WSL2-Linux-Kernel/drivers/hwmon/k10temp.c

662 строки
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* k10temp.c - AMD Family 10h/11h/12h/14h/15h/16h/17h
* processor hardware monitoring
*
* Copyright (c) 2009 Clemens Ladisch <clemens@ladisch.de>
* Copyright (c) 2020 Guenter Roeck <linux@roeck-us.net>
*
* Implementation notes:
* - CCD register address information as well as the calculation to
* convert raw register values is from https://github.com/ocerman/zenpower.
* The information is not confirmed from chip datasheets, but experiments
* suggest that it provides reasonable temperature values.
* - Register addresses to read chip voltage and current are also from
* https://github.com/ocerman/zenpower, and not confirmed from chip
* datasheets. Current calibration is board specific and not typically
* shared by board vendors. For this reason, current values are
* normalized to report 1A/LSB for core current and and 0.25A/LSB for SoC
* current. Reported values can be adjusted using the sensors configuration
* file.
*/
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <asm/amd_nb.h>
#include <asm/processor.h>
MODULE_DESCRIPTION("AMD Family 10h+ CPU core temperature monitor");
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_LICENSE("GPL");
static bool force;
module_param(force, bool, 0444);
MODULE_PARM_DESC(force, "force loading on processors with erratum 319");
/* Provide lock for writing to NB_SMU_IND_ADDR */
static DEFINE_MUTEX(nb_smu_ind_mutex);
#ifndef PCI_DEVICE_ID_AMD_15H_M70H_NB_F3
#define PCI_DEVICE_ID_AMD_15H_M70H_NB_F3 0x15b3
#endif
/* CPUID function 0x80000001, ebx */
#define CPUID_PKGTYPE_MASK GENMASK(31, 28)
#define CPUID_PKGTYPE_F 0x00000000
#define CPUID_PKGTYPE_AM2R2_AM3 0x10000000
/* DRAM controller (PCI function 2) */
#define REG_DCT0_CONFIG_HIGH 0x094
#define DDR3_MODE BIT(8)
/* miscellaneous (PCI function 3) */
#define REG_HARDWARE_THERMAL_CONTROL 0x64
#define HTC_ENABLE BIT(0)
#define REG_REPORTED_TEMPERATURE 0xa4
#define REG_NORTHBRIDGE_CAPABILITIES 0xe8
#define NB_CAP_HTC BIT(10)
/*
* For F15h M60h and M70h, REG_HARDWARE_THERMAL_CONTROL
* and REG_REPORTED_TEMPERATURE have been moved to
* D0F0xBC_xD820_0C64 [Hardware Temperature Control]
* D0F0xBC_xD820_0CA4 [Reported Temperature Control]
*/
#define F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET 0xd8200c64
#define F15H_M60H_REPORTED_TEMP_CTRL_OFFSET 0xd8200ca4
/* F17h M01h Access througn SMN */
#define F17H_M01H_REPORTED_TEMP_CTRL_OFFSET 0x00059800
#define F17H_M70H_CCD_TEMP(x) (0x00059954 + ((x) * 4))
#define F17H_M70H_CCD_TEMP_VALID BIT(11)
#define F17H_M70H_CCD_TEMP_MASK GENMASK(10, 0)
#define F17H_M01H_SVI 0x0005A000
#define F17H_M01H_SVI_TEL_PLANE0 (F17H_M01H_SVI + 0xc)
#define F17H_M01H_SVI_TEL_PLANE1 (F17H_M01H_SVI + 0x10)
#define CUR_TEMP_SHIFT 21
#define CUR_TEMP_RANGE_SEL_MASK BIT(19)
#define CFACTOR_ICORE 1000000 /* 1A / LSB */
#define CFACTOR_ISOC 250000 /* 0.25A / LSB */
struct k10temp_data {
struct pci_dev *pdev;
void (*read_htcreg)(struct pci_dev *pdev, u32 *regval);
void (*read_tempreg)(struct pci_dev *pdev, u32 *regval);
int temp_offset;
u32 temp_adjust_mask;
bool show_tdie;
u32 show_tccd;
u32 svi_addr[2];
bool show_current;
int cfactor[2];
};
struct tctl_offset {
u8 model;
char const *id;
int offset;
};
static const struct tctl_offset tctl_offset_table[] = {
{ 0x17, "AMD Ryzen 5 1600X", 20000 },
{ 0x17, "AMD Ryzen 7 1700X", 20000 },
{ 0x17, "AMD Ryzen 7 1800X", 20000 },
{ 0x17, "AMD Ryzen 7 2700X", 10000 },
{ 0x17, "AMD Ryzen Threadripper 19", 27000 }, /* 19{00,20,50}X */
{ 0x17, "AMD Ryzen Threadripper 29", 27000 }, /* 29{20,50,70,90}[W]X */
};
static bool is_threadripper(void)
{
return strstr(boot_cpu_data.x86_model_id, "Threadripper");
}
static bool is_epyc(void)
{
return strstr(boot_cpu_data.x86_model_id, "EPYC");
}
static void read_htcreg_pci(struct pci_dev *pdev, u32 *regval)
{
pci_read_config_dword(pdev, REG_HARDWARE_THERMAL_CONTROL, regval);
}
static void read_tempreg_pci(struct pci_dev *pdev, u32 *regval)
{
pci_read_config_dword(pdev, REG_REPORTED_TEMPERATURE, regval);
}
static void amd_nb_index_read(struct pci_dev *pdev, unsigned int devfn,
unsigned int base, int offset, u32 *val)
{
mutex_lock(&nb_smu_ind_mutex);
pci_bus_write_config_dword(pdev->bus, devfn,
base, offset);
pci_bus_read_config_dword(pdev->bus, devfn,
base + 4, val);
mutex_unlock(&nb_smu_ind_mutex);
}
static void read_htcreg_nb_f15(struct pci_dev *pdev, u32 *regval)
{
amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8,
F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET, regval);
}
static void read_tempreg_nb_f15(struct pci_dev *pdev, u32 *regval)
{
amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8,
F15H_M60H_REPORTED_TEMP_CTRL_OFFSET, regval);
}
static void read_tempreg_nb_f17(struct pci_dev *pdev, u32 *regval)
{
amd_smn_read(amd_pci_dev_to_node_id(pdev),
F17H_M01H_REPORTED_TEMP_CTRL_OFFSET, regval);
}
static long get_raw_temp(struct k10temp_data *data)
{
u32 regval;
long temp;
data->read_tempreg(data->pdev, &regval);
temp = (regval >> CUR_TEMP_SHIFT) * 125;
if (regval & data->temp_adjust_mask)
temp -= 49000;
return temp;
}
const char *k10temp_temp_label[] = {
"Tdie",
"Tctl",
"Tccd1",
"Tccd2",
"Tccd3",
"Tccd4",
"Tccd5",
"Tccd6",
"Tccd7",
"Tccd8",
};
const char *k10temp_in_label[] = {
"Vcore",
"Vsoc",
};
const char *k10temp_curr_label[] = {
"Icore",
"Isoc",
};
static int k10temp_read_labels(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_temp:
*str = k10temp_temp_label[channel];
break;
case hwmon_in:
*str = k10temp_in_label[channel];
break;
case hwmon_curr:
*str = k10temp_curr_label[channel];
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int k10temp_read_curr(struct device *dev, u32 attr, int channel,
long *val)
{
struct k10temp_data *data = dev_get_drvdata(dev);
u32 regval;
switch (attr) {
case hwmon_curr_input:
amd_smn_read(amd_pci_dev_to_node_id(data->pdev),
data->svi_addr[channel], &regval);
*val = DIV_ROUND_CLOSEST(data->cfactor[channel] *
(regval & 0xff),
1000);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int k10temp_read_in(struct device *dev, u32 attr, int channel, long *val)
{
struct k10temp_data *data = dev_get_drvdata(dev);
u32 regval;
switch (attr) {
case hwmon_in_input:
amd_smn_read(amd_pci_dev_to_node_id(data->pdev),
data->svi_addr[channel], &regval);
regval = (regval >> 16) & 0xff;
*val = DIV_ROUND_CLOSEST(155000 - regval * 625, 100);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int k10temp_read_temp(struct device *dev, u32 attr, int channel,
long *val)
{
struct k10temp_data *data = dev_get_drvdata(dev);
u32 regval;
switch (attr) {
case hwmon_temp_input:
switch (channel) {
case 0: /* Tdie */
*val = get_raw_temp(data) - data->temp_offset;
if (*val < 0)
*val = 0;
break;
case 1: /* Tctl */
*val = get_raw_temp(data);
if (*val < 0)
*val = 0;
break;
case 2 ... 9: /* Tccd{1-8} */
amd_smn_read(amd_pci_dev_to_node_id(data->pdev),
F17H_M70H_CCD_TEMP(channel - 2), &regval);
*val = (regval & F17H_M70H_CCD_TEMP_MASK) * 125 - 49000;
break;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_temp_max:
*val = 70 * 1000;
break;
case hwmon_temp_crit:
data->read_htcreg(data->pdev, &regval);
*val = ((regval >> 16) & 0x7f) * 500 + 52000;
break;
case hwmon_temp_crit_hyst:
data->read_htcreg(data->pdev, &regval);
*val = (((regval >> 16) & 0x7f)
- ((regval >> 24) & 0xf)) * 500 + 52000;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int k10temp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return k10temp_read_temp(dev, attr, channel, val);
case hwmon_in:
return k10temp_read_in(dev, attr, channel, val);
case hwmon_curr:
return k10temp_read_curr(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t k10temp_is_visible(const void *_data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct k10temp_data *data = _data;
struct pci_dev *pdev = data->pdev;
u32 reg;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
switch (channel) {
case 0: /* Tdie, or Tctl if we don't show it */
break;
case 1: /* Tctl */
if (!data->show_tdie)
return 0;
break;
case 2 ... 9: /* Tccd{1-8} */
if (!(data->show_tccd & BIT(channel - 2)))
return 0;
break;
default:
return 0;
}
break;
case hwmon_temp_max:
if (channel || data->show_tdie)
return 0;
break;
case hwmon_temp_crit:
case hwmon_temp_crit_hyst:
if (channel || !data->read_htcreg)
return 0;
pci_read_config_dword(pdev,
REG_NORTHBRIDGE_CAPABILITIES,
&reg);
if (!(reg & NB_CAP_HTC))
return 0;
data->read_htcreg(data->pdev, &reg);
if (!(reg & HTC_ENABLE))
return 0;
break;
case hwmon_temp_label:
/* No labels if we don't show the die temperature */
if (!data->show_tdie)
return 0;
switch (channel) {
case 0: /* Tdie */
case 1: /* Tctl */
break;
case 2 ... 9: /* Tccd{1-8} */
if (!(data->show_tccd & BIT(channel - 2)))
return 0;
break;
default:
return 0;
}
break;
default:
return 0;
}
break;
case hwmon_in:
case hwmon_curr:
if (!data->show_current)
return 0;
break;
default:
return 0;
}
return 0444;
}
static bool has_erratum_319(struct pci_dev *pdev)
{
u32 pkg_type, reg_dram_cfg;
if (boot_cpu_data.x86 != 0x10)
return false;
/*
* Erratum 319: The thermal sensor of Socket F/AM2+ processors
* may be unreliable.
*/
pkg_type = cpuid_ebx(0x80000001) & CPUID_PKGTYPE_MASK;
if (pkg_type == CPUID_PKGTYPE_F)
return true;
if (pkg_type != CPUID_PKGTYPE_AM2R2_AM3)
return false;
/* DDR3 memory implies socket AM3, which is good */
pci_bus_read_config_dword(pdev->bus,
PCI_DEVFN(PCI_SLOT(pdev->devfn), 2),
REG_DCT0_CONFIG_HIGH, &reg_dram_cfg);
if (reg_dram_cfg & DDR3_MODE)
return false;
/*
* Unfortunately it is possible to run a socket AM3 CPU with DDR2
* memory. We blacklist all the cores which do exist in socket AM2+
* format. It still isn't perfect, as RB-C2 cores exist in both AM2+
* and AM3 formats, but that's the best we can do.
*/
return boot_cpu_data.x86_model < 4 ||
(boot_cpu_data.x86_model == 4 && boot_cpu_data.x86_stepping <= 2);
}
#ifdef CONFIG_DEBUG_FS
static void k10temp_smn_regs_show(struct seq_file *s, struct pci_dev *pdev,
u32 addr, int count)
{
u32 reg;
int i;
for (i = 0; i < count; i++) {
if (!(i & 3))
seq_printf(s, "0x%06x: ", addr + i * 4);
amd_smn_read(amd_pci_dev_to_node_id(pdev), addr + i * 4, &reg);
seq_printf(s, "%08x ", reg);
if ((i & 3) == 3)
seq_puts(s, "\n");
}
}
static int svi_show(struct seq_file *s, void *unused)
{
struct k10temp_data *data = s->private;
k10temp_smn_regs_show(s, data->pdev, F17H_M01H_SVI, 32);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(svi);
static int thm_show(struct seq_file *s, void *unused)
{
struct k10temp_data *data = s->private;
k10temp_smn_regs_show(s, data->pdev,
F17H_M01H_REPORTED_TEMP_CTRL_OFFSET, 256);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(thm);
static void k10temp_debugfs_cleanup(void *ddir)
{
debugfs_remove_recursive(ddir);
}
static void k10temp_init_debugfs(struct k10temp_data *data)
{
struct dentry *debugfs;
char name[32];
/* Only show debugfs data for Family 17h/18h CPUs */
if (!data->show_tdie)
return;
scnprintf(name, sizeof(name), "k10temp-%s", pci_name(data->pdev));
debugfs = debugfs_create_dir(name, NULL);
if (debugfs) {
debugfs_create_file("svi", 0444, debugfs, data, &svi_fops);
debugfs_create_file("thm", 0444, debugfs, data, &thm_fops);
devm_add_action_or_reset(&data->pdev->dev,
k10temp_debugfs_cleanup, debugfs);
}
}
#else
static void k10temp_init_debugfs(struct k10temp_data *data)
{
}
#endif
static const struct hwmon_channel_info *k10temp_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_CRIT | HWMON_T_CRIT_HYST |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL),
NULL
};
static const struct hwmon_ops k10temp_hwmon_ops = {
.is_visible = k10temp_is_visible,
.read = k10temp_read,
.read_string = k10temp_read_labels,
};
static const struct hwmon_chip_info k10temp_chip_info = {
.ops = &k10temp_hwmon_ops,
.info = k10temp_info,
};
static void k10temp_get_ccd_support(struct pci_dev *pdev,
struct k10temp_data *data, int limit)
{
u32 regval;
int i;
for (i = 0; i < limit; i++) {
amd_smn_read(amd_pci_dev_to_node_id(pdev),
F17H_M70H_CCD_TEMP(i), &regval);
if (regval & F17H_M70H_CCD_TEMP_VALID)
data->show_tccd |= BIT(i);
}
}
static int k10temp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int unreliable = has_erratum_319(pdev);
struct device *dev = &pdev->dev;
struct k10temp_data *data;
struct device *hwmon_dev;
int i;
if (unreliable) {
if (!force) {
dev_err(dev,
"unreliable CPU thermal sensor; monitoring disabled\n");
return -ENODEV;
}
dev_warn(dev,
"unreliable CPU thermal sensor; check erratum 319\n");
}
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pdev = pdev;
if (boot_cpu_data.x86 == 0x15 &&
((boot_cpu_data.x86_model & 0xf0) == 0x60 ||
(boot_cpu_data.x86_model & 0xf0) == 0x70)) {
data->read_htcreg = read_htcreg_nb_f15;
data->read_tempreg = read_tempreg_nb_f15;
} else if (boot_cpu_data.x86 == 0x17 || boot_cpu_data.x86 == 0x18) {
data->temp_adjust_mask = CUR_TEMP_RANGE_SEL_MASK;
data->read_tempreg = read_tempreg_nb_f17;
data->show_tdie = true;
switch (boot_cpu_data.x86_model) {
case 0x1: /* Zen */
case 0x8: /* Zen+ */
case 0x11: /* Zen APU */
case 0x18: /* Zen+ APU */
data->show_current = !is_threadripper() && !is_epyc();
data->svi_addr[0] = F17H_M01H_SVI_TEL_PLANE0;
data->svi_addr[1] = F17H_M01H_SVI_TEL_PLANE1;
data->cfactor[0] = CFACTOR_ICORE;
data->cfactor[1] = CFACTOR_ISOC;
k10temp_get_ccd_support(pdev, data, 4);
break;
case 0x31: /* Zen2 Threadripper */
case 0x71: /* Zen2 */
data->show_current = !is_threadripper() && !is_epyc();
data->cfactor[0] = CFACTOR_ICORE;
data->cfactor[1] = CFACTOR_ISOC;
data->svi_addr[0] = F17H_M01H_SVI_TEL_PLANE1;
data->svi_addr[1] = F17H_M01H_SVI_TEL_PLANE0;
k10temp_get_ccd_support(pdev, data, 8);
break;
}
} else {
data->read_htcreg = read_htcreg_pci;
data->read_tempreg = read_tempreg_pci;
}
for (i = 0; i < ARRAY_SIZE(tctl_offset_table); i++) {
const struct tctl_offset *entry = &tctl_offset_table[i];
if (boot_cpu_data.x86 == entry->model &&
strstr(boot_cpu_data.x86_model_id, entry->id)) {
data->temp_offset = entry->offset;
break;
}
}
hwmon_dev = devm_hwmon_device_register_with_info(dev, "k10temp", data,
&k10temp_chip_info,
NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
k10temp_init_debugfs(data);
return 0;
}
static const struct pci_device_id k10temp_id_table[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_11H_NB_MISC) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M70H_DF_F3) },
{ PCI_VDEVICE(HYGON, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{}
};
MODULE_DEVICE_TABLE(pci, k10temp_id_table);
static struct pci_driver k10temp_driver = {
.name = "k10temp",
.id_table = k10temp_id_table,
.probe = k10temp_probe,
};
module_pci_driver(k10temp_driver);