = base;
dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
/* Synopsys DWC SATA specific Registers */
hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
/* Allocate and fill host */
host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
if (!host) {
dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
err = -ENOMEM;
goto error_iomap;
}
host->private_data = hsdev;
/* Setup port */
host->ports[0]->ioaddr.cmd_addr = base;
host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
/* Read the ID and Version Registers */
idr = in_le32(&hsdev->sata_dwc_regs->idr);
versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
idr, ver[0], ver[1], ver[2]);
/* Get SATA DMA interrupt number */
irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
if (irq == NO_IRQ) {
dev_err(&ofdev->dev, "no SATA DMA irq\n");
err = -ENODEV;
goto error_out;
}
/* Get physical SATA DMA register base address */
host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
if (!(host_pvt.sata_dma_regs)) {
dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
" address\n");
err = -ENODEV;
goto error_out;
}
/* Save dev for later use in dev_xxx() routines */
host_pvt.dwc_dev = &ofdev->dev;
/* Initialize AHB DMAC */
dma_dwc_init(hsdev, irq);
/* Enable SATA Interrupts */
sata_dwc_enable_interrupts(hsdev);
/* Get SATA interrupt number */
irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
if (irq == NO_IRQ) {
dev_err(&ofdev->dev, "no SATA DMA irq\n");
err = -ENODEV;
goto error_out;
}
/*
* Now, register with libATA core, this will also initiate the
* device discovery process, invoking our port_start() handler &
* error_handler() to execute a dummy Softreset EH session
*/
rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
if (rc != 0)
dev_err(&ofdev->dev, "failed to activate host");
dev_set_drvdata(&ofdev->dev, host);
return 0;
error_out:
/* Free SATA DMA resources */
dma_dwc_exit(hsdev);
error_iomap:
iounmap(base);
error_kmalloc:
kfree(hsdev);
error:
return err;
}
static int sata_dwc_remove(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct ata_host *host = dev_get_drvdata(dev);
struct sata_dwc_device *hsdev = host->private_data;
ata_host_detach(host);
dev_set_drvdata(dev, NULL);
/* Free SATA DMA resources */
dma_dwc_exit(hsdev);
iounmap(hsdev->reg_base);
kfree(hsdev);
kfree(host);
dev_dbg(&ofdev->dev, "done\n");
return 0;
}
static const struct of_device_id sata_dwc_match[] = {
{ .compatible = "amcc,sata-460ex", },
{}
};
MODULE_DEVICE_TABLE(of, sata_dwc_match);
static struct platform_driver sata_dwc_driver = {
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = sata_dwc_match,
},
.probe = sata_dwc_probe,
.remove = sata_dwc_remove,
};
module_platform_driver(sata_dwc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
MODULE_VERSION(DRV_VERSION);